Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Oprogramowanie Systemów Obrazowania SIECI NEURONOWE"

Transkrypt

1 SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać, czy ma pióra, czy jest jajorodne, Sieć powinna rozpoznawać czy jest to ptak, ssak, czy ryba, Sieć będzie składała się z 5 wejść i 3 neuronów. Zadaniem każdego neuronu jest rozpoznawanie innej grupy zwierząt: I- ssaki, II-ptaki, III-ryby. Cechy grup zwierząt uwzględnione w toku uczenia: ssak ma 4 nogi; czasem żyje w wodzie, ale nie jest to dla niego typowe (foka, delfin), czasem umie latać (nietoperz), ale również nie jest to dla niego typowe; nie ma piór; jest żyworodny i jest to dość ważne; ptak ma 2 nogi; nie żyje w wodzie (co najwyżej na wodzie); zwykle umie latać i jest to bardzo ważna jego cecha; jak również ta, że ma pióra; oraz że jest jajorodny; ryba nie ma nóg (płetwy się nie liczą); żyje w wodzie i jest to jej najważniejsza cecha; nie umie latać (choć niektóre próbują); nie jest pokryta piórami; jest zwykle jajorodna, ale nie jest to aż tak ważne, jak u ptaków 1. Sieć jednowarstwowa: Rysunek 1 Działanie sieci neuronowej dla k-ego neuronu (np. w3,2 oznacza wagę neuronu 3 do wejścia 2) Zadanie 1 Inicjalizacja sieci: Napisz funkcję, która utworzy macierz wag jednowarstwowej sieci o S wejściach i K wyjściach (neuronach w warstwie), wypełnioną liczbami losowymi z przedziału [- 0.1;0.1], stanowiącymi początkowe wagi sieci.

2 Wektor wejść:: x 1 X = [ ] x S Sx1 Wektor wag wejściowych dla wybranego i-go neuronu: w 1 W i = [ w S ]Sx1 Macierz wag sieci jednowarstwowej o wymiarach SxK W toku nauki funkcja celu (średnia kwadratów błędów na wyjściach sieci) powinna przyjmować najmniejszą wartość. >>function [ W ] = init1 ( S, K ) >>W=rand( S, K ) * Wywołaj funkcję w głównym oknie Matlaba z parametrami 5 i 3. Zadanie 2. Symulacja działania sieci Napisz funkcję symulującą działanie sieci jednowarstwowej, która obliczy wyjście Y jednowarstwowej sieci o macierzy wag W jako odpowiedź na wektor sygnałów wejściowych X podany na jej wejście. Funkcja aktywacji ma kształt sigmoidalny: >> function [ Y ] = oblicz ( W, X ) >> beta = 5 ; >> U = W * X ; >> Y = 1./ ( 1 + exp ( -beta * U ) ) ; Zadanie 3 Uczenie sieci Na wstępie należy napisać skrypt definiujący ciąg uczący: wejścia i wyjścia sieci. %% CIĄG UCZĄCY:%%

3 Ciąg uczący składa się z dwóch macierzy: P - zestawy wejść kolejnych przykładów uczących się T - odpowiadające przykładom wartości wyjść Jeden przykład stanowi para kolumn o tych samych indeksach z macierzy P i T. Pierwsze wejście jest typu ilościowego (nogi), kolejne są typu logicznego w praktyce najczęściej przyjmują wartości boolean (prawda/fałsz), tu wyjście poza zakres ma podkreślić znaczenie poszczególnych cech. % przykłady: % wejścia sieci: P = [ ; % we 1 - ile ma nóg ; % we 2 - czy żyje w wodzie ; % we 3 - czy umie latać ; % we 4 - czy ma pióra ] % we 5 - czy jest jajorodne Za rozpoznaną klasę można uznać tę przypisaną do neuronu, który najsilniej zareagował na sygnał wejściowy (typ kodowania 1 z N, rzeczywiste wartości będą zbliżone do poniższych) % przykłady: % żądane wyjścia sieci: T = [ ; % ssak ; % ptak ] % ryba %%Wykorzystanie uprzednio napisanych funkcji%% %inicjacja sieci losowymi wagami Wprzed = init1 ( 5, 3 ) %porównanie odowiedzi sieci przed i po uczeniu Yprzed = oblicz( Wprzed, P ) Ypo = oblicz( Wpo, P ) %%UCZENIE SIECI%% Wpo = ucz1 ( Wprzed, P, T, 100 ) Uruchom powyższy skrypt test1, oznacz 2 ostanie linijki jako komentarz Na wejście podawana jest cała macierz P (wszystkie przykłady są sprawdzane równocześnie). Wynikiem działania funkcji oblicz jest macierz, której kolumny zawierają odpowiedzi sieci na wszystkie trzy przykłady i którą można porównać z macierzą żądanych odpowiedzi T (wykorzystanie właściwości sieci jednowarstwowej bez progu wejściowego).

4 Zadanie 3 Uczenie sieci Napisz funkcję, która będzie uczyć sieć jednowarstwową o danej macierzy wag W przez zadaną liczbę epok n na ciągu uczącym podanym w postaci macierzy przykładów P (wejścia) i T (żądane wyjścia). Sieć zbudowana jest z neuronów o sigmoidalnej funkcji aktywacji. Wynikiem działania funkcji powinna być macierz wag nauczonej sieci. N Uczenie sieci polega na wielokrotnym pokazywaniu jej kolejnych przykładów z ciągu uczącego; w 1 cyklu wyznaczana jest odpowiedź sieci, porównywana następnie z żądaną odpowiedzią dla danego przykładu (zamieszczoną w ciągu uczącym). Różnica (błąd sieci) wykorzystywana jest by ustalić poprawki wszystkich wag sieci (algorytm uczenia), które dodaje się do wag (w następnych krokach, gdy sieci zostanie przedstawiony ten sam przykład, jej odpowiedź będzie bliższa żądanej odpowiedzi z ciągu uczącego) Pojedynczy krok uczenia, przedstawiony obejmuje: wylosowanie numeru przykładu do pokazania w danym kroku,podanie przykładu na wejścia sieci i obliczenie jej wyjść czyli wybranie odpowiedniej kolumny z macierzy P zbioru uczącego i obliczenie wartości wyjść sieci, porównanie wyjść sieci z żądanymi wyjściami dla danego przykładu czyli z odpowiednią kolumną macierzy T, obliczenie macierzy poprawek wag, zgodnie z wybranym algorytmem uczenia, dodanie macierzy poprawek do macierzy wag sieci. Zasady korekcji wag: Wagi zmieniane są tym silniej, im większy błąd został popełniony na danym neuronie. (wagi tych neuronów, które nie popełniły błędów na danym przykładzie, nie są poprawiane). Sieć sama przerywa uczenie, gdy jest już dobrze wytrenowana Im większy sygnał pojawił się na wejściu, do którego prowadzi dana waga, tym bardziej jest ona poprawiana. Jeśli sygnał wyjściowy był poprawny, to i poprawka danej wagi będzie niewielka. Jeśli zaś był błędny, to ten sygnał wejściowy, który był większy od innych, miał większy wpływ na powstanie tego błędu. Stąd waga prowadząca do wejścia, na którym ten sygnał się pojawił, powinna być bardziej skorygowana. Korekcja wagi w k,s: dw k,s = wspucz d k k s wspucz-współczynnik uczenia (wspucz<0, łagodzenie wpływu korekcji wagi) function [ Wpo ] = ucz1 ( Wprzed, P, T, n ) liczbaprzykladow = size ( P, 2 ) ; W = Wprzed ; wspucz = 0.1 ; for i = 1 : n,

5 % losuj numer przykładu nrprzykladu = ceil ( rand(1) * liczbaprzykladow ) ; % lub: los = randperm ( liczbaprzykladow ) ; % nrprzykladu = los ( 1 ) ; % podaj przykład na wejścia i oblicz wyjścia X = P ( :, nrprzykladu ) ; Y = oblicz( W, X ) ; % oblicz błędy na wyjściach D = T ( :, nrprzykladu ) - Y ; % oblicz poprawki wag dw = wspucz * X * D ; % dodaj poprawki do wag W = W + dw ; end % i to wszystko n razy Wpo = W ; Ponownie uruchom skrypt test1, odznaczając komentarz w 2 ostatnich linijkach Wyniki: Analizując uzyskane wyniki odpowiedz jak sprawdzić czy sieć nauczyła się rozpoznawać zwierzęta?

6 Zadanie 4 Testowanie sieci O jakości sieci świadczy zdolność uogólniania zdobytej wiedzy na nowe przypadki danych wejściowych, nie widziane przez sieć podczas uczenia. 4.1 Sprawdź czy sieć rozpozna Ciebie jako ssaka? Przykładowa implementacja ja = [ 2 ; % mam dwie nogi 0 ; % słabo pływam 0 ; % rzadko latam 0 ; % brak piór 0 ] ; % jajorodność odp = oblicz ( Wpo, ja ) odp = Człowiek nietypowy czlowiek = [ 2 ; % ile ma nóg 0.2 ; % czy żyje w wodzie - M. Phelps 0.2 ; % czy umie latać - A. Małysz 0.1 ; % czy ma pióra - Winnetou 0 ] ; % czy jest jajorodne odp = oblicz( Wpo, czlowiek ) odp = Oceń krytycznie rezultaty (jakość rozpoznania) uzyskane w punktach 4.1 i 4.2 Przeprowadź analogicznie test dla strusia, nietoperza, delfina i dziobaka.

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Instrukcja realizacji ćwiczenia

Instrukcja realizacji ćwiczenia SIEĆ KOHONENA ROZPOZNAWANIE OBRAZÓW Cel ćwiczenia: zapoznanie się ze sposobem reprezentacji wiedzy w sieciach Kohonena i mechanizmami sąsiedztwa i sumienia neuronów. Zadanie do analizy: analizujemy sieć

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Sztuczne siei neuronowe - wprowadzenie

Sztuczne siei neuronowe - wprowadzenie Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

Algorytmiczne sieci neuronowe idea działania, słabe i mocne strony

Algorytmiczne sieci neuronowe idea działania, słabe i mocne strony Patryk DUŃSKI Wydział Informatyki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie E mail: pdunski@wi.zut.edu.pl Algorytmiczne sieci neuronowe idea działania, słabe i mocne strony Streszczenie:

Bardziej szczegółowo

Zastosowania sieci neuronowych predykcja - giełda

Zastosowania sieci neuronowych predykcja - giełda Zastosowania sieci neuronowych predykcja - giełda LABORKA Piotr Ciskowski AKCJE INDEKS WIG20 plik giełda-wig.xlsx : dane: indeks WIG od 1991 do 2005 ok. 3000 sesji bez ostatniej szalonej hossy dla każdej

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Jakość uczenia i generalizacja

Jakość uczenia i generalizacja Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które

Bardziej szczegółowo

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

Metody klasyfikacji i rozpoznawania wzorców. Najważniejsze rodzaje klasyfikatorów

Metody klasyfikacji i rozpoznawania wzorców.  Najważniejsze rodzaje klasyfikatorów Metody klasyfikacji i rozpoznawania wzorców www.michalbereta.pl Najważniejsze rodzaje klasyfikatorów Dla określonego problemu klasyfikacyjnego (tzn. dla danego zestawu danych) należy przetestować jak najwięcej

Bardziej szczegółowo

OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE NIESTANDARDOWE

OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE NIESTANDARDOWE OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE NIESTANDARDOWE SPRAWDZIAN W ROKU 2009 SPIS TREŚCI 1. DANE STATYSTYCZNE UCZNIÓW ROZWIĄZUJĄCYCH DOSTOSOWANE ARKUSZE

Bardziej szczegółowo

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica. Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Publiczna Szkoła Podstawowa nr 14 w Opolu. Edukacyjna Wartość Dodana

Publiczna Szkoła Podstawowa nr 14 w Opolu. Edukacyjna Wartość Dodana Publiczna Szkoła Podstawowa nr 14 w Opolu Edukacyjna Wartość Dodana rok szkolny 2014/2015 Edukacyjna Wartość Dodana (EWD) jest miarą efektywności nauczania dla szkoły i uczniów, którzy do danej placówki

Bardziej szczegółowo

Niezawodność diagnostyka systemów laboratorium. Ćwiczenie 2

Niezawodność diagnostyka systemów laboratorium. Ćwiczenie 2 dr inż. Jacek Jarnicki doc. PWr Niezawodność diagnostyka systemów laboratorium Ćwiczenie 2 1. Treść ćwiczenia Generowanie realizacji zmiennych losowych i prezentacja graficzna wyników losowania. Symulacja

Bardziej szczegółowo

Cw.12 JAVAScript w dokumentach HTML

Cw.12 JAVAScript w dokumentach HTML Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane

Bardziej szczegółowo

Dokumentacja Końcowa

Dokumentacja Końcowa Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Dokumentacja Końcowa Autorzy: Robert Wojciechowski Michał Denkiewicz Wstęp Celem

Bardziej szczegółowo

4.3 Grupowanie według podobieństwa

4.3 Grupowanie według podobieństwa 4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby

Bardziej szczegółowo

1 Wielokrotne powtarzanie tych samych operacji

1 Wielokrotne powtarzanie tych samych operacji 1 Wielokrotne powtarzanie tych samych operacji Zadanie 1. roszę porównać następujące programy(efekt działania każdego z nich jest takisam). rzykład 1 przedstawia najbardziej typowy zapis, powodujący wykonanie

Bardziej szczegółowo

Sieci Kohonena Grupowanie

Sieci Kohonena Grupowanie Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie

Bardziej szczegółowo

Ćwiczenie 12. Metody eksploracji danych

Ćwiczenie 12. Metody eksploracji danych Ćwiczenie 12. Metody eksploracji danych Modelowanie regresji (Regression modeling) 1. Zadanie regresji Modelowanie regresji jest metodą szacowania wartości ciągłej zmiennej celu. Do najczęściej stosowanych

Bardziej szczegółowo

SPRAWDZIAN 2013. Klucz punktowania zadań. (zestawy zadań dla uczniów bez dysfunkcji)

SPRAWDZIAN 2013. Klucz punktowania zadań. (zestawy zadań dla uczniów bez dysfunkcji) SPRWDZIN 2013 Klucz punktowania zadań (zestawy zadań dla uczniów bez dysfunkcji) KWIEIEŃ 2013 Obszar standardów egzaminacyjnych Sprawdzana umiejętność (z numerem standardu) Uczeń: Uczeń: Sprawdzana czynność

Bardziej szczegółowo

Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od -1 do 1.

Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od -1 do 1. Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Mateusz Błażej Nr albumu: 130366 Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od

Bardziej szczegółowo

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie Laboratorium Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie programowalnym FPGA. 1. Zasada działania algorytmów Algorytm Vernam a wykorzystuje funkcję

Bardziej szczegółowo

Wprowadzenie do klasyfikacji

Wprowadzenie do klasyfikacji Wprowadzenie do klasyfikacji ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Program na zaliczenie: Odejmowanie widm

Program na zaliczenie: Odejmowanie widm Piotr Chojnacki: MATLAB Program na zaliczenie: Odejmowanie widm {Poniższy program ma za zadanie odjęcie dwóch widm od siebie. Do poprawnego działania programu potrzebne są trzy funkcje: odejmowaniewidm.m

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Sieci neuronowe - dokumentacja projektu

Sieci neuronowe - dokumentacja projektu Sieci neuronowe - dokumentacja projektu Predykcja finansowa, modelowanie wskaźnika kursu spółki KGHM. Piotr Jakubas Artur Kosztyła Marcin Krzych Kraków 2009 1. Sieci neuronowe - dokumentacja projektu...

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.

JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. IŚ ćw.8 JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript są zagnieżdżane w dokumentach HTML. Skrypt JavaScript

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Tablice jednowymiarowe

Tablice jednowymiarowe Tablice jednowymiarowe Gdy mamy do czynienia z zestawem zmiennych, to można z nich zrobić tablicę. Tablica jest ciągiem elementów tego samego typu, który zajmuje ciągły obszar pamięci. Korzyść z zastosowania

Bardziej szczegółowo

DODAWANIE I ODEJMOWANIE SUM ALGEBRAICZNYCH

DODAWANIE I ODEJMOWANIE SUM ALGEBRAICZNYCH DODAWANIE I ODEJMOWANIE SUM ALGEBRAICZNYCH Cele operacyjne Uczeń umie: budować wyrażenia algebraiczne, opuszczać nawiasy, redukować wyrazy podobne, dodawać i odejmować sumy algebraiczne. Metody nauczania

Bardziej szczegółowo

Wybrane wyniki w zakresie umiejętności matematycznych

Wybrane wyniki w zakresie umiejętności matematycznych Wybrane wyniki w zakresie umiejętności matematycznych Struktura badanych umiejętności matematycznych Umiejętności narzędziowe, stosowane w sytuacji typowej stosowane w sytuacji nietypowej Umiejętności

Bardziej szczegółowo

Czy potrafisz się uczyć? badanie ewaluacyjne

Czy potrafisz się uczyć? badanie ewaluacyjne Czy potrafisz się uczyć? badanie ewaluacyjne W celu zbadania efektywności uczenia się, przygotowałam i przeprowadziłam wśród uczniów mojej klasy ankietę na temat Czy potrafisz się uczyć?. Test przeprowadziłam

Bardziej szczegółowo

Kręgowce. 7 7. Podkreśl cechy, które świadczą o przystosowaniu żaby do życia na lądzie. (0 2) grupa a

Kręgowce. 7 7. Podkreśl cechy, które świadczą o przystosowaniu żaby do życia na lądzie. (0 2) grupa a grupa a Kręgowce Poniższy test składa się z 19 zadań Przy każdym poleceniu podano liczbę punktów możliwą Imię i nazwisko do uzyskania za prawidłowe odpowiedzi Za rozwiązanie całego sprawdzianu możesz uzyskać

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Excel - podstawa teoretyczna do ćwiczeń. 26 lutego 2013

Excel - podstawa teoretyczna do ćwiczeń. 26 lutego 2013 26 lutego 2013 Ćwiczenia 1-2 Częste błędy i problemy: 1 jeżeli użyjemy niewłaściwego znaku dziesiętnego Excel potraktuje liczbę jak tekst - aby uniknać takich sytuacji używaj klawiatury numerycznej, 2

Bardziej szczegółowo

Implementacja sieci neuronowych na karcie graficznej. Waldemar Pawlaszek

Implementacja sieci neuronowych na karcie graficznej. Waldemar Pawlaszek Implementacja sieci neuronowych na karcie graficznej Waldemar Pawlaszek Motywacja Czyli po co to wszystko? Motywacja Procesor graficzny GPU (Graphics Processing Unit) Wydajność Elastyczność i precyzja

Bardziej szczegółowo

Przygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki.

Przygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki. Przygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki. Zespół bibliotek cyfrowych PCSS 6 maja 2011 1 Cel aplikacji Aplikacja wspomaga przygotowanie poprawnego materiału uczącego dla

Bardziej szczegółowo

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Turbo Pascal jest językiem wysokiego poziomu, czyli nie jest rozumiany bezpośrednio dla komputera, ale jednocześnie jest wygodny dla programisty,

Bardziej szczegółowo

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1)

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1) ybrane funkcje logiczne prowadzenie L L2 Y Nazwa Oznaczenia Y Sterowniki PLC - prowadzenie do programowania () Proste przykłady Załączenie jednego z dwóch (lub obu) przełączników lub powoduje zapalenie

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Wyraź

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)?

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Gdy: badana cecha jest mierzalna (ewentualnie policzalna); dysponujemy dwoma próbami; chcemy porównać, czy wariancje w tych próbach

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki 1. Ocenie podlegają wszystkie wymienione dalej formy aktywności ucznia: a) Prace klasowe: - obejmują zrealizowany dział matematyki - Sesje z plusem : pierwsza

Bardziej szczegółowo

Wykrywanie twarzy na zdjęciach przy pomocy kaskad

Wykrywanie twarzy na zdjęciach przy pomocy kaskad Wykrywanie twarzy na zdjęciach przy pomocy kaskad Analiza i przetwarzanie obrazów Sebastian Lipnicki Informatyka Stosowana,WFIIS Spis treści 1. Wstęp... 3 2. Struktura i funkcjonalnośd... 4 3. Wyniki...

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

Ćwiczenie 4 - Badanie charakterystyk skokowych regulatora PID.

Ćwiczenie 4 - Badanie charakterystyk skokowych regulatora PID. Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie KATEDRA AUTOMATYKI LABORATORIUM Aparatura Automatyzacji Ćwiczenie 4. Badanie charakterystyk skokowych regulatora PID. Wydział EAIiE kierunek

Bardziej szczegółowo

Instrukcje wyboru. Tworzenie programu, Schematy blokowe, Instrukcje wyboru, Operatory logiczne

Instrukcje wyboru. Tworzenie programu, Schematy blokowe, Instrukcje wyboru, Operatory logiczne Materiał pomocniczy do kursu Podstawy programowania Autor: Grzegorz Góralski ggoralski.com Instrukcje wyboru Tworzenie programu, Schematy blokowe, Instrukcje wyboru, Operatory logiczne Być, czy nie być?

Bardziej szczegółowo

Krótkie wprowadzenie do ModelSim i Quartus2

Krótkie wprowadzenie do ModelSim i Quartus2 Krótkie wprowadzenie do ModelSim i Quartus2 wersja 04.2011 1 Plan Oprogramowanie Pliki źródłowe Scenariusze użycia 2 Programy Programy w wersji darmowej do pobrania ze strony www.altera.com ModelSim-Altera

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

Algebra I sprawozdanie z badania 2014-2015

Algebra I sprawozdanie z badania 2014-2015 MATEMATYKA Algebra I sprawozdanie z badania 2014-2015 IMIĘ I NAZWISKO Data urodzenia: 08/09/2000 ID: 5200154019 Klasa: 11 Niniejsze sprawozdanie zawiera informacje o wynikach zdobytych przez Państwa dziecko

Bardziej szczegółowo

1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych

1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych Sztuczne sieci neuronowe i algorytmy genetyczne Artykuł pobrano ze strony eioba.pl SPIS TREŚCI 1. ARCHITEKTURY, ALGORYTMY UCZENIA I PROJEKTOWANIE SIECI NEURONOWYCH 1.1. HISTORIA ROZWOJU SZTUCZNYCH SIECI

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych lista zadań 1

Wprowadzenie do Sieci Neuronowych lista zadań 1 Wprowadzenie do Sieci Neuronowych lista zadań 1 Maja Czoków, Jarosław Piersa 2010-10-04 1 Zasadyzaliczania 1.1 Oceny Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów. Każde zadanie

Bardziej szczegółowo

1 Moduł Inteligentnego Głośnika 3

1 Moduł Inteligentnego Głośnika 3 Spis treści 1 Moduł Inteligentnego Głośnika 3 1.1 Konfigurowanie Modułu Inteligentnego Głośnika........... 3 1.1.1 Lista elementów Modułu Inteligentnego Głośnika....... 3 1.1.2 Konfigurowanie elementu

Bardziej szczegółowo

W wyniku ewaluacji Wewnątrzszkolnego Systemu Oceniania dokonałyśmy uszczegółowienia rocznej oceny opisowej.

W wyniku ewaluacji Wewnątrzszkolnego Systemu Oceniania dokonałyśmy uszczegółowienia rocznej oceny opisowej. W wyniku ewaluacji Wewnątrzszkolnego Systemu Oceniania dokonałyśmy uszczegółowienia rocznej oceny opisowej. Kl. I Poziom doskonały Uczeń wypowiada się samorzutnie na dany temat, przeczytanego tekstu oraz

Bardziej szczegółowo

ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl

ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl ROBOTYKA Odwrotne zadanie kinematyki - projekt Zawartość. Wstęp...... Proste zadanie kinematyki cel...... Odwrotne zadanie kinematyki cel..... Analiza statyczna robota..... Proste zadanie kinematyki....

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie

Bardziej szczegółowo

Ćwiczenie: JavaScript Cookies (3x45 minut)

Ćwiczenie: JavaScript Cookies (3x45 minut) Ćwiczenie: JavaScript Cookies (3x45 minut) Cookies niewielkie porcje danych tekstowych, które mogą być przesyłane między serwerem a przeglądarką. Przeglądarka przechowuje te dane przez określony czas.

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Twoim zadaniem jest przeliczenie temperatury podanej w skali Celsiusza na pozostałe trzy skale.

Twoim zadaniem jest przeliczenie temperatury podanej w skali Celsiusza na pozostałe trzy skale. Zadanie 1 W Polsce stosuje się skale Celsiusza do wyznaczenia temperatury powietrza. W niektórych krajach lub zagadnieniach naukowych używa się również skali Kelvina, skali Fahrenheita lub skali Rankine'a.

Bardziej szczegółowo

4. Działanie najprostszej sieci

4. Działanie najprostszej sieci 4. Działanie najprostszej sieci 4.1. Jak przejść od teorii do praktyki, czyli jak używać programów przeznaczonych dla czytelników tej książki? Poprzednie trzy rozdziały służyły do tego, by dostarczyć Ci

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna w Warszawie SPRAWDZIAN 2009. Klucz punktowania zadań testu O zwierzętach

Centralna Komisja Egzaminacyjna w Warszawie SPRAWDZIAN 2009. Klucz punktowania zadań testu O zwierzętach entralna Komisja Egzaminacyjna w Warszawie SPRAWDZIAN 2009 Klucz punktowania zadań testu O zwierzętach (test dla uczniów słabo słyszących i niesłyszących) KWIEIEŃ 2009 Zadanie 1. Obszar standardów czytanie

Bardziej szczegółowo

JAVAScript w dokumentach HTML (1)

JAVAScript w dokumentach HTML (1) JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript mogą być zagnieżdżane w dokumentach HTML. Instrukcje JavaScript

Bardziej szczegółowo

Zastosowanie sieci Kohonena do klasyfikacji próbek węgla kamiennego wg PN-54/G

Zastosowanie sieci Kohonena do klasyfikacji próbek węgla kamiennego wg PN-54/G Jarosław Bielak Zastosowanie sieci Kohonena do klasyfikacji próbek węgla kamiennego wg PN-54/G-97 002 Streszczenie Sieci neuronowe Kohonena są układami mającymi zdolność przeprowadzania, bez korekty zewnętrznej,

Bardziej szczegółowo

Dobór funkcji aktywacji sieci neuronowej realizującej odtwarzanie wielkości wejściowej przetwornika pomiarowego

Dobór funkcji aktywacji sieci neuronowej realizującej odtwarzanie wielkości wejściowej przetwornika pomiarowego Dobór funkcji sieci neuronowej realizującej odtwarzanie wielkości wejściowej przetwornika pomiarowego Piotr Makowski Jerzy Roj* W artykule przedstawiono wyniki badań wybranych struktur sieci neuronowych

Bardziej szczegółowo

Uruchamianie SNNS. Po uruchomieniu. xgui & lub snns & pojawia si e okno. programu. Symulator sztucznych sieci neuronowych SNNS 1

Uruchamianie SNNS. Po uruchomieniu. xgui & lub snns & pojawia si e okno. programu. Symulator sztucznych sieci neuronowych SNNS 1 Uruchamianie SNNS Ca ly pakiet SNNS sk lada si e z programu interfejsu graficznego xgui, oraz z szeregu programów sk ladowych: analyze isnns netlearn snnsbat batchman linknets netperf td_bignet convert2snns

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA JĘZYK POLSKI

PRZEDMIOTOWE ZASADY OCENIANIA JĘZYK POLSKI PRZEDMIOTOWE ZASADY OCENIANIA JĘZYK POLSKI Formy aktywności i częstotliwość ich sprawdzania: Lp. Forma aktywności Skrót Częstotliwość (min. w semestrze) 1. odpowiedź ustna o 1 2. czytanie ze zrozumieniem

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Scenariusz lekcji. rozpoznać prawidłową deklarację tablicy; podać odwołanie do określonego elementu tablicy.

Scenariusz lekcji. rozpoznać prawidłową deklarację tablicy; podać odwołanie do określonego elementu tablicy. Scenariusz lekcji 1 TEMAT LEKCJI: Zmienne tablicowe 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicję tablicy; podać definicję indeksu; wymienić cechy tablicy w VB.NET; podać postać deklaracji

Bardziej szczegółowo

Przetworniki AC i CA

Przetworniki AC i CA KATEDRA INFORMATYKI Wydział EAIiE AGH Laboratorium Techniki Mikroprocesorowej Ćwiczenie 4 Przetworniki AC i CA Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania wybranych rodzajów przetworników

Bardziej szczegółowo

SYSTEMY CZASU RZECZYWISTEGO STEROWNIK WIND. Dokumentacja projektu. Danilo Lakovic. Joanna Duda. Piotr Leżoń. Mateusz Pytel

SYSTEMY CZASU RZECZYWISTEGO STEROWNIK WIND. Dokumentacja projektu. Danilo Lakovic. Joanna Duda. Piotr Leżoń. Mateusz Pytel SYSTEMY CZASU RZECZYWISTEGO STEROWNIK WIND Dokumentacja projektu Danilo Lakovic Joanna Duda Piotr Leżoń Mateusz Pytel 1. Wstęp 1.1. Cel dokumentu Poniższy dokument ma na celu przybliżenie użytkownikowi

Bardziej szczegółowo

Scenariusz zajęć do programu kształcenia Myślę- działam- idę w świat

Scenariusz zajęć do programu kształcenia Myślę- działam- idę w świat Scenariusz zajęć do programu kształcenia Myślę- działam- idę w świat Autor: Danuta Szymczak Klasa II Edukacja: polonistyczna, przyrodnicza,,matematyczna, plastyczna, techniczna społeczna, muzyczna Cel/cele

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Informacja o języku. Osadzanie skryptów. Instrukcje, komentarze, zmienne, typy, stałe. Operatory. Struktury kontrolne. Tablice.

Informacja o języku. Osadzanie skryptów. Instrukcje, komentarze, zmienne, typy, stałe. Operatory. Struktury kontrolne. Tablice. Informacja o języku. Osadzanie skryptów. Instrukcje, komentarze, zmienne, typy, stałe. Operatory. Struktury kontrolne. Tablice. Język PHP Język interpretowalny, a nie kompilowany Powstał w celu programowania

Bardziej szczegółowo

Metody numeryczne Laboratorium 2

Metody numeryczne Laboratorium 2 Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 6 Podstawy programowania 2 Temat: Funkcje i procedury rekurencyjne Przygotował: mgr inż. Tomasz Michno Wstęp teoretyczny Rekurencja (inaczej nazywana rekursją, ang. recursion)

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.

Bardziej szczegółowo

Symulacyjne metody wyceny opcji amerykańskich

Symulacyjne metody wyceny opcji amerykańskich Metody wyceny Piotr Małecki promotor: dr hab. Rafał Weron Instytut Matematyki i Informatyki Politechniki Wrocławskiej Wrocław, 0 lipca 009 Metody wyceny Drzewko S 0 S t S t S 3 t S t St St 3 S t St St

Bardziej szczegółowo