Algorytmy uczenia maszynowego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy uczenia maszynowego"

Transkrypt

1 Instytut Informatyki Uniwersytetu Śląskiego Wykład 1

2 wykład 10 godzin (stary tryb - 20 godzin); laborki 20 godzin; Tematyka - laborki Szczegółowe przygotowanie studentów do rozwiązywania zadań ze wskazaniem na metodologię postępowania, wskazaniem kolejności wykonywanych czynności. Projektowanie algorytmów i ich implementacja komputerowa. Analizowanie treści zgodne z zakresem przedstawionym na wykładach.

3 Laborki sprawozdanie grupowe - Poprawne wykonanie zadanego projektu zgodnie z wiedzą teoretyczną i sztuką programowania; konieczne jest dostarczenie kompletnego projektu wraz z analizą procesu uczenia. prace kontrolne - Sprawdzian przeprowadzany jest w formie pisemnej lub przy komputerze. Czas trwania sprawdzianu: minut w zależności od liczby i poziomu trudności zadań. Sprawdzian przeprowadzany jest przez prowadzącego w trakcie jednostek kontaktowych.

4 Wykład Oceniane są poszczególne zadania do wykonania w ramach egzaminu, ocena końcowa za pracę jest średnią arytmetyczną ocen za poszczególne zadania. Alternatywnym rozwiązaniem jest rozwiązanie przez studentów testu zawierającego pytania z zakresu obowiązującego materiału. Test zawiera około 25 pytań (po ok. 4-5 pytań z każdego działu). Za każde pytanie student otrzymuje 1 punkt.

5 1 Uczenie maszynowe 2 Uczenie się w sztucznej inteligencji 3 Problem dyskretyzacji danych 4 Metody reprezentacji wiedzy 5 Sieci Bayesa 6 Drzewa decyzyjne 7 Sieci neuronowe 8 Algorytmy ewolucyjne 9 Uczenie nadzorowane i nienadzorowane

6 Podstawowe definicje Uczenie się - definicja Uczeniem się systemu jest każda autonomiczna zmiana w systemie zachodząca na podstawie doświadczeń, która prowadzi do poprawy jego działania. Wynik uczenia się W wyniku procesu uczenia się możliwe jest uzyskanie wiedzy oraz umiejętności. Różnica pomiędzy widzą a umiejętnościami jest dość płynna, przy czym w sytuacji, kiedy konieczne jest wykonanie pewnego określonego szeregu czynności najczęściej używa się słowa umiejętność.

7 Rysunek: Uczenie na przykładzie algorytmu

8 Przykłady uczenia się gra w grę - uczenie na podstawie wcześniej rozegranych partii - modyfikacja pewnej funkcji oceniającej; diagnostyka medyczna - uczenie na podstawie poszerzenia zestawu dostępnych danych; klasyfikacja - problem klasyfikacji obiektów pojawiających się w systemie; kierowanie pojazdem. Motywacja uczenia się złożone problemy, dla których konieczne może okazać się podejście niedeterministyczne; dążenie do maksymalnej autonomiczności ze strony systemów; analiza, klasyfikacja i odkrywanie zależności w złożonych zbiorach danych.

9 Rodzaje systemów uczących się metoda reprezentacji wiedzy - wybór wewnętrznej reprezentacji danego problemu z uwzględnieniem dziedziny zastosowania systemu, możliwości wykorzystania wiedzy środowiskowej, prostoty przekształcenia; sposób używania wiedzy/umiejętności - powiązany z reprezentacją wiedzy oraz celem, jakiemu ma służyć - np. klasyfikacja lub aproksymacja; źródło i postać informacji trenującej - uczenie nadzorowane oraz nienadzorowane (gdzie w pierwszym przypadku dostępna jest informacja wyjściowa odpowiadająca zestawowi zmiennych wejściowych, natomiast w drugim przypadku uczenie możliwe jest tylko na podstawie pewnego zestawu wektorów wejściowych); mechanizm nabywania wiedzy/umiejętności- wyznaczany najczęściej przez zastosowaną metodę reprezentacji wiedzy - np. indukcja, czyli uogólnianie zdobywanej wiedzy.

10 Dziedziny pokrewne teoria prawdopodobieństwa; teoria informacji; logika formalna; statystyka; teoria sterowania; psychologia; neurofizjologia.

11 Sztuczna inteligencja - SI system, który myśli jak człowiek; system, który myśli racjonalnie; Test Turinga Udział bierze dwóch graczy: sędzia (C) i poddawany testowi (A); Gracze nie kontaktują się w ze sobą inaczej niż przy pomocy klawiatury; Pytania zadaje sędzia, a gracz A odpowiada na nie; Gracz C nie powinien byc ekspertem w dziedzinie komputerów; Test ma charakter statyczny i powinien byc powtarzany kilkukrotnie. Sędzia powinien oceniać kilka razy, a w rolę gracza A czasami powinien wcielić się człowiek.

12 Główne działy sztucznej inteligencji automatyczne wnioskowanie (systemy ekspertowe oraz automatyczne dowodzenie twierdzeń); przeszukiwanie - zadanie przeszukiwania dużej przestrzeni rozwiązań; planowanie - znalezienie planu rozwiązania w sposób bardziej efektywny, niż poprzez przeszukiwanie; uczenie się - zachowanie racjonalne systemu oraz dążenie do poszerzania zakresu wiedzy/umiejętności (uczenie się, jako wnioskowanie).

13 Wnioskowanie Wnioskowanie w przód : wnioskowanie od faktów do celu (wnioskowanie sterowane danymi). Wnioskowanie w tył : wnioskowanie od celu do faktów (wnioskowanie sterowane celem). Wnioskowanie mieszane : cechy wnioskowania w tył i w przód. Np. podział bazy wiedzy na dwie części dla wnioskowania w przód oraz w tył.

14 Przykład wnioskowania Dana jest baza wiedzy : R1: jeżeli a i b i c to d R2: jezeli a i b to g R3: jeżeli b i c to e R4: jeżeli a i c to f R5: jeżeli e i b i c to f Dane są fakty : a, b, c. Celem wnioskowania jest f.

15 Przekształcenia wiedzy generalizacja/specjalizacja; abstrakcja/konkretyzacja; podobieństwo/kontrastowanie; wyjaśnianie/predykcja.

16 Preprocessing danych Przetwarzanie wstępne (ang. preprocessing) polega na przekształceniu danych doprowadzonych do wejścia systemu do formatu akceptowanego przez moduł wnioskowania. Przetwarzanie końcowe (ang. postprocessing) służy do konwersji danych wyjściowych z tego modułu do postaci zgodnej z wymogami układów zewnętrznych. Procedura fuzyfikacji (z ang. fuzzification), polega na transformacji wartości z dziedziny liczb rzeczywistych na wartości z dziedziny zbiorów rozmytych. W tym celu dokonuje się wyznaczenia wartości funkcji przynależności dla kolejnych zmiennych lingwistycznych i dla danej rzeczywistej wartości wejściowej. Defuzyfikacja (ang. defuzzification), zwana również wyostrzaniem, jest przekształceniem odwrotnym do rozmywania, czyli transformacją informacji zawartej w zbiorze rozmytym do postaci pojedynczej wartości (crisp value)

17 Usuwanie danych odstających. Gdzie pewna wartość ze zbioru danych wejściowych znacznie odstaje od pozostałych. Może się tak zdarzyć na przykład na skutek błędnie odczytanych wejściowych, przekłamania w zapisie itp. Rysunek: Dane odstające na wykresie

18 Rysunek: Wartości obserwacji w tabeli

19 Skalowanie danych Dane wejściowe należą do przedziału < x min : x max > Dane wyjściowe należą do przedziału < y min : y max > y = y min + (x x min) (y max y min ) x max x min Sieci neuronowe < 1, 1 > Rozmyte sieci kognitywne < 0, 1 > Normalizacja danych Normalizacja danych do przedziału < 0 : 1 > y = x/x max W przypadku danych ujemnych : przedział < x min, x max > na < 0, y max > Dyskretyzacja danych wejściowych podział zbioru początkowego na n równych części. podział zbioru w zależności od częstości występowania obiektów.

20 Pozyskiwanie wiedzy Pozyskiwanie wiedzy Ekspert sam przedstawia wiedzę w postaci reguł (łańcuch przyczynowo-skutkowy): Jeśli coś to wtedy... Zaletą jest czytelność. Liczne wady : czas potrzebny do przekazania wiedzy, konieczność usystematyzowania wiedzy przez eksperta. Ekspert określa prawdopodobieństwo wpływu poszczególnych cech na daną sytuację. Np. Lekarz określający prawdopodobieństwo wystąpienia danego objawu. Zdecydowaną wadą takiego podejścia jest błędne szacowanie prawdopodobieństwa + różni eksperci mogą różnie interpretować pewne fakty. Budowa bazy wiedzy opartej na przykładach. Nie zawsze jednak dla danego problemu istnieje wystarczająca liczba opisanych przypadków.

21 Problem pozyskiwania wiedzy Duża liczba ekspertów. Metody wykorzystujące n ekspertów. Mini metoda delficka uczestnik niezależnie od innych opracowuje swoją ocenę, przedstawienie wszystkich ocen na forum (anonimowo), dyskusja nad rozbieżnościami, każdy ekspert weryfikuje swoją ocenę, mediana ostatnich wyników przyjmowana jako wynik końcowy.

22 Reprezentacje wiedzy Reprezentacje wiedzy Regułowe bazy wiedzy - wiedza zapisana w postaci reguł : if obiekt = wartość then reguła Tablice decyzyjne - odpowiadają regułom. Zapis w tablicy, gdzie jeden wiersz odpowiada jednej regule. Zawiera atrybuty warunkowe oraz atrybut/atrybuty decyzyjne. Język perceptów - (SKRZYDA : SAMOLOT : X, MA) Język predykatów - Wyższy(Paweł, Piotr) wiedza niepewna (zbiory przybliżone, sieci Bayesa).

23 Tablice decyzyjne Definicje Tablicowe przedstawienie wiedzy KRS - Knowledge Representation System. Tablica decyzyjna jest modyfikacją KRS. Definicja bazy wiedzy: K = (U, R), U - skończony zbiór obiektów zwany uniwersum, R = {R 1, R 2,..., R n } - zbiór relacji równoważnościowych nad U KRS to skończona tablica, w której rzędy są etykietowane przez obiekty a kolumny przez atrybuty na przecięciu wiersza i kolumny znajduje się wartość atrybutu danego obiektu.

24 Predykaty Skrócona metoda zero-jedynkowa Tabela: Skrócona zero-jedynkowa (p q) (q p)

25 Metoda założeniowa Reguła Odrywania (RO) : (a b) a b Reguła dołączania koniunkcji (DK) : (a) (b) (a b) Reguła opuszczania koniunkcji (OK) : (a b) a Reguła opuszczania koniunkcji II(OK) : (a b) b Reguła dołączania alternatywy (DA) : p (p q) Reguła dołączania alternatywy II (DA) : q (p q) Reguła opuszczania alternatywy (OA) : ((p q) p) q Reguła opuszczania alternatywy (OA) : ((p q) q) p Reguła dołączania równoważności (DE) : ((p q) (q p)) (p q) Reguła opuszczania równoważności (OE) : (p q) (p q) Reguła opuszczania równoważności II (OE) : (p q) (q p)

26 Kwantyfikatory Kwantyfikatorem ogólnym nazywamy wyrażenia dla każdego. Wyrażenie z kwantyfikatorem: kwantyfikatora; zmiennej; wyrażenie zdaniowego. Zmienna, do której odnosi sią kwantyfikator, nazywamy zmienną wiązaną.

27 Przekształcanie tekstu - prawo rozdzielności kwantyfikatorów x (α(x) β(x)) ( x α(x) x β(x)) Przyjmujjąc: x - budynek. α(x) - budynek zbudowany z cegły. β(x) - budynek jest trwalszy niż budynek zbudowany z drewna. Jeżli każdy dom zbudowany z cegły jest trwalszy od budynku zbudowanego z drewna (założenie) To każdy dom zbudowany z cegły jest trwalszy od każdego domu zbudowanego z drewna (teza).

28 Sieci Bayesa Przykład Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach, co może wywołać niedotlenienie mięśnia sercowego, zwłaszcza przy wysiłku fizycznym. Które fragmenty wskazują na niepewność wnioskowania? Jak przekształcić powyższy tekst w taki sposób, aby można było do niego zastosować jedną z poznanych dotychczas reprezentacji wiedzy. Czy do tak przekształconego tekstu można zadać pytania: jaki ma wpływ wysiłek fizyczny na niedotlenienie mięśnia sercowego u ludzi z jednakowo posuniętą miażdżycą, wykonujących wysiłek fizyczny o różnym natężeniu? w jakim stopniu człowiek, u którego nie występuje niedotlenienie z powodu wysiłku, narażony jest na zwężenie tętnic z powodu miażdżycy?

29 Definicje Podejście probabilistyczne: Mająć dany zbiór hipotez: H = {h 1,..., h n } dla których: P(h i ) > 0 dla każdego i Mając zbiór pewnych obserwacji: E = {e 1,..., e m } każdy fragment obserwacji e j jest niezależny warunkowo względem każdej hipotezy.

30 Rysunek: Przesłanka a hipoteza Obserwacja e oraz hipoteza h są reprezentowane przez wierzchołki grafu, natomiast natomiast wnioskowanie przez krawędź. Rozpatrywana reguła może być rozpatrywana w modelu Bayesa następująco: P(h e) = P(e h) P(h) P(e)

31 Rysunek: Sieć wnioskowania

32 Sieć Bayesa B = {N, E, CP} gdzie dwójka {N, E} jest skierowanym grafem acyklicznym zbudowanym na podstawie zadanych prawdopodobieństw warunkowych zawartych w zbiorze CP. Przykład: Dany jest zbiór pewnych zmiennych identyfikujących obserwacje i hipotezy. P Niech zbiór tych zmiennych ma następującą postać: Z = A, B, C, D, E, F, G, H Dane są również informacje opisujące związki przyczynowo-skutkowe pomiędzy tymi zmiennymi w postaci zbiory prawdopodobieństw warunkowych CP: CP = {P(A), P(B A), P(C B), P(C F ), P(D C), P(E CH), P(F G), P(G), P(H G)}

33 Rysunek: Wynikowa sieć Bayesa

34 Współczynniki pewności CF Współczynniki pewności CF: Jeżeli e(&e2&...&e n ) To h ze stopniem pewności CF gdzie: e(, e2,..., e n ) to przesłanki reguły a h to konkluzja, & to operator logiczny And.

35 Współczynnik CF CF nie jest interpretowany jako klasyczne prawdopodobieństwo Współczynnik pewności CF jest połączeniem stopnia wiedzy, oraz niewiedzy. Stopień wiedzy - inaczej miara wiarygodności - MB. Stopień niewiedzy - miara niewiarygodności - MD. Załóżmy istnienie prostej reguły: Jeżeli e to h

36 Współczynniki CF Współczynniki dla powyższej reguły określone są następująco: MB(h,e) MD(h,e) CF(h,e) Sam współczynnik CF definiowany jest jako: CF (h, e) = MB(h, e) MD(h, e)

37 Miary CF Interpretacja powyższych miar może być następująca: jeżeli P(h e) = 1 to h jest prawdziwe na pewno, wtedy MB(h, e) = 1, MD(h, e) = 0, oraz CF (h, e) = 1, jeżeli P( h e) = 1 to h jest fałszywe na pewno, wtedy MB(h, e) = 0, MD(h, e) = 1, oraz CF (h, e) = 1, jeżeli P(h e) = P(h) to h co znaczy, że h i e są niezależne, wtedy MB(h, e) = 0, oraz MD(h, e) = 0, CF (h, e) = 0.

38 Rysunek: Wartości CF

39 Propagacja współczynników niepewności Mając daną regułę R: Jeżeli e to h ze stopniem pewności CF przesłanka reguły e ma pewien współczynnik CF konkluzja reguły h również ma współczynnik CF Końcowy współczynnik pewności wyznaczany jest w następujący sposób: CF (h, e) = CF (e) CF (h)

40 Współczynniki pewności W przypadku gdy przesłanka reguły zawiera wyrażenie zawierające operator AND (&) : Jeżeli e1&e2 to h ze stopniem pewności CF to współczynnik pewności konkluzji h wyznaczany jest w następujący sposób: CF (h, e1&e2) = Minimum {CF (e1), CF (e2)} CF (h) W przypadku gdy przesłanka reguły zawiera wyrażenie zawierajace funktor OR ( ) : Jeżeli e1 e2 to h ze stopniem pewności CF to współczynnik pewności konkluzji h wyznaczany jest w następujący sposób: CF (h, e1 e2) = Maksimum {CF (e1), CF (e2)} CF (h)

41 W przypadku, gdy jedna hipoteza h jest konkluzją więcej niż jednej reguły: Jeżeli e1 to h Jeżeli e2 to h Rysunek: Obliczanie CF Rysunek: Obliczanie CF

42 Połączenie szeregowe reguł: Jeżeli e1 to e2 Jeżeli e2 to h Rysunek: Szeregowe połączenie reguł CF (h, e1) = CF (e2, e1) CF (h, e2)

43 Rysunek: Propagacja CF CF (e4, e1) = CF (e2, e1) CF (e4, e2)

44 CF (e4, e1, e3) = Rysunek: Propagacja CF CF (e4,e1)+cf (e4,e3) 1 min( CF (e4,e1), CF (e4,e3) ) CF (e4, e1, e3) = = =

45 Rysunek: Propagacja CF CF (h, e4) = CF (e4, e1e3) CF (h, e1e3)

46 Rysunek: Propagacja CF CF (h, e1e3, e5) = CF (h, e1e3) + CF (h, e5) CF (h, e1e3) CF (h, e5)

47 Rysunek: Propagacja CF CF (h, e1e3e5) =

48 Definicja Sieć składająca się z następujących elementów: zbiór obiektów {o j } = O zbiór cech {c j } = C zbiór wartości {v j } = V Elementami zbioru obiektów moga byc symbole oznaczajace konkrety lub abstrakcje, np:samochód - to symbol abstrakcji, zas Fiat 126 p KAE to symbol konkretu.

49 Relacje OxO relacja miedzy obiektami, relacja okreslona na zbiorze obiektów. ISA - relacja typu cześć- całość (nadrzędność) ISPART - relacja podrzędności, czyli (coś) jest cześcią (czegoś) Relacje te są przechodnie. OxC - relacja przysługiwania obiektom pewnych cech - posiada cechę. VxC - relacja postaci jest wartością cechy. VxV - relacja uporządkowania elementów zbioru wartości cech, np.: relacja typu: (coś) poprzedza (coś), lub (coś) następuje po (czymś). OxV - relacja typu posiada wartość cechy, czyli przypisania obiektom wartości cechy. Czasem relacja ta jest tworzona przez złączenie relacji OxC oraz VxC.

50 Rysunek: Sieć semantyczna - przykład

51 Rysunek: Budowanie sieci semantycznej - przykład Rysunek: Budowanie sieci semantycznej - przykład Możliwe jest następujące wnioskowanie: Jaś jest kosem, kos jest ptakiem, Jaś jest ptakiem.

52 Rysunek: Sieć semantyczna - błąd wnioskowania Ale: uczeni badaja Jasia, co może ale nie musi być prawdą.

53 Rysunek: Sieć semantyczna - system informacyjny

54 Rysunek: Sieć semantyczna - zapytanie

55 Zastosowanie sieci semantycznych projektowanie systemów informacyjnych (baz danych); rozumienie języka naturalnego; rozpoznawanie mowy; budowania systemów odpowiadajacych na pytania

56 Przykład 1 Komputer jest opisywany przez nastepujace parametry: procesor; pamięć RAM; karta grafiki; dysk twardy. Przedstaw sieć semantyczną opisującą powyższe zależności. Jako przykład przyjmij komputer: procesor Pentium I, pamieć RAM 32 MB, karta grafiki S3 Trio, dysk HDD 4GB.

57 Rysunek: Rozwiązanie

58 Percepty Percept jest parą (pa, val), której pierwszy element pa jest parametrem perceptu charakteryzującym pewne istnienie e z wartością val będącą drugim elementem perceptu: (e, (pa, val)) per

59 Elementy perceptu: Rysunek: Percepty Parametr bez wartości, to parametr bezkontekstowy: Rysunek: Percepty

60 Przykłady: (CIŚNIENIE : PARA : KOCIOŁ, K1): ciśnienie pary w kotle K1 (KOLOR : KOCIOL : K1, CZERWONY) (KSZTALT : KOCIOL : K1,WALEC) (SKRZYDLA : SAMOLOT : X,MA) (Informatyk : Osoba : Jan, TAK) (SKRZYDLA : OBIEKT : X,MA) (LATA : OBIEKT : X, TAK)

61 System perceptowy: Systemem perceptowym w uniwersum U nazywamy trójkę: S = (U, FS, GS) składającą się z uniwersum U, skończonego zbioru FS U-zdań wyrażających fakty o konkretach parametrów PAR skończonego zbioru GS U-zdań wyrażających cele (pytania) dotyczące konkretów parametrów PAR. U-zdania wyrażające fakty nazywamy U-faktami, a Uformuły opisujące cele U-celami.

62 Przykład: (D1) Pies AS szczeka. (D2) Zwierzę Mruczek miauczy. (R1) Jeśli pies merda ogonem, to jest przyjazny. (R2) Jeśli pies szczeka na kota, to kot obawia się psa. (R3) Pies jest zwierzęciem. ( Jeżeli pies to zwierzę. ) (R4) Jeśli zwierzę miauczy, to jest kotem.

63 Wnioskowanie, dowodzenie: Dwie główne reguły dowodzenia: reguła odrywania : (DR1) A,A B B x A(x) reguła uogólnienia: (DR2) A(x)

64 Wnioskowanie w tył: Dane są reguły: Drogie uniwersalne komputery, zamknięte w dużej obudowie posiadają procesor PII. (cena:komputer:x1,drogi) (cecha:komputer:x1,uniwersalny) (obudowa:komputer:x1,duża) (procesor:komputer:x1,pii) Szybkie komputery przeznaczone do gier są drogie. (prędkość:komputer:x1,szybki) (przeznaczenie:komputer:x1,gry) (cena:komputer:x1,drogi) Komputery wyposażone w dużą pamięć operacyjną są uniwersalne. (pamięć:komputer:x1,dużo) (cecha:komputer:x1,uniwersalny)

65 Jeżeli komputer nie ma nagrywarki CD, to jest dostosowany do gier. (nagrywarka:komputer:x1,nie) (przeznaczenie:komputer:x1,gry) Komputery wyposażone w nagrywarki są drogie. (nagrywarka:komputer:x1,tak) (cena:komputer:x1,drogi) Fakty: Mój komputer ma dużą obudowę, jest szybki i wyposażony w nagry- warki, a przy tym ma dużą pamięć opracyjną. (obudowa:komputer:mój,duża) (prędkość:komputer:mój,szybki) (nagrywarka:komputer:mój,tak) (pamięć:komputer:mój,dużo)

66 Sieci kognitywne Dane temporalne - definicja Niech T = t 0, t 1,..., t n - ciąg etykiet czasu; i T, t i t i 1 = t i = 1; Dane temporalne - przykład t 1 : a 1 = 0.3; a 2 = 0.6; a 3 = 0.1; t 2 : a 1 = 0.6; a 2 = 0.2; a 3 = 0.5; t n : a 1 = 0.3; a 2 = 0.3; a 3 = 0.6;

67 Czym jest sieć kognitywna? Jedna z metod reprezentacji wiedzy wykorzystywanych w systemach wspomagania decyzji. Zainspirowane biologią i psychologią. Korzystają z takich elementów jak : pojęcie, relacja przyczynowa. Mają formę grafu. Przy pomocy sieci kognitywnej zaprojektować można pewien proces decyzyjny, lub środowisko.

68 Sieć kognitywna FCM = C, A, W (1) gdzie: C jest skończonym zbiorem pojęć, A to zbiór aktywacji pojęć (a i [0, 1]), W zbiór wartości wag w ij [ 1, 1].

69 Rysunek: Sieć kognitywna

70 Rysunek: a - reprezentacja grafowa; b - reprezentacja macierzowa

71 Rozmycie sieci Podstawowa wersja sieci kognitywnej zakłada dwa stany : dodatni wpływ, oraz ujemny wpływ pojęć na siebie. FCM pozwala na określenie częściowego ujemnego, lub dodatniego wpływu. Rozmycie określane jest na podstawie pewnych ustalonych poziomów. Rozmycie bardzo słaby słaby średni silny bardzo silny

72 Więcej o macierzach Macierz nie jest częścią sieci kognitywnej, tylko jej strukturą pomocniczą. Macierz wskazuje zależności pomiędzy pojęciami. Macierz jest strukturą kwadratową, gdzie liczba wierszy i kolumn równa jest liczbie pojęć. Każda komórka macierzy to jedno połączenie pomiędzy pojęciami. W przypadku braku zależności pomiędzy pojęciami, w danej komórce znajduje się 0. Wartość w komórce macierzy określa siłę wpływu (wagę) jednego pojęcia na inne. Wagi znajdują się w przedziale [ 1, 1], gdzie -1 określa wpływ ujemny, natomiast 1 dodatni.

73 Uczenie sieci - problem Dane historyczne dla pojęć, Brak informacji na temat zależności pomiędzy pojęciami, Brak informacji na temat wag sieci,

74 Uczenie sieci - problem Zadanie Dane historyczne dla pojęć, Brak informacji na temat zależności pomiędzy pojęciami, Brak informacji na temat wag sieci, Wykrycie zależności pomiędzy pojęciami, Wykrycie wartości wag pomiędzy pojęciami.

75 Uczenie sieci - problem II Potrzebny jest algorytm, który w sposób automatyczny potrafi: Określić zbiór pojęć danej sieci, Znaleźć zależności pomiędzy nimi, Obliczyć wpływ poszczególnych pojęć na siebie.

76 Uczenie sieci Znane są dwie główne metody uczenia rozmytych sieci kognitywnych: Uczenie z wykorzystaniem wiedzy eksperta z danej dziedziny. Automatyczne generowanie sieci z danych historycznych. Metoda klasyczna Pierwsza opisywana metoda opiera się na wykorzystaniu pomocy ekspertów dziedzinowych. Zadaniem ekspertów jest: Określenie kluczowych pojęć. Wskazanie relacji pomiędzy pojęciami. Ustalenie siły wpływu poszczególnych pojęć na siebie.

77 Wnioskowanie w FCM γ C i (t + 1) = γ(σ n i=1 w ij C i (t)) C 1 (t + 1) = C 1 = 1.45, a wartość C musi należeć do przedziału [0, 1]. γ pełni rolę funkcji normalizującej wartość pojęcia do przedziału [0, 1]. Coś o normalizacji Wartość każdego pojęcia zmieniana jest tak, aby pasowała do przedziału [0, 1]. Dokonać można tego za pomocą specjalnej funkcji zwanej funkcją sigmoidalną: f (x) = 1 1+e Cx

78 Rysunek: Rozmyta sieć kognitywna

79 where: 1 f = (t e 1) n t e t=t s i=1 n a i (t) a i(t) p, (2) t l dolna granica okna czasowego oraz indeks początkowy serii danych; t u górna granica okna czasowego oraz indeks końcowy serii danych; n = card(c) liczba pojęć; p parametr sterujący procesu uczenia p = 1, a n (t) obserwowana wartość i-tego pojęcia w chwili czasu t a n(t) obserwowana wartość wygenerowana przez FCM.

80 Rysunek: Atraktor chaotyczny

81 Naiwny klasyfikator Bayesa Rysunek: Klasyfikator Bayesa

82 Jakie jest prawdopodobieństwo, że nowy obiekt będzie zielony/czerwony? Jaki będzie kolor nowego obiektu? Obliczenie prawdopodobieństwa a priori: prawdopodobieństwo, które możemy ustalić na podstawie obserwacji zbioru. prawd. a priori zielonego = l.zielonych l.wszystkich prawd. a priori czerwonego = l.czerwonych l.wszystkich wszystkich obiektów = 60 obiektów zielonych = 40 obiektów czerwonych = 20

83 Stąd : prawd. a priori zielonego = prawd. a priori czerwonego = Rysunek: Klasyfikator Bayesa

84 Następnym krokiem jest wybranie obiektów sąsiadujących z nowym obiektem - umiejscowienie nowego obiektu. Obliczenie ile kulek czerwonych jest w sąsiedzywie nowego obiektu Obliczenie ile kulek zielonych jest w sąsiedztwie nowego obiektu Szansa, że X będzie zielone = l.zielonychwssiedztwiex cak.l.zielonych Szansa, że X będzie czerwone = l.czerwonychwssiedztwiex cak.l.czerwonych więc mamy: Szansa, że X będzie zielone = 1 40 Szansa, że X będzie czerwone = 3 20

85 Teraz możemy wyliczyć prawdopodobieństwa: X zielone = = 1 60 X czerwone = 1 40 X będzie czerwone, ponieważ ma większe prawdopodobieństwo.

86 Przykład: mamy zbiór danych treningowych złożony z 30 koni, 50 kotów i 20 kur. Otrzymalismy zwierzę (obiekt testowy) czworonożne. Jak określić jego gatunek? Musimy wyliczyć prawdopodobieństwo warunkowe tego, że zwierzę jest koniem, o ile ma 4 nogi, i podobnie dla kota i kury. W tym zadaniu prawdopodobieństwa te możemy wyliczyć wprost, jako odpowiednio 3 8, 5/8 i 0 (gdyż 3 8 czworonogów jest końmi, 5 8 kotami i 0 kurami). Wnioskujemy, że nieznane zwierzę jest raczej kotem.

87 Do jakiej klasy wyznaczone zostanie czarne kółko? (Rozpatrując różne sąsiedztwo). Rysunek: Klasyfikator Bayesa

88 Algorytm k-nn Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr wejściowy, to zbiór obiektów, na podstawie których będzie przebiegała klasyfikacja. obiekt do zaklasyfikowania Parametr wyjściowy to klasa decyzyjna, do której zaklasyfikowany zostanie obiekt. Schemat algorytmu: 1 Poszukaj obiektu najbliższego w stosunku do obiektu klasyfikowanego. 2 Określenie klasy decyzyjnej na podstawie obiektu najbliższego.

89 Algorytm k-nn - k najbliższych sąsiadów. Podobny do powyższego algorytmu Bardziej odporny na szumy - w poprzednim algorytmie obiekt najbliższy klasyfikowanemu może być zniekształcony - tak samo zostanie zaklasyfikowany nowy obiekt. Konieczność ustalenia liczby najbliższych sąsiadów. Wyznaczenie miary podobieństwa wsród obiektów (wiele miar podobieństwa).

90 Dobór parametru k - liczby sąsiadów: Jeśli k jest małe, algorytm nie jest odporny na szumy - jakość klasyfikacji jest niska. Jeśli k jest duże, czas działania algorytmu rośnie - większa złożoność obliczeniowa. Należy wybrać k, które daje najwyższą wartość klasyfikacji.

91 Wyznaczanie odległości obiektów: odległość euklidesowa odległość miejska odległość taksówkowa Manhattan Pierwsza z nich wyraża się wzorem: d ij = Σ p k=1 (x ik x jk ) 2 Z kolei odległość miejska: d ij = Σ p k=1 x ik x jk

92 Przykład: Tabela: Tabela danych Tabela: Tabela danych X1 X2 Y X1 X2 Y ?

93 Obiekt klasyfikowany podany jako ostatni : X 1 = 3, X 2 = 6 Teraz obliczmy odległości poszczególnych obiektów od wskazanego. Dla uproszczenia obliczeń posłużymy się wzorem: d ij = (X 1 i ˆX 1) 2 + (X 2 i ˆX 2) 2

94 Przykład: Tabela: Tabela danych Tabela: Tabela danych X1 X2 Y d X1 X2 Y d ?

95 Wybranie K= 9 najbliższych sąsiadów i określenie ich decyzji: Tabela: Tabela danych Tabela: Tabela danych X1 X2 Y d znak X1 X2 Y d znak ?

96 Ostatnim krokiem jest obliczenie liczby sąsiadujących obiektów w danych klasach decyzyjnych: Obiekty w klasie dodatniej 2 Obiekty w klasie ujemnej 7 Klasyfikowany obiekt będzie najprawdopodobniej w klasie ujemnej.

97 Sieci neuronowe Ogólne informacje ogólna nazwa struktur matematycznych i ich programowych lub sprzętowych modeli, realizujących obliczenia lub przetwarzanie sygnałów poprzez rzędy elementów, zwanych sztucznymi neuronami; sztuczna sieć naśladująca biologiczne sieci neuronowe żywych organizmów; graf skierowany z odpowiednio określoną rolą węzłów i krawędzi; Układ elementów przetwarzających, nazwanych neuronami, w których wyjścia każdego neuronu są połączone poprzez wagi z wejściami wszystkich neuronów, w tym także z jego własnym wejściem.

98 Cechy sieci neuronowych uogólnienie posiadanej informacji na nowe przypadki; odporność na błędne, lub niepełne informacje; może być połączona z systemem ekspertowym w celu wskazania możliwego rozwiązania danego problem; ma możiwość aproksymacji funkcji; Zastosowanie sieci neuronowych prognozowanie zjawisk (dane pogodowe, dane giełdowe); rozpoznawanie języka, w jakim napisany jest tekst; przetwarzanie zeskanowanego obrazu na tekst; ma możiwość aproksymacji funkcji;

99 Rysunek: Schemat neuronu

100 Zasada działania neuronu sygnały wejściowe zostają pomnożone przez odpowiadające im wagi; otrzymane wartości są sumowane; w wyniku powstaje sygnał s odzwierciedlający działanie części liniowej neuronu (poddawany działaniu funkcji aktywacji - najczęściej nieliniowej);

101 Rysunek: Model neuronu signoidalnego

102 Rysunek: Funkcja aktywacji neuronu

103 Rysunek: Sieć neuronowa jednowarstwowa

104 Rysunek: Sieć neuronowa dwuwarstwowa

105 Rysunek: Rodzaje sieci neuronowych

106 Rysunek: Przykład działania prostej sieci

107 Inne rodzaje sieci Połączenia między neuronami stanowią graf z cyklami (obieg zamknięty) tzn. sygnały z warstwy wyjściowej sieci podawane są z powrotem do warstwy wejściowej. Sieć Hopfielda Układ gęsto połączonych ze sobą neuronów (każdy z każdym, ale bez połączeń zwrotnych) Maszyna Boltzmanna Opracowana przez Geoffa Hintona i Terry ego Sejnowskiego stochastyczna modyfikacja sieci Hopfielda. Koncepcja takiej maszyny oparta jest na założeniu, że stan każdego neuronu może się zmieniać w sposób losowy z określonym prawdopodobieństwem (prawdopodobieństwo to zależy od energii i temperatury sieci).

108 Sieć Adaline Układ został zaproponowany w 1960 roku przez Widrowai Hoffa. Nazywany jest również adaptacyjnym liniowym sumatorem ważonym. Algorytm modyfikacji wag ma charakter uczenia pod nadzorem. Sygnał wyjściowy y sumatora porównywany jest z sygnałem wzorcowym d.

109 Radialne sieci neuronowe Zaproponowane w 1988 roku przez Broomhead a i Lowe a. W sieci takiej znajdują się neurony, których pobudzenie zależy od odległości sygnału wyjściowego od pewnego centrum. Dany neuron reaguje jedynie na bodźce podobne do pewnego z góry ustalonego bodźca zapisanego w neuronie. Uczenie sieci radialnej Neurony warstwy ukrytej wzbudzane są za pomocą funkcji zależnej od odległości pomiędzy danym punktem x a pewnym centrum c, które jest jednym z parametrów neuronu ustalanym w procesie nauki.

110 Klasyfikacja sieci - sposób uczenia uczenie bez nadzoru podczas treningu sieci nie jest podawane prawidłowe rozwiązanie. uczenie z nadzorem właściwy rezultat jest znany i podany sieci, która zmieniając poszczególne wagi połączeń stara się otrzymać wynik jak najbardziej podobny do podanego.

111 Procedura uczenia się Zbiór T przykładów uczących czyli par (x i, d i ), i = 1,..., n reprezentujących przybliżaną funkcję. Początkowe ustalenie wag neuronów. Podanie k par do sieci oraz obliczenie wartości błędu. Modyfikacja wag sieci tak, aby wartość błędu została zminimalizowana. W powyższym przykładzie pojedyncza modyfikacja wag określana jest jako epoka, a liczba początkowych par to długość epoki.

112 Uczenie nadzorowane i nienadzorowane Uczenie nadzorowane Sieci podaje się przykłady poprawnego działania, które powinna ona potem naśladować. Mamy doczynienia z parą wartości- przykładowym sygnałem wejściowym i pożądanym (oczekiwanym) wyjściem. Zbiór przykładów zgromadzonych w celu ich wykorzystania w procesie uczenia sieci nazywa się zwykle ciągiem uczącym.

113 Uczenie nienadzorowane Nie jest wymagane zgromadzenie żadnej dodatkowej wiedzy. Na wejściu sieci pojawiają się przykłady sygnałów wejściowych, ale wartość wyjściowa nie jest podawana. Sieć na podstawie danych musi wywnioskować sposób działania. Pomiędzy pojawiającymi się obiektami nie jest podawana żadna zależność.

114 Dziękuję za uwagę

Systemy uczące się wykład 1

Systemy uczące się wykład 1 Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Systemy ekspertowe : percepty

Systemy ekspertowe : percepty Instytut Informatyki Uniwersytetu Śląskiego 4 maja 2012 Percept jest parą (pa, val), której pierwszy element pa jest parametrem perceptu charakteryzującym pewne istnienie e z wartością val będącą drugim

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Sztuczna inteligencja : Algorytm KNN

Sztuczna inteligencja : Algorytm KNN Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr

Bardziej szczegółowo

Systemy ekspertowe : program PCShell

Systemy ekspertowe : program PCShell Instytut Informatyki Uniwersytetu Śląskiego lab 1 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. 2

Sztuczna inteligencja : Zbiory rozmyte cz. 2 Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:

Bardziej szczegółowo

Sztuczna inteligencja: zbiory rozmyte

Sztuczna inteligencja: zbiory rozmyte Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element

Bardziej szczegółowo

Percepcja bodźców istnienia Perceptami (PER) nazywamy reakcję na istnienia, co jest wynikiem percepcji

Percepcja bodźców istnienia Perceptami (PER) nazywamy reakcję na istnienia, co jest wynikiem percepcji Wstęp Percepcja jest przez nas rozumiana intuicyjnie: odzwierciedlenie przez człowieka przedmiotów, zjawisk, bodźców przez jego narządy zmysłowe Bodźce to inaczej istnienia (byty) oznaczamy je przez ENT

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Prawdopodobieństwo czerwonych = = 0.33

Prawdopodobieństwo czerwonych = = 0.33 Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

Tworzenie gier na urządzenia mobilne

Tworzenie gier na urządzenia mobilne Katedra Inżynierii Wiedzy Wykład 8 Przekształcenia wiedzy generalizacja/specjalizacja; abstrakcja/konkretyzacja; podobieństwo/kontrastowanie; wyjaśnianie/predykcja. Przetwarzanie danych Przetwarzanie wstępne

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

Systemy uczące się Lab 4

Systemy uczące się Lab 4 Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych. Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów. Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Wprowadzenie do teorii systemów ekspertowych

Wprowadzenie do teorii systemów ekspertowych Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

6. Zagadnienie parkowania ciężarówki.

6. Zagadnienie parkowania ciężarówki. 6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

7. Zagadnienie parkowania ciężarówki.

7. Zagadnienie parkowania ciężarówki. 7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie

Bardziej szczegółowo

Wnioskowanie rozmyte. Krzysztof Patan

Wnioskowanie rozmyte. Krzysztof Patan Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW

komputery? Andrzej Skowron, Hung Son Nguyen  Instytut Matematyki, Wydział MIM, UW Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Współczynniki pewności (ang. Certainty

Bardziej szczegółowo

Sieć przesyłająca żetony CP (counter propagation)

Sieć przesyłająca żetony CP (counter propagation) Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Inteligentne systemy informacyjne

Inteligentne systemy informacyjne Inteligentne systemy informacyjne Moduł 10 Mieczysław Muraszkiewicz www.icie.com.pl/lect_pw.htm M. Muraszkiewicz strona 1 Sieci neuronowe szkic Moduł 10 M. Muraszkiewicz strona 2 Dwa nurty M. Muraszkiewicz

Bardziej szczegółowo

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F. METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO

Bardziej szczegółowo

Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety

Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety mgr Adam Marszałek Zakład Inteligencji Obliczeniowej Instytut Informatyki PK Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety Wstępnie na

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Mail: Pokój 214, II piętro

Mail: Pokój 214, II piętro Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Cel projektu: Wymogi dotyczące sprawozdania:

Cel projektu: Wymogi dotyczące sprawozdania: W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe

Bardziej szczegółowo

wiedzy Sieci neuronowe

wiedzy Sieci neuronowe Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci

Bardziej szczegółowo

SID Wykład 7 Zbiory rozmyte

SID Wykład 7 Zbiory rozmyte SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Systemy ekspertowe. Krzysztof Patan

Systemy ekspertowe. Krzysztof Patan Systemy ekspertowe Krzysztof Patan Wprowadzenie System ekspertowy Program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek będący ekspertem

Bardziej szczegółowo

Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.

Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta.  Autor Roman Simiński. Część piąta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.

Bardziej szczegółowo

Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS

Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup. Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np.. Systemy regułowe Metody wnioskowania Wnioskowanie w przód (ang. forward chaining) Od przesłanki do konkluzji Np.. CLIPS Wnioskowanie w tył (ang. Backward chaining) Czyli od konkluzji do przesłanki Np..

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 08 Sieci bayesowskie

Algorytmy stochastyczne, wykład 08 Sieci bayesowskie Algorytmy stochastyczne, wykład 08 Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-04-10 Prawdopodobieństwo Prawdopodobieństwo Prawdopodobieństwo warunkowe Zmienne

Bardziej szczegółowo

Rachunek zdań i predykatów

Rachunek zdań i predykatów Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)

Bardziej szczegółowo

Wstęp do sztucznych sieci neuronowych

Wstęp do sztucznych sieci neuronowych Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

2

2 1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem

Bardziej szczegółowo

Inteligentne systemy przeciw atakom sieciowym

Inteligentne systemy przeciw atakom sieciowym Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne

Bardziej szczegółowo