Rozmyte systemy doradcze

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozmyte systemy doradcze"

Transkrypt

1 Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu Mamdani, 2. typu Sugeno. 2

2 Co to takiego myślenie rozmyte? Nawet eksperci używają sformułowań: Metoda X jest znacznie bardziej efektywna niż metoda Y. Ocenę stanów, rzeczy wykonuje się w pewnej skali stopniowania: mały, duży, wielki, niski, wysoki, bardzo wysoki, wolny, średnio wolny, szybki, itd... Trudno jest zatem odróżnić element danej klasy od innych. Logika rozmyta to logika użyta by opisywać rozmycie, a nie logika, która jest rozmyta (mętna). 3 Uwaga! 4 2

3 Myślenie według logiki konwencjonalnej Logika boolowska używa ostrego rozróżniania: albo coś jest elementem klasy, albo nie jest, np.: kabel jest długi > 300 m, albo kabel krótki <=300m Tomek jest wysoki, bo ma 8cm (wysoki > 80cm) Michał jest niski (nie wysoki), bo mierzy 79cm

4 Zbiory w ujęciu klasycznym Zbiór - podstawowe pojęcie w matematyce. X - zbiór klasyczny, x element zbioru X. (x X) x jest elementem zbioru X. Każdy element, który przynależy do zbioru ma ustawianą wartość. (x X) x nie należy zbioru X. Każdy element, który nie jest elementem zbioru ma ustawianą wartość 0. 7 Główna idea zbiorów rozmytych Element należy do zbioru rozmytego z pewnym stopniem przynależności. Zatem stwierdzenie może być częściowo prawdziwe lub częściowo fałszywe. Przynależność jest liczbą rzeczywistą z przedziału 0 do. 8 4

5 Porównanie Imię Wysokość Funkcja charkterystyczna Logika klasyczna Przynależność Logika Rozmyta Krzyś 208,00 Marek 205,00 Jan 98 0,98 Tomek 8 0,82 Dawid ,78 Michał ,24 Bartek ,5 Staś ,06 Piotr ,0 9 Zbiór / Zbiór rozmyty X uniwersum, zbiór uniwersalny, przestrzeń. x element uniwersum. Klasyczna logika definiuje funkcję charakterystyczną zbioru : f (x) X 0,, gdzie: f, if x ( x) = 0, if x Logika rozmyta definiuje funkcję przynależności zbioru z uniwersum X: µ (x) X [0,], gdzie: µ ( x) = µ ( x) = 0 if x na pewno jest w if x nie jest w 0 < µ ( x) < if x czesciowo jest w 0 5

6 Skąd wiadomo jakie stosować funkcje przynależności? Od pojedynczego eksperta. Zbierając dane od wielu ekspertów. Sztuczne sieci neuronowe uczą się na dostępnych dla systemu danych i określają zbiór rozmyty. Typy funkcji przynależności 2 6

7 Przykład funkcja przynależności stopień przynależności stopień przynależności niski niski średni wysoki 70 średni wysoki przypadek logiki klasycznej wzrost w cm przypadek logiki rozmytej 84cm przynależność do zbioru średni ze stopniem 0.4, a do zbioru wysoki ze stopniem wzrost w cm 3 Reprezentacja zbioru rozmytego Niech X jest to zbiór par: {x i, µ (x) } {element, jego funkcja przynależności}. jest podzbiorem X. Sposoby reprezentowania podzbioru :. 2. { x µ ( x )}, { x, µ ( x )}, K, { x, ( x )} = µ, 2 2 n n { µ x ) / x }, { µ ( x ) / x }, K, { ( x ) x } = / ( 2 2 µ Przykład: wysoki mężczyzna=(0/80, /90) niski mężczyzna=(/60, 0/70) średniego wzrostu mężczyzna=(0/65, /75, 0/85) n n 4 7

8 Zmienne lingwistyczne Zmienne lingwistyczne: Jan jest wysoki. Jan przyjmuje lingwistyczna wartość (term) wysoki. [Wzrost jest zmienną lingwistyczną] Przykłady reguł rozmytych (na zmiennych lingwistycznych): IF wiatr jest silny THENżaglowanie jest dobre IF czas projektu jest długi THEN ryzyko ukończenia wysokie IF prędkość wolna THEN droga hamowania krótka 5 Operacje na zbiorach klasycznych dopełnienie zawieranie się NOT B B B przecięcie unia 6 8

9 Zbiory rozmyte - Dopełnienie Zbiór klasyczny: Kto/co nie należy do zbioru? Zbiór rozmyty: Jak bardzo element nie przynależy do zbioru? Przykład: µ ( x) = µ ( x) wysoki mężczyzna = (0/80, 0.25/82.5, 0.5/85, 0.75/87, /90) NOT wysoki mężczyzna = (/ /82.5, 0.5/85, 0.25/87, 0/90) µ (x) 0 x µ (x) NOT 0 x 7 Zbiory rozmyte - Zawieranie się Zbiór klasyczny: Który zbiór należy do innych zbiorów? Zbiór rozmyty: Który zbiór rozmyty należy do innych zbiorów rozmytych? Przykład: wysoki mężczyzna = (0/80, 0.25/82.5, 0.5/85, 0.75/87, /90) bardzo wysoki mężczyzna = (0/80, 0.06/82.5, 0.25/85, 0.56/87, /90) µ(x) 0 B x 8 9

10 Zbiory rozmyte - Iloczyn Zbiór klasyczny: Który element należy do obu zbiorów? Zbiór rozmyty: Jak bardzo element przynależy do obu zbiorów rozmytych? µ B x) = min[ µ ( x), µ B ( x)] = µ ( x) µ B ( ( x) Przykład: wysoki mężczyzna = (0/65, 0/75, 0/80, 0.25/82.5, 0.5/85, /90) średni mężczyzna = (0/65, /75, 0.5/80, 0.25/82.5, 0/85, 0/90) wysoki mężczyzna średni mężczyzna = (0/80, 0.25/82.5, 0/85) µ(x) 0 B x µ (x) 0 B x 9 Zbiory rozmyte - Suma Zbiór klasyczny: Który element należy do jednego z, lub obu zbiorów? Zbiór rozmyty: Jak bardzo element przynależy do jednego z, lub obu zbiorów? µ B x) = max[ µ ( x), µ B ( x)] = µ ( x) µ B ( Przykład: wysoki mężczyzna = (0/65, 0/75, 0/80, 0.25/82.5, 0.5/85, /90) średni mężczyzna = (0/65, /75, 0.5/80, 0.25/82.5, 0/85, 0/90) wysoki mężczyzna średni mężczyzna = (0/65, /75, 0.5/80, 0.25/82.5, 0.5/85, /90 ) ( x) µ(x) 0 B x µ (x) 0 B x 20 0

11 Reguły rozmyte IF prędkość duża THEN droga hamowania długa IF prędkość mała THEN droga hamowania krótka IF x jest THEN y jest B x,y zmienne lingwistyczne,,b wartości lingwistyczne (termy), X,Y uniwersa 2 Reguły złożone Wiele przesłanek: IF czas projektu długi ND liczba pracowników duża ND fundusze są nieodpowiednie THEN ryzyko duże IF jedzenie dobre OR obsługa miła THEN napiwek wysoki Wielokrotna konsekwencja: IF temperatura powietrza wysoka THEN temperatura wody jest obniżona; zwiększana jest zimna woda. 22

12 Wnioskowanie z reguł Logika klasyczna: Jeżeli przesłanka (IF) jest prawdą to i implikacja jest prawdziwa. Logika rozmyta: Jeżeli przesłanka jest w pewnym stopniu prawdziwa, to i konsekwencja jest w pewnym stopni prawdziwa. 23 Wnioskowanie rozmyte 24 2

13 Etapy w modelu rozmytym (Wnioskowanie rozmyte). Czynności wstępne:. Określenie reguł rozmytych. 2. Określenie funkcji przynależności do wartości wejść i wyjść. 2. Główne kroki:. Rozmycie wejść poprzez użycie funkcji przynależności (fuzyfikacja). 2. Łączenie rozmytych przesłanek (wejść) poprzez rozmyte reguły by uzyskać rozmyte konsekwencje (z wielu reguł). 3. Łączenie wniosków (konsekwencji), by otrzymać ostateczny rozkład wyjścia. 4. Defuzyfikacja wyjścia (wyostrzenie) tylko, gdy musimy uzyskać jednoznaczną odpowiedź. 25 Przykład Cel: zbudować rozmyty system ekspertowy wspomagający wnioskowanie o operacjach wydobycia na podstawie: cen ropy i wykazanych rezerw korporacji. Dane są: zbiory rozmyte dla cen ropy (wejście ), zbiory rozmyte dla wykazanych rezerw korporacji (wejście 2), Zbiory rozmyte zaangażowania w operację wydobycia (wyjście). Reguły postępowania przy zadanych wejściach. Przykład zaczerpnięty z: 26 3

14 Przykład cd. Wejście : rezerwy korporacji. 27 Przykład cd. Wejście 2: cena ropy. 28 4

15 Przykład cd. Wyjście: zaangażowania w operację zwiększenia wydobycia. 29 Przykład cd. reguły rozmyte Reguła : IF cena ropy jest wysoka ND wykazane rezerwy są niskie THEN zwiększenie operacji wydobycia wysoce wskazane. 30 5

16 Cechy wnioskowania rozmytego W procesie wnioskowania kilka reguł jest odpalanych jednocześnie, co bardziej przypomina sposób analizy prowadzony przez człowieka. Informacje wykorzystywane są w pełni symultanicznie. 3 Rozmywanie (fuzyfikacja) Podane są jednoznaczne (liczbowe, ostre) wejścia do systemu wnioskowania. Dane mogą mieć różne pochodzenie i stąd wartości. Każde wejście jest zamieniane na wartość rozmytą poprzez funkcję przynależności. Przykład: Cena ropy $20.00 za baryłkę i zapasy korporacji wielkości 9 MMBBLs (million barrels). 32 6

17 33 Odpalenie reguł Wykorzystuje się, w zależności od reguły, operatory zdefiniowane dla zbiorów rozmytych takie jak: suma (MX), iloczyn (MIN) do składania wejść. W wyniku obliczeń powstaje zbiór rozmyty, tzw. konsekwencja. Różnorodność operatorów sum i iloczynów prowadzi do różnych rozwiązań. 34 7

18 35 gregacja reguł (akumulacja) Jest to proces łączenia wszystkich reguł wyjściowych w jeden zbiór rozmyty. Najczęściej wykorzystuje się operator max. 36 8

19 Wyostrzanie (defuzyfikacja) Proces uzyskiwania jednoznacznej (ostrej) wartości jako wyniku wnioskowania. Metody defuzyfikacji: metoda środka ciężkości (Center of Gravity) najpopularniejsza, metoda środka maximum (Mean Of Maximum), metoda pierwszego maximum (First of Maxima). 37 stopień przynależności Wyostrzanie - metoda COG Metoda środka ciężkości Dla funkcji ciągłej: Dla próbkowanego przedziału zmiennej: a b Y b a COG = b Y µ ( x) xdx a µ ( x) dx b x= a COG = b x= a µ ( x) x µ ( x) wzrost w cm 38 9

20 COG przykład stopień przynależności Y COG ( ) 0.+ ( ) ( ) 0.5 = = Wyostrzanie - metoda MOM Metoda środka maksimum Wyjście przyjmuje wartość: Y = Y ( µ ) term stopień przynależności MOM max a b wzrost w cm 40 20

21 Typ wejść pojedyncza liczba 4 Typ wejść wartość rozmyta 42 2

22 Wnioskowanie typu Segueno Wnioskowanie typu Mamdani nie jest korzystne obliczeniowe, ponieważ należy wyznaczać centra dwuwymiarowych figur. Wnioskowanie typu Segueno stosuje pojedyncze wartości (singletony) jako funkcje przynależności znalezionych konsekwencji. Mają one wartości różne od zera tylko w jednym punkcie. 43 Mamdani

23 Segueno 45 Zalety Segueno Efektywny obliczeniowo Pracuje poprawnie z technikami liniowymi Jest wydajny dla technik optymalizacji i adaptacji. Gwarantuje ciągłość płaszczyzny wyjściowej. Dopasowany do analiz matematycznych. Mamdani Jest intuicyjny. Metoda szeroko wykorzystywana i akceptowana. Dobrze dopasowana do wejść opisywanych przez człowieka

24 Zastosowania Medyczne systemy diagnozowania. Systemy meteorologiczne. Systemy nadzorujące chów bydła. Inne zastosowanie poza systemami ekspertowymi: Inteligentne lodówki, pralki, windy, opiekacze do grzanek, aparaty fotograficzne. Zastosowania w finansach i ekonomii 47 24

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie

Bardziej szczegółowo

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco. Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności

Bardziej szczegółowo

Piotr Sobolewski Krzysztof Skorupski

Piotr Sobolewski Krzysztof Skorupski Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. 2

Sztuczna inteligencja : Zbiory rozmyte cz. 2 Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:

Bardziej szczegółowo

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup. Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0

Bardziej szczegółowo

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

Logika rozmyta. Agnieszka Nowak - Brzezińska

Logika rozmyta. Agnieszka Nowak - Brzezińska Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information

Bardziej szczegółowo

Kurs logiki rozmytej - zadania. Wojciech Szybisty

Kurs logiki rozmytej - zadania. Wojciech Szybisty Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania

Bardziej szczegółowo

Systemy rozmyte i ich zastosowania. Krzysztof Rykaczewski

Systemy rozmyte i ich zastosowania. Krzysztof Rykaczewski Systemy rozmyte i ich zastosowania Krzysztof Rykaczewski 21 czerwca 2006 SPIS TREŚCI Spis treści 1 Wstęp 1 2 Podstawowe pojęcia i definicje logiki rozmytej 1 2.1 Przykłady funkcji przynależności..................

Bardziej szczegółowo

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

PODSTAWY INŻYNIERI WIEDZY

PODSTAWY INŻYNIERI WIEDZY Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PODSTAWY INŻYNIERI WIEDZY 2. Kod przedmiotu: PIW 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Logika rozmyta typu 2

Logika rozmyta typu 2 Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe

Bardziej szczegółowo

KOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej

KOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej Wydział Elektryczny Zespół Automatyki (ZTMAiPC) KOMPUTERY W STEROWANIU Ćwiczenie 6 Projektowanie układu regulacji rozmytej 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z procedurą projektowania

Bardziej szczegółowo

Podstawowe systemy wnioskowania sztucznej inteligencji

Podstawowe systemy wnioskowania sztucznej inteligencji POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Awioniki i Sterowania Podstawowe systemy wnioskowania sztucznej inteligencji Urszula SOWA Seminarium Dyplomowe

Bardziej szczegółowo

BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ

BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ Agata SZEPTUCH, Marcin ADAM Streszczenie: W artykule podjęto problem badania gotowości przedsiębiorstw

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Współczynniki pewności (ang. Certainty

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Sztuczna inteligencja wprowadzenie

Sztuczna inteligencja wprowadzenie Sztuczna inteligencja wprowadzenie Sławomir Samolej Slajdy zostały przygotowane na podstawie materiałów opublikowanych na (http://wazniak.mimuw.edu.pl/ Literatura Leszek Rutkowski Metody i techniki sztucznej

Bardziej szczegółowo

Przetwarzanie obrazów wykład 4

Przetwarzanie obrazów wykład 4 Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykład 7 RBD Relacyjne Bazy Danych Bazy Danych - A. Dawid 2011 1 Selekcja σ C (R) W wyniku zastosowania operatora selekcji do relacji R powstaje nowa relacja T do której należy pewien podzbiór krotek relacji

Bardziej szczegółowo

Sterownik rozmyty (na przykładzie parkowania samochodu)

Sterownik rozmyty (na przykładzie parkowania samochodu) Sterownik rozmyty (na przykładzie parkowania samochodu) 06 kwietnia 2010 Idea ogólna Celem programu jest symulacja zachowania się jakiegoś obiektu, zasymulowanie jakiegoś zjawiska, czynności, na podstawie

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Kurs logiki rozmytej - pomoc. Wojciech Szybisty

Kurs logiki rozmytej - pomoc. Wojciech Szybisty Kurs logiki rozmytej - pomoc Wojciech Szybisty 2009 Spis treści 1 Wymagania 3 2 Zawartość strony internetowej 3 3 Obsługa apletów 6 3.1 Aplet Rodzaje funkcji przynależności...................... 6 3.2

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Metodyka i system dopasowania protez słuchu w oparciu o badanie percepcji sygnału mowy w szumie

Metodyka i system dopasowania protez słuchu w oparciu o badanie percepcji sygnału mowy w szumie Metodyka i system dopasowania protez w oparciu o badanie percepcji sygnału mowy w szumie opracowanie dr inż. Piotr Suchomski Koncepcja metody korekcji ubytku Dopasowanie szerokiej dynamiki odbieranego

Bardziej szczegółowo

ROK LIV NR 3 (194) 2013

ROK LIV NR 3 (194) 2013 ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 3 (194) 2013 Krzysztof Ficoń Akademia Marynarki Wojennej Wydział Dowodzenia i Operacji Morskich 81-103 Gdynia, ul. J. Śmidowicza 69 e-mail: F.Ficon@amw.gdynia.pl

Bardziej szczegółowo

Wiedza niepewna i wnioskowanie (c.d.)

Wiedza niepewna i wnioskowanie (c.d.) Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Kurs logiki rozmytej. Wojciech Szybisty

Kurs logiki rozmytej. Wojciech Szybisty Kurs logiki rozmytej Wojciech Szybisty 2009 Spis treści 1 Co to jest logika rozmyta 3 1.1 Podstawy teorii zbiorów rozmytych........................ 3 1.2 Historia.......................................

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Sterownik (regulator) rozmyty przykład [1]

Sterownik (regulator) rozmyty przykład [1] Sterownik (regulator) rozmyty przykład [1] zadanie: przywracanie ustalonej pozycji wózka na platformie masa siła siła -2 m 0 m 2 m tarcie 1 Sterownik (regulator) rozmyty przykład (2) zmienne: x pozycja

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

MODELOWANIE CZĘSTOŚCI TRANSMISJI DANYCH Z WYKORZYSTANIEM FUZZY TOOLBOX MATLAB

MODELOWANIE CZĘSTOŚCI TRANSMISJI DANYCH Z WYKORZYSTANIEM FUZZY TOOLBOX MATLAB DAMIAN FILIPKOWSKI doi: 10.12716/1002.29.06 Akademia Morska w Gdyni Katedra Nawigacji MODELOWANIE CZĘSTOŚCI TRANSMISJI DANYCH Z WYKORZYSTANIEM FUZZY TOOLBOX MATLAB Ten artykuł powstał podczas prac nad

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Pochodna funkcji: definicja, podstawowe własności wykład 6

Pochodna funkcji: definicja, podstawowe własności wykład 6 Pochodna funkcji: definicja, podstawowe własności wykład 6 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu r. akad. 2016/2017 Problem obliczanie prędkości chwilowej Droga

Bardziej szczegółowo

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np.. Systemy regułowe Metody wnioskowania Wnioskowanie w przód (ang. forward chaining) Od przesłanki do konkluzji Np.. CLIPS Wnioskowanie w tył (ang. Backward chaining) Czyli od konkluzji do przesłanki Np..

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia

Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia Temat 23 : Poznajemy podstawy pracy w programie Excel. 1. Arkusz kalkulacyjny to: program przeznaczony do wykonywania różnego rodzaju obliczeń oraz prezentowania i analizowania ich wyników, utworzony (w

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Wprowadzenie do algorytmiki

Wprowadzenie do algorytmiki Wprowadzenie do algorytmiki Pojecie algorytmu Powszechnie przyjmuje się, że algorytm jest opisem krok po kroku rozwiązania postawionego problemu lub sposób osiągnięcia jakiegoś celu. Wywodzi się z matematyki

Bardziej szczegółowo

Minimalizacja form boolowskich

Minimalizacja form boolowskich Sławomir Kulesza Technika cyfrowa Minimalizacja form boolowskich Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Minimalizacja form boolowskich Minimalizacja proces przekształcania form

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

Systemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności.

Systemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności. Część siódma Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności Autor Roman Simiński Model współczynników pewności Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Turbo Pascal jest językiem wysokiego poziomu, czyli nie jest rozumiany bezpośrednio dla komputera, ale jednocześnie jest wygodny dla programisty,

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Plan wynikowy z matematyki kl.i LO

Plan wynikowy z matematyki kl.i LO Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny

Bardziej szczegółowo

WSTĘP ZAGADNIENIA WSTĘPNE

WSTĘP ZAGADNIENIA WSTĘPNE 27.09.2012 WSTĘP Logos (gr.) słowo, myśl ZAGADNIENIA WSTĘPNE Logika bada proces myślenia; jest to nauka o formach poprawnego myślenia a zarazem o języku (nie mylić z teorią komunikacji czy językoznawstwem).

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Wspomaganie podejmowania decyzji w rozmytych bazach danych metodą AHP

Wspomaganie podejmowania decyzji w rozmytych bazach danych metodą AHP Rozdział 32 Wspomaganie podejmowania decyzji w rozmytych bazach danych metodą AHP Streszczenie. Rozdział zawiera propozycje wspomagania podejmowania decyzji w rozmytych bazach danych (BD). Hierarchiczna

Bardziej szczegółowo

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji.

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji. Algebra Boole a Algebrą Boole a nazywamy zbiór B, wyróżnione jego podzbiory O i I oraz operacje dwuargumentowe +;, które dla dowolnych elementów X, Y, Z zbioru B spełniają następujące aksjomaty: X+Y B;

Bardziej szczegółowo

Obróbka po realnej powierzchni o Bez siatki trójkątów o Lepsza jakość po obróbce wykańczającej o Tylko jedna tolerancja jakości powierzchni

Obróbka po realnej powierzchni o Bez siatki trójkątów o Lepsza jakość po obróbce wykańczającej o Tylko jedna tolerancja jakości powierzchni TEBIS Wszechstronny o Duża elastyczność programowania o Wysoka interaktywność Delikatne ścieżki o Nie potrzebny dodatkowy moduł HSC o Mniejsze zużycie narzędzi o Mniejsze zużycie obrabiarki Zarządzanie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 64130 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM ROZSZERZONY CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wielomian P(x)

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2

Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2 Pętle wielokrotne wykonywanie ciągu instrukcji. Bardzo często w programowaniu wykorzystuje się wielokrotne powtarzanie określonego ciągu czynności (instrukcji). Rozróżniamy sytuacje, gdy liczba powtórzeń

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta,

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, 10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, liczba przekątnych wielokąta, porównywanie pól wielokątów w oparciu o proste zależności geometryczne jak np. przystawanie i zawieranie, rozpoznawanie

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 6b Rozkład łatwości zadań Średni wynik klasy 22.38 pkt 53% Średni wynik szkoły 23.12 pkt 55% Średni wynik ogólnopolski 21.65 pkt 52% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,

Bardziej szczegółowo

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie

Bardziej szczegółowo

Liczba i Reszta czyli o zasadach podzielności

Liczba i Reszta czyli o zasadach podzielności Liczba i Reszta czyli o zasadach podzielności Klara Maria Zgliński Ogólnokształcąca Szkoła Muzyczna I stopnia im. Ignacego J. Paderewskiego w Krakowie 31-134 Kraków, ul. Basztowa 8 Klasa Vb Nauczyciel:

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa Klasa VIa Rozkład łatwości zadań Średni wynik klasy.75 pkt 40% Średni wynik szkoły 17.08 pkt 41% Średni wynik ogólnopolski.64 pkt 52% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 27 września 2008 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo