Rozmyte systemy doradcze

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozmyte systemy doradcze"

Transkrypt

1 Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu Mamdani, 2. typu Sugeno. 2

2 Co to takiego myślenie rozmyte? Nawet eksperci używają sformułowań: Metoda X jest znacznie bardziej efektywna niż metoda Y. Ocenę stanów, rzeczy wykonuje się w pewnej skali stopniowania: mały, duży, wielki, niski, wysoki, bardzo wysoki, wolny, średnio wolny, szybki, itd... Trudno jest zatem odróżnić element danej klasy od innych. Logika rozmyta to logika użyta by opisywać rozmycie, a nie logika, która jest rozmyta (mętna). 3 Uwaga! 4 2

3 Myślenie według logiki konwencjonalnej Logika boolowska używa ostrego rozróżniania: albo coś jest elementem klasy, albo nie jest, np.: kabel jest długi > 300 m, albo kabel krótki <=300m Tomek jest wysoki, bo ma 8cm (wysoki > 80cm) Michał jest niski (nie wysoki), bo mierzy 79cm

4 Zbiory w ujęciu klasycznym Zbiór - podstawowe pojęcie w matematyce. X - zbiór klasyczny, x element zbioru X. (x X) x jest elementem zbioru X. Każdy element, który przynależy do zbioru ma ustawianą wartość. (x X) x nie należy zbioru X. Każdy element, który nie jest elementem zbioru ma ustawianą wartość 0. 7 Główna idea zbiorów rozmytych Element należy do zbioru rozmytego z pewnym stopniem przynależności. Zatem stwierdzenie może być częściowo prawdziwe lub częściowo fałszywe. Przynależność jest liczbą rzeczywistą z przedziału 0 do. 8 4

5 Porównanie Imię Wysokość Funkcja charkterystyczna Logika klasyczna Przynależność Logika Rozmyta Krzyś 208,00 Marek 205,00 Jan 98 0,98 Tomek 8 0,82 Dawid ,78 Michał ,24 Bartek ,5 Staś ,06 Piotr ,0 9 Zbiór / Zbiór rozmyty X uniwersum, zbiór uniwersalny, przestrzeń. x element uniwersum. Klasyczna logika definiuje funkcję charakterystyczną zbioru : f (x) X 0,, gdzie: f, if x ( x) = 0, if x Logika rozmyta definiuje funkcję przynależności zbioru z uniwersum X: µ (x) X [0,], gdzie: µ ( x) = µ ( x) = 0 if x na pewno jest w if x nie jest w 0 < µ ( x) < if x czesciowo jest w 0 5

6 Skąd wiadomo jakie stosować funkcje przynależności? Od pojedynczego eksperta. Zbierając dane od wielu ekspertów. Sztuczne sieci neuronowe uczą się na dostępnych dla systemu danych i określają zbiór rozmyty. Typy funkcji przynależności 2 6

7 Przykład funkcja przynależności stopień przynależności stopień przynależności niski niski średni wysoki 70 średni wysoki przypadek logiki klasycznej wzrost w cm przypadek logiki rozmytej 84cm przynależność do zbioru średni ze stopniem 0.4, a do zbioru wysoki ze stopniem wzrost w cm 3 Reprezentacja zbioru rozmytego Niech X jest to zbiór par: {x i, µ (x) } {element, jego funkcja przynależności}. jest podzbiorem X. Sposoby reprezentowania podzbioru :. 2. { x µ ( x )}, { x, µ ( x )}, K, { x, ( x )} = µ, 2 2 n n { µ x ) / x }, { µ ( x ) / x }, K, { ( x ) x } = / ( 2 2 µ Przykład: wysoki mężczyzna=(0/80, /90) niski mężczyzna=(/60, 0/70) średniego wzrostu mężczyzna=(0/65, /75, 0/85) n n 4 7

8 Zmienne lingwistyczne Zmienne lingwistyczne: Jan jest wysoki. Jan przyjmuje lingwistyczna wartość (term) wysoki. [Wzrost jest zmienną lingwistyczną] Przykłady reguł rozmytych (na zmiennych lingwistycznych): IF wiatr jest silny THENżaglowanie jest dobre IF czas projektu jest długi THEN ryzyko ukończenia wysokie IF prędkość wolna THEN droga hamowania krótka 5 Operacje na zbiorach klasycznych dopełnienie zawieranie się NOT B B B przecięcie unia 6 8

9 Zbiory rozmyte - Dopełnienie Zbiór klasyczny: Kto/co nie należy do zbioru? Zbiór rozmyty: Jak bardzo element nie przynależy do zbioru? Przykład: µ ( x) = µ ( x) wysoki mężczyzna = (0/80, 0.25/82.5, 0.5/85, 0.75/87, /90) NOT wysoki mężczyzna = (/ /82.5, 0.5/85, 0.25/87, 0/90) µ (x) 0 x µ (x) NOT 0 x 7 Zbiory rozmyte - Zawieranie się Zbiór klasyczny: Który zbiór należy do innych zbiorów? Zbiór rozmyty: Który zbiór rozmyty należy do innych zbiorów rozmytych? Przykład: wysoki mężczyzna = (0/80, 0.25/82.5, 0.5/85, 0.75/87, /90) bardzo wysoki mężczyzna = (0/80, 0.06/82.5, 0.25/85, 0.56/87, /90) µ(x) 0 B x 8 9

10 Zbiory rozmyte - Iloczyn Zbiór klasyczny: Który element należy do obu zbiorów? Zbiór rozmyty: Jak bardzo element przynależy do obu zbiorów rozmytych? µ B x) = min[ µ ( x), µ B ( x)] = µ ( x) µ B ( ( x) Przykład: wysoki mężczyzna = (0/65, 0/75, 0/80, 0.25/82.5, 0.5/85, /90) średni mężczyzna = (0/65, /75, 0.5/80, 0.25/82.5, 0/85, 0/90) wysoki mężczyzna średni mężczyzna = (0/80, 0.25/82.5, 0/85) µ(x) 0 B x µ (x) 0 B x 9 Zbiory rozmyte - Suma Zbiór klasyczny: Który element należy do jednego z, lub obu zbiorów? Zbiór rozmyty: Jak bardzo element przynależy do jednego z, lub obu zbiorów? µ B x) = max[ µ ( x), µ B ( x)] = µ ( x) µ B ( Przykład: wysoki mężczyzna = (0/65, 0/75, 0/80, 0.25/82.5, 0.5/85, /90) średni mężczyzna = (0/65, /75, 0.5/80, 0.25/82.5, 0/85, 0/90) wysoki mężczyzna średni mężczyzna = (0/65, /75, 0.5/80, 0.25/82.5, 0.5/85, /90 ) ( x) µ(x) 0 B x µ (x) 0 B x 20 0

11 Reguły rozmyte IF prędkość duża THEN droga hamowania długa IF prędkość mała THEN droga hamowania krótka IF x jest THEN y jest B x,y zmienne lingwistyczne,,b wartości lingwistyczne (termy), X,Y uniwersa 2 Reguły złożone Wiele przesłanek: IF czas projektu długi ND liczba pracowników duża ND fundusze są nieodpowiednie THEN ryzyko duże IF jedzenie dobre OR obsługa miła THEN napiwek wysoki Wielokrotna konsekwencja: IF temperatura powietrza wysoka THEN temperatura wody jest obniżona; zwiększana jest zimna woda. 22

12 Wnioskowanie z reguł Logika klasyczna: Jeżeli przesłanka (IF) jest prawdą to i implikacja jest prawdziwa. Logika rozmyta: Jeżeli przesłanka jest w pewnym stopniu prawdziwa, to i konsekwencja jest w pewnym stopni prawdziwa. 23 Wnioskowanie rozmyte 24 2

13 Etapy w modelu rozmytym (Wnioskowanie rozmyte). Czynności wstępne:. Określenie reguł rozmytych. 2. Określenie funkcji przynależności do wartości wejść i wyjść. 2. Główne kroki:. Rozmycie wejść poprzez użycie funkcji przynależności (fuzyfikacja). 2. Łączenie rozmytych przesłanek (wejść) poprzez rozmyte reguły by uzyskać rozmyte konsekwencje (z wielu reguł). 3. Łączenie wniosków (konsekwencji), by otrzymać ostateczny rozkład wyjścia. 4. Defuzyfikacja wyjścia (wyostrzenie) tylko, gdy musimy uzyskać jednoznaczną odpowiedź. 25 Przykład Cel: zbudować rozmyty system ekspertowy wspomagający wnioskowanie o operacjach wydobycia na podstawie: cen ropy i wykazanych rezerw korporacji. Dane są: zbiory rozmyte dla cen ropy (wejście ), zbiory rozmyte dla wykazanych rezerw korporacji (wejście 2), Zbiory rozmyte zaangażowania w operację wydobycia (wyjście). Reguły postępowania przy zadanych wejściach. Przykład zaczerpnięty z: 26 3

14 Przykład cd. Wejście : rezerwy korporacji. 27 Przykład cd. Wejście 2: cena ropy. 28 4

15 Przykład cd. Wyjście: zaangażowania w operację zwiększenia wydobycia. 29 Przykład cd. reguły rozmyte Reguła : IF cena ropy jest wysoka ND wykazane rezerwy są niskie THEN zwiększenie operacji wydobycia wysoce wskazane. 30 5

16 Cechy wnioskowania rozmytego W procesie wnioskowania kilka reguł jest odpalanych jednocześnie, co bardziej przypomina sposób analizy prowadzony przez człowieka. Informacje wykorzystywane są w pełni symultanicznie. 3 Rozmywanie (fuzyfikacja) Podane są jednoznaczne (liczbowe, ostre) wejścia do systemu wnioskowania. Dane mogą mieć różne pochodzenie i stąd wartości. Każde wejście jest zamieniane na wartość rozmytą poprzez funkcję przynależności. Przykład: Cena ropy $20.00 za baryłkę i zapasy korporacji wielkości 9 MMBBLs (million barrels). 32 6

17 33 Odpalenie reguł Wykorzystuje się, w zależności od reguły, operatory zdefiniowane dla zbiorów rozmytych takie jak: suma (MX), iloczyn (MIN) do składania wejść. W wyniku obliczeń powstaje zbiór rozmyty, tzw. konsekwencja. Różnorodność operatorów sum i iloczynów prowadzi do różnych rozwiązań. 34 7

18 35 gregacja reguł (akumulacja) Jest to proces łączenia wszystkich reguł wyjściowych w jeden zbiór rozmyty. Najczęściej wykorzystuje się operator max. 36 8

19 Wyostrzanie (defuzyfikacja) Proces uzyskiwania jednoznacznej (ostrej) wartości jako wyniku wnioskowania. Metody defuzyfikacji: metoda środka ciężkości (Center of Gravity) najpopularniejsza, metoda środka maximum (Mean Of Maximum), metoda pierwszego maximum (First of Maxima). 37 stopień przynależności Wyostrzanie - metoda COG Metoda środka ciężkości Dla funkcji ciągłej: Dla próbkowanego przedziału zmiennej: a b Y b a COG = b Y µ ( x) xdx a µ ( x) dx b x= a COG = b x= a µ ( x) x µ ( x) wzrost w cm 38 9

20 COG przykład stopień przynależności Y COG ( ) 0.+ ( ) ( ) 0.5 = = Wyostrzanie - metoda MOM Metoda środka maksimum Wyjście przyjmuje wartość: Y = Y ( µ ) term stopień przynależności MOM max a b wzrost w cm 40 20

21 Typ wejść pojedyncza liczba 4 Typ wejść wartość rozmyta 42 2

22 Wnioskowanie typu Segueno Wnioskowanie typu Mamdani nie jest korzystne obliczeniowe, ponieważ należy wyznaczać centra dwuwymiarowych figur. Wnioskowanie typu Segueno stosuje pojedyncze wartości (singletony) jako funkcje przynależności znalezionych konsekwencji. Mają one wartości różne od zera tylko w jednym punkcie. 43 Mamdani

23 Segueno 45 Zalety Segueno Efektywny obliczeniowo Pracuje poprawnie z technikami liniowymi Jest wydajny dla technik optymalizacji i adaptacji. Gwarantuje ciągłość płaszczyzny wyjściowej. Dopasowany do analiz matematycznych. Mamdani Jest intuicyjny. Metoda szeroko wykorzystywana i akceptowana. Dobrze dopasowana do wejść opisywanych przez człowieka

24 Zastosowania Medyczne systemy diagnozowania. Systemy meteorologiczne. Systemy nadzorujące chów bydła. Inne zastosowanie poza systemami ekspertowymi: Inteligentne lodówki, pralki, windy, opiekacze do grzanek, aparaty fotograficzne. Zastosowania w finansach i ekonomii 47 24

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

Kurs logiki rozmytej - zadania. Wojciech Szybisty

Kurs logiki rozmytej - zadania. Wojciech Szybisty Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Logika rozmyta typu 2

Logika rozmyta typu 2 Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ

BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ Agata SZEPTUCH, Marcin ADAM Streszczenie: W artykule podjęto problem badania gotowości przedsiębiorstw

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Wiedza niepewna i wnioskowanie (c.d.)

Wiedza niepewna i wnioskowanie (c.d.) Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu

Bardziej szczegółowo

Sztuczna inteligencja wprowadzenie

Sztuczna inteligencja wprowadzenie Sztuczna inteligencja wprowadzenie Sławomir Samolej Slajdy zostały przygotowane na podstawie materiałów opublikowanych na (http://wazniak.mimuw.edu.pl/ Literatura Leszek Rutkowski Metody i techniki sztucznej

Bardziej szczegółowo

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykład 7 RBD Relacyjne Bazy Danych Bazy Danych - A. Dawid 2011 1 Selekcja σ C (R) W wyniku zastosowania operatora selekcji do relacji R powstaje nowa relacja T do której należy pewien podzbiór krotek relacji

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Kurs logiki rozmytej - pomoc. Wojciech Szybisty

Kurs logiki rozmytej - pomoc. Wojciech Szybisty Kurs logiki rozmytej - pomoc Wojciech Szybisty 2009 Spis treści 1 Wymagania 3 2 Zawartość strony internetowej 3 3 Obsługa apletów 6 3.1 Aplet Rodzaje funkcji przynależności...................... 6 3.2

Bardziej szczegółowo

Sterownik rozmyty (na przykładzie parkowania samochodu)

Sterownik rozmyty (na przykładzie parkowania samochodu) Sterownik rozmyty (na przykładzie parkowania samochodu) 06 kwietnia 2010 Idea ogólna Celem programu jest symulacja zachowania się jakiegoś obiektu, zasymulowanie jakiegoś zjawiska, czynności, na podstawie

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np.. Systemy regułowe Metody wnioskowania Wnioskowanie w przód (ang. forward chaining) Od przesłanki do konkluzji Np.. CLIPS Wnioskowanie w tył (ang. Backward chaining) Czyli od konkluzji do przesłanki Np..

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Kurs logiki rozmytej. Wojciech Szybisty

Kurs logiki rozmytej. Wojciech Szybisty Kurs logiki rozmytej Wojciech Szybisty 2009 Spis treści 1 Co to jest logika rozmyta 3 1.1 Podstawy teorii zbiorów rozmytych........................ 3 1.2 Historia.......................................

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia

Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia Temat 23 : Poznajemy podstawy pracy w programie Excel. 1. Arkusz kalkulacyjny to: program przeznaczony do wykonywania różnego rodzaju obliczeń oraz prezentowania i analizowania ich wyników, utworzony (w

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Tomasz Żabiński, tomz@prz-rzeszow.pl, 2006-03-14 90

Tomasz Żabiński, tomz@prz-rzeszow.pl, 2006-03-14 90 Poniżej przedstawiono zagadnienie automatycznej pracy suwnicy (Sawodny et al. 2002), będącej elementem np. zautomatyzowanej linii produkcyjnej. Opracowany system sterowania realizuje bezpieczny transport

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

Wspomaganie podejmowania decyzji w rozmytych bazach danych metodą AHP

Wspomaganie podejmowania decyzji w rozmytych bazach danych metodą AHP Rozdział 32 Wspomaganie podejmowania decyzji w rozmytych bazach danych metodą AHP Streszczenie. Rozdział zawiera propozycje wspomagania podejmowania decyzji w rozmytych bazach danych (BD). Hierarchiczna

Bardziej szczegółowo

Obróbka po realnej powierzchni o Bez siatki trójkątów o Lepsza jakość po obróbce wykańczającej o Tylko jedna tolerancja jakości powierzchni

Obróbka po realnej powierzchni o Bez siatki trójkątów o Lepsza jakość po obróbce wykańczającej o Tylko jedna tolerancja jakości powierzchni TEBIS Wszechstronny o Duża elastyczność programowania o Wysoka interaktywność Delikatne ścieżki o Nie potrzebny dodatkowy moduł HSC o Mniejsze zużycie narzędzi o Mniejsze zużycie obrabiarki Zarządzanie

Bardziej szczegółowo

Przestrzenne bazy danych Podstawy języka SQL

Przestrzenne bazy danych Podstawy języka SQL Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured

Bardziej szczegółowo

Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane

Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane Tworzymy system ekspertowy 1. Wstępna analiza i definicja dziedziny problemu. W tym: poznanie wiedzy dziedzinowej

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 64130 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM ROZSZERZONY CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wielomian P(x)

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

Systemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności.

Systemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności. Część siódma Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności Autor Roman Simiński Model współczynników pewności Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta,

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, 10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, liczba przekątnych wielokąta, porównywanie pól wielokątów w oparciu o proste zależności geometryczne jak np. przystawanie i zawieranie, rozpoznawanie

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 6b Rozkład łatwości zadań Średni wynik klasy 22.38 pkt 53% Średni wynik szkoły 23.12 pkt 55% Średni wynik ogólnopolski 21.65 pkt 52% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7

Bardziej szczegółowo

ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH

ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH P I O T R DUDZIŃSKI ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH GDYNIA 2003 Piotr Dudziński, Zadania z matematyki dla studentów kierunków ekonomicznych, Gdynia 2003, s. 84, bibliografia

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Turbo Pascal jest językiem wysokiego poziomu, czyli nie jest rozumiany bezpośrednio dla komputera, ale jednocześnie jest wygodny dla programisty,

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa Klasa VIa Rozkład łatwości zadań Średni wynik klasy.75 pkt 40% Średni wynik szkoły 17.08 pkt 41% Średni wynik ogólnopolski.64 pkt 52% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Drzewa decyzyjne. 1. Wprowadzenie.

Drzewa decyzyjne. 1. Wprowadzenie. Drzewa decyzyjne. 1. Wprowadzenie. Drzewa decyzyjne są graficzną metodą wspomagania procesu decyzyjnego. Jest to jedna z najczęściej wykorzystywanych technik analizy danych. Drzewo składają się z korzenia

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

Paradygmaty programowania

Paradygmaty programowania Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów

Bardziej szczegółowo

WSTĘP ZAGADNIENIA WSTĘPNE

WSTĘP ZAGADNIENIA WSTĘPNE 27.09.2012 WSTĘP Logos (gr.) słowo, myśl ZAGADNIENIA WSTĘPNE Logika bada proces myślenia; jest to nauka o formach poprawnego myślenia a zarazem o języku (nie mylić z teorią komunikacji czy językoznawstwem).

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem

Bardziej szczegółowo

STUDIA I MONOGRAFIE NR

STUDIA I MONOGRAFIE NR STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU

Bardziej szczegółowo

LABORATORIUM 6: Systemy rozmyte

LABORATORIUM 6: Systemy rozmyte Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 6: Systemy rozmyte opracował: dr inż. Witold Beluch

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++ Programowanie Wstęp p do programowania Klasa 3 Lekcja 9 PASCAL & C++ Język programowania Do przedstawiania algorytmów w postaci programów służą języki programowania. Tylko algorytm zapisany w postaci programu

Bardziej szczegółowo

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż. Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

ANALIZATOR WNIOSKOWANIA W ROZMYTYM J ZYKU ZAPYTA

ANALIZATOR WNIOSKOWANIA W ROZMYTYM J ZYKU ZAPYTA ANALIZATOR WNIOSKOWANIA W ROZMYTYM J ZYKU ZAPYTA MAGDALENA KRAKOWIAK Zachodniopomorski Uniwersytet Technologiczny Streszczenie W artykule zaprezentowano rozwi zanie dotycz ce zastosowania wnioskowania

Bardziej szczegółowo

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Rozmyty model ryzyka awarii sieci wodociągowej

Rozmyty model ryzyka awarii sieci wodociągowej OCHRONA ŚRODOWISKA Vol. 33 2011 Nr 1 Barbara Tchórzewska-Cieślak Rozmyty model ryzyka awarii sieci wodociągowej Ryzyko jest nieodłącznym elementem eksploatacji sieci wodociągowej. Związane jest ono z możliwością

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Szkolenie. Kontakt. Dla wzrostu wydajności. Achieve more...

Szkolenie. Kontakt. Dla wzrostu wydajności. Achieve more... Kontakt Agie Charmilles Sp. z o.o. Al. Krakowska 81, Sękocin Nowy 05-090 Raszyn tel. +48 22 326 50 50 fax +48 22 326 50 99 www.gfac.com/pl Szkolenie Dla wzrostu wydajności Achieve more... Czy wiecie? 50%

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

baton OR mars 282,000,000 241,000,000 baton OR mars 283,000,000 WYSZUKIWANIE BOOLOWSKIE

baton OR mars 282,000,000 241,000,000 baton OR mars 283,000,000 WYSZUKIWANIE BOOLOWSKIE WYSZUKIWANIE BOOLOWSKIE Wyszukiwanie boolowskie jest rozszerzeniem wyszukiwania prostego (opartego o słowa kluczowe) o operatory logiczne: AND, OR, NOT oraz ich kombinację. Większośd modeli wyszukiwania

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Wykorzystanie rozmytych baz danych i baz wiedzy do wspomagania przedsięwzięć inżynieryjnych

Wykorzystanie rozmytych baz danych i baz wiedzy do wspomagania przedsięwzięć inżynieryjnych Budownictwo i Architektura 12(1) (2013) 69-76 Wykorzystanie rozmytych baz danych i baz wiedzy do wspomagania przedsięwzięć inżynieryjnych Janusz Szelka 1, Zbigniew Wrona 2 1 Wyższa Szkoła Oficerska Wojsk

Bardziej szczegółowo

Spis treści. Przedmowa... 11

Spis treści. Przedmowa... 11 Spis treści Przedmowa.... 11 Nowe trendy badawcze w ruchu lotniczym. Zagadnienia wstępne... 13 I. Ruch lotniczy jako efekt potrzeby komunikacyjnej pasażera.... 13 II. Nowe środki transportowe w ruchu lotniczym....

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013 PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź

Bardziej szczegółowo

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02 METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013 EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY UNKTOWANIA GM-M1-132 KWIECIEŃ 2013 Liczba punktów za zadania zamknięte i otwarte: 29

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich) MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na

Bardziej szczegółowo

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3

Bardziej szczegółowo

Programowanie funkcyjne. Wykªad 13

Programowanie funkcyjne. Wykªad 13 Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne

Bardziej szczegółowo

PRODUCT INFORMATION INTERROLL CONVEYORCONTROL NOWY WYMIAR W BEZDOTYKOWEJ AKUMULACJI TOWARU (ZPA)

PRODUCT INFORMATION INTERROLL CONVEYORCONTROL NOWY WYMIAR W BEZDOTYKOWEJ AKUMULACJI TOWARU (ZPA) PRODUCT INFORMATION INTERROLL CONVEYORCONTROL NOWY WYMIAR W BEZDOTYKOWEJ AKUMULACJI TOWARU (ZPA) INTERROLL CONVEYORCONTROL: STEROWANIA DLA SZYBKA INSTALACJA, ELASTYCZNA KONFIGURACJA I STOPIEŃ OCHRONY IP54

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

SPIS TREŚCI 1. produkt1/ęóąśłżźćń ĘÓĄŚŁŻŹĆŃ/234

SPIS TREŚCI 1. produkt1/ęóąśłżźćń ĘÓĄŚŁŻŹĆŃ/234 SPIS TREŚCI 1. produkt1/ęóąśłżźćń ĘÓĄŚŁŻŹĆŃ/234 DEKLARACJA: TAK CE: NIE WPIS: NIE BADANIA: NIE KARTA KATALOGOWA: NIE INNE: NIE Uniwersytet im. A. Mickiewicza w Poznaniu Wydział Matematyki i Informatyki

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Aspekty tworzenia Numerycznego Modelu Terenu na podstawie skaningu laserowego LIDAR. prof. dr hab. inż.. Andrzej Stateczny

Aspekty tworzenia Numerycznego Modelu Terenu na podstawie skaningu laserowego LIDAR. prof. dr hab. inż.. Andrzej Stateczny Aspekty tworzenia Numerycznego Modelu Terenu na podstawie skaningu laserowego LIDAR prof. dr hab. inż.. Andrzej Stateczny mgr inż.. Krzysztof W. Łogasz Numeryczny Model Terenu podstawowe pojęcia NMT pol.

Bardziej szczegółowo

Technologia informacyjna Sztuczna Inteligencja Janusz Uriasz

Technologia informacyjna Sztuczna Inteligencja Janusz Uriasz Technologia informacyjna Sztuczna Inteligencja Janusz Uriasz 4. Sztuczna inteligencja Sztuczna inteligencja (SI) - dziedzina informatyki związana z koncepcjami i metodami wnioskowania symbolicznego, wykonywanego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Ćwiczenia z wyliczania wartości funkcji

Ćwiczenia z wyliczania wartości funkcji Ćwiczenia z wyliczania wartości funkcji 4 października 2011 1 Wprowadzenie Wyliczanie wartości wyrażenia nie jest sprawą oczywistą, szczególnie jeżeli chodzi o aplikację funkcji. Poniższy tekst nie jest

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo