Projekt pt. Wyższe kwalifikacje lepszy start zawodowy

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Projekt pt. Wyższe kwalifikacje lepszy start zawodowy"

Transkrypt

1 Projekt pt. Wyższe kwalifikacje lepszy start zawodowy realizowany przez Zespół Szkół Ponadgimnazjalnych im. Jana Kochanowskiego w Garbatce-Letnisku w ramach Programu Operacyjnego Kapitał Ludzki Priorytet IX Rozwój wykształcenia i kompetencji w regionach Dzialanie 9.2 Podniesienie atrakcyjności i jakości szkolnictwa zawodowego Czas realizacji projektu od r. do r. Program zajęć wyrównawczych z matematyki Opracowała Agnieszka Babańca

2 I. Wstęp Spis treści II. Założenia i podstawowe cele III. Cele edukacyjne IV. Cele wychowawcze programu. V. Sposoby realizacji VI. Metody i formy pracy VII. Środki dydaktyczne. VIII. Treści IX.Plan realizacji zajęć X. Przewidywane osiągnięcia uczniów XI.Ewaluacja programu

3 I.Wstęp Projekt Wyższe kwalifikacje lepszy start zawodowy kierowany jest do uczniów, którzy będą zdawać matematykę na maturze. Matematyka jest przedmiotem obowiązkowym na maturze, dlatego niniejszy program ma pomóc uczniom skutecznie przygotować się do tego egzaminu. Program przeznaczony jest dla uczniów klas trzecich liceum oraz klas czwartych technikum, przygotowujących się do matury z matematyki. W zajęciach mogą uczestniczyć zarówno uczniowie, którzy nie mają trudności w nauce w celu przypomnienia oraz utrwalenia wiadomości i umiejętności wymaganych na maturze, jak i uczniowie słabsi w celu uzupełnienia braków edukacyjnych. W zamierzeniu program ma stanowić dopełnienie lekcji matematyki, ma także na celu usystematyzowanie i uporządkowania treści programowych. Pomoże to uczniom w nadrobieniu zalęgłości i przygotowaniu się do egzaminu maturalnego. W czasie zajęć uczeń będzie miał możliwość powtórzenia materiału, zaczynając od zbiorów i własności funkcji, a kończąc na rachunku prawdopodobieństwa. Jednocześnie będzie rozwiązywał zadania typu maturalnego (z powtórzonego dotychczas materiału). Umiejętności te będą rozwijane poprzez zagadnienia matematyczno logiczne powiązane z innymi dziedzinami wiedzy. Powodzenie programu w dużej mierze zależeć będzie od zaangażowania uczniów, ich systematyczności oraz pracowitości. Program oparty jest na standardach wymagań egzaminacyjnych opracowanych przez Centralną Komisję Egzaminacyjną.

4 II. Założenia i podstawowe cele Cele główne: 1. Przyjmujemy, że celem nadrzędnym projektu Wyższe kwalifikacje lepszy start zawodowy jest opanowanie umiejętności matematycznych niezbędnych do zdania matury. 2. Doskonalenie umiejętności określonych w standardach, czyli : wykorzystania i tworzenia informacji, wykorzystania i interpretowania reprezentacji, modelowania matematycznego, użycia i tworzenia strategii, rozumowania i tworzenia argumentacji. 3. Przygotowanie uczniów do wykorzystywania wiedzy matematycznej przy rozwiązywaniu problemów z zakresu różnych dziedzin kształcenia szkolnego oraz życia codziennego.

5 III. Cele edukacyjne: Uświadomienie uczniom, jakie wiadomości i umiejętności powinni mieć opanowane. Przypomnienie i utrwalenie wiadomości i umiejętności zdobytych na lekcjach matematyki. Zwrócenie uwagi na ścisłość i precyzję wypowiedzi (zapisu) przy opisie sytuacji i prawidłowości w otaczającym świecie, Kształtowanie umiejętności komunikowania i argumentowania, Kształtowanie wyobraźni geometrycznej, Pomoc uczniom w uzupełnieniu zaległości z matematyki. Rozwijanie umiejętności sprawnego posługiwania się definicjami, twierdzeniami i wzorami matematycznymi. Doskonalenie umiejętności dobierania odpowiedniego algorytmu do podanej sytuacji problemowej. Kształcenie umiejętności przetwarzania informacji w inną postać w celu rozwiązania problemu. Kształcenie umiejętności logicznego i twórczego myślenia. Doskonalenie umiejętności czytania ze zrozumieniem i precyzyjnego wykonywania poleceń. Rozwijanie umiejętności sprawnego stosowania schematów w zadaniach typowych. Rozwijanie dedukcyjnego myślenia, posługiwania się metodą eliminacji, Rozwijanie twórczego myślenia Rozwijanie pamięci i umiejętności abstrakcyjnego myślenia oraz logicznego rozumowania. IV. Cele wychowawcze programu.

6 Rozwijanie osobowości poprzez wyrabianie pracowitości, systematyczności, wytrwałości i dociekliwości. Motywowanie uczniów do samodzielnej pracy. Kształcenie umiejętności planowania pracy i jej prawidłowej organizacji. Dążenie do sumiennej realizacji wyznaczonych zadań. Wyrabianie umiejętności radzenia sobie ze stresem. Tworzenie pozytywnych relacji w grupie. Wyrabianie umiejętności uczenia się od siebie nawzajem. V. Sposoby realizacji 1. Stosowanie możliwie różnorodnych form pracy, 2. Dobieranie interesujących przykładów zadań i problemów matematycznych pojawiających się w standardach maturalnych, 3.Wzmacnianie poczucia satysfakcji i własnej wartości uczniów, 4. Motywowanie uczniów do dalszej pracy i systematycznego udziału w zajęciach, 5. Umożliwienie wyrównywania braków w wiedzy i umiejętnościach mniej zdolnych uczniów.

7 VI. Metody i formy pracy Metody i formy pracy zostaną dobrane tak, by uwzględnić indywidualne potrzeby uczniów. Metody pracy: metoda problemowa, dyskusja, konsultacja, burza mózgów, ćwiczenia przedmiotowe, praca z informatorem. Formy pracy: praca indywidualna, praca w grupach, praca z całą grupą, rozwiązywanie zadań testowych, rozwiązywanie zastawów maturalnych z lat poprzednich. VII. Środki dydaktyczne.

8 Informator o egzaminie maturalnym. Wybrane wzory matematyczne, Wydawnictwo Centralnej Komisji Egzaminacyjnej. Arkusze egzaminacyjne z matematyki. Kalkulatory proste. Przybory do geometrii: linijka, ekierka, cyrkiel. VIII. Treści 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne 3. Równania i nierówności 4. Funkcje 5. Ciągi liczbowe 6. Trygonometria 7. Planimetria 8. Geometria na płaszczyźnie kartezjańskiej 9. Stereometria 10.Elementy statystyki opisowej IX. Plan realizacji zajęć

9 1. Liczby rzeczywiste (7 godz.) planować i wykonywać obliczenia na liczbach rzeczywistych; w szczególności obliczać pierwiastki, w tym pierwiastki nieparzystego stopnia z liczb ujemnych, badać, czy wynik obliczeń jest liczbą wymierną, wyznaczać rozwinięcia dziesiętne; znajdywać przybliżenia liczb; wykorzystywać pojęcie błędu przybliżenia, stosować pojęcie procentu i punktu procentowego w obliczeniach, posługiwać się pojęciem osi liczbowej i przedziału liczbowego; zaznaczać przedziały na osi liczbowej, wykorzystywać pojęcie wartości bezwzględnej i jej interpretację geometryczną, zaznacza na osi liczbowej zbiory opisane za pomocą równań i nierówności typu: x - a = b, x - a > b, x - a < b, obliczać potęgi o wykładnikach wymiernych oraz stosować prawa działań na potęgach o wykładnikach wymiernych i rzeczywistych, posługiwać się definicją logarytmu i stosować w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym. 2. Wyrażenia algebraiczne ( 7 godz.)

10 posługiwać się wzorami skróconego mnożenia: (a ± b) 2, (a ± b) 3, a 2 b 2, a 3 ± b 3, rozłożyć wielomian na czynniki, stosując wzory skróconego mnożenia, grupowanie wyrazów, wyłączanie wspólnego czynnika poza nawias, dodawać, odejmować i mnożyć wielomiany, wyznaczać dziedzinę prostego wyrażenia wymiernego z jedną zmienną, w którym w mianowniku występują tylko wyrażenia dające się sprowadzić do iloczynu wielomianów liniowych i kwadratowych, obliczać wartość liczbową wyrażenia wymiernego dla danej wartości zmiennej, dodawać, odejmować, mnożyć i dzielić wyrażenia wymierne; skracać i rozszerzać wyrażenia wymierne. 3. Równania i nierówności (7 godz.) rozwiązywać równania i nierówności kwadratowe; zapisywać rozwiązanie w postaci sumy przedziałów, rozwiązywać zadania (również umieszczone w kontekście praktycznym), prowadzące do równań i nierówności kwadratowych, rozwiązywać układy równań, prowadzące do równań kwadratowych, rozwiązywać równania wielomianowe metodą rozkładu na czynniki, rozwiązywać proste równania wymierne, prowadzące do równań liniowych lub kwadratowych, rozwiązywać zadania (również umieszczone w kontekście praktycznym), prowadzące do prostych równań wymiernych. 4. Funkcje i ich własności (7 godz.) określać funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego,

11 odczytać z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których funkcja rośnie, maleje, ma stały znak, sporządzić wykres funkcji spełniającej podane warunki, na podstawie wykresu funkcji y = f(x) naszkicować wykresy funkcji y = f(x + a), y = f(x) + a, y = f(x), y = f( x), sporządzić wykresy funkcji liniowych, wyznaczyć wzór funkcji liniowej, wykorzystać interpretację współczynników we wzorze funkcji liniowej, sporządzić wykresy funkcji kwadratowych, wyznaczyć wzór funkcji kwadratowej, wyznaczyć miejsca zerowe funkcji kwadratowej, wyznaczyć wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym, rozwiązuje zadania (również umieszczone w kontekście praktycznym), prowadzące do badania funkcji kwadratowej, sporządzić wykres, odczytać własności i rozwiązać zadania umieszczone w kontekście praktycznym związane z proporcjonalnością odwrotną, sporządza wykresy funkcji wykładniczych dla różnych podstaw i rozwiązuje zadania umieszczone w kontekście praktycznym. 5. Ciągi liczbowe (4 godz.) wyznaczać wyrazy ciągu określonego wzorem ogólnym, zbadać, czy dany ciąg jest arytmetyczny lub geometryczny, stosować wzory na n-ty wyraz i sumę n początkowych wyrazów ciągu arytmetycznego i ciągu geometrycznego, również umieszczone w kontekście praktycznym. 6. Funkcje trygonometryczne (4 godz.)

12 wykorzystywać definicje i wyznaczać wartości funkcji trygonometrycznych dla kątów ostrych, rozwiązywać równania typu sinx = a, cosx = a, tgx = a, dla 0 o < x < 90 o, stosować proste związki między funkcjami trygonometrycznymi kąta ostrego, znając wartość jednej z funkcji trygonometrycznych, wyznaczać wartości pozostałych funkcji tego samego kąta ostrego. 7. Planimetria (5 godz.) korzystać ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych w kontekście praktycznym, znajdować związki miarowe w figurach płaskich, także z zastosowaniem trygonometrii, również w zadaniach umieszczonych w kontekście praktycznym, określać wzajemne położenie prostej i okręgu. 8. Geometria analityczna (5 godz.) wykorzystywać pojęcie układu współrzędnych na płaszczyźnie, podać równanie prostej w postaci Ax + By + C = 0 lub y = ax + b, mając dane dwa jej punkty lub jeden punkt i współczynnik a w równaniu kierunkowym,

13 zbadać równoległość i prostopadłość prostych na podstawie ich równań kierunkowych, zinterpretować geometrycznie układ dwóch równań liniowych z dwiema niewiadomymi, obliczyć odległości punktów na płaszczyźnie kartezjańskiej, wyznaczyć współrzędne środka odcinka, posługiwać się równaniem okręgu (x a) 2 +(y b) 2 = r 2, 9. Stereometria (6 godz.) wskazywać i obliczać kąty między ścianami wielościanu, między ścianami i odcinkami oraz między odcinkami takimi jak krawędzie, przekątne, wysokości, wyznaczać związki miarowe w wielościanach i bryłach obrotowych z zastosowaniem trygonometrii. 10. Elementy statystyki opisowej, kombinatoryka i rachunek prawdopodobieństwa (6 godz.) obliczać średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretować te parametry dla danych empirycznych, zliczać obiekty w prostych sytuacjach kombinatorycznych, niewymagających użycia wzorów kombinatorycznych; stosować zasadę mnożenia,

14 wykorzystywać sumę, iloczyn i różnicę zdarzeń do obliczania prawdopodobieństw zdarzeń, wykorzystywać własności prawdopodobieństwa i stosować twierdzenie znane jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń. 10. Rozwiązywanie arkuszy maturalnych (8 godz.) zademonstrować poziom opanowania powyższych umiejętności, rozwiązując zadania maturalne. Przewidywana ilość godzin na poszczególne działy może ulec zmianie (zgodnie z potrzebami uczniów) X. Przewidywane osiągnięcia uczniów: W zakresie wykorzystania i tworzenia informacji Zdający potrafi: odczytać informację bezpośrednio wynikającą z treści zadania, zastosować podany wzór lub podany przepis postępowania, wykonać rutynową procedurę dla typowych danych, przejrzyście zapisać przebieg i wynik obliczeń oraz uzyskaną odpowiedź.

15 W zakresie wykorzystania i interpretowania reprezentacji Zdający potrafi: poprawnie wykonywać działania na liczbach i przedziałach liczbowych, przekształcać wyrażenia algebraiczne, rozwiązywać niezbyt złożone równania, ich układy oraz nierówności, odczytywać z wykresu własności funkcji sporządzać wykresy niektórych funkcji, znajdować stosunki miarowe w figurach płaskich i przestrzennych (także z wykorzystaniem układu współrzędnych lub trygonometrii), zliczać obiekty i wyznaczać prawdopodobieństwo w prostych sytuacjach kombinatorycznych, zastosować dobrze znaną definicję lub twierdzenie w typowym kontekście W zakresie modelowania matematycznego Zdający potrafi, także w sytuacjach praktycznych: podać wyrażenie algebraiczne, funkcję, równanie, nierówność, interpretację geometryczną, przestrzeń zdarzeń elementarnych opisującą przedstawioną sytuację, przetworzyć informacje wyrażone w jednej postaci w postać ułatwiającą rozwiązanie problemu, ocenić przydatność otrzymanych wyników z perspektywy sytuacji, dla której zbudowano model W zakresie użycia i tworzenia strategii, Zdający potrafi:

16 dobrać odpowiedni algorytm do wskazanej sytuacji problemowej, ustalić zależności między podanymi informacjami, zaplanować kolejność wykonywania czynności, wprost wynikających z treści zadania, lecz nie mieszczących się w ramach rutynowego algorytmu, krytycznie ocenić otrzymane wyniki W zakresie rozumowania i tworzenia argumentacji. Zdający potrafi: wyprowadzić wniosek z prostego układu przesłanek i go uzasadnić, zastosować twierdzenie, które nie występuje w treści zadania. XI. Ewaluacja programu Ułożenie treści programowych jest dopasowane do materiału powtarzanego i przerabianego na lekcjach matematyki. Zajęcia dodatkowe mają pełnić rolę uzupełnienia, utrwalenia i uporządkowania wiedzy. Podczas zajęć rozwiązywane są zadania oraz omawiane problemy o różnych poziomach trudności, przeważają jednak zbliżone tematyką i stopniem trudności do zadań pojawiających się na maturze w zakresie podstawowym. Kontrola bieżąca dokonywana jest na każdych zajęciach w formie ustnej i pisemnej. W czasie realizacji programu prowadzone będzie monitorowanie i ocenianie wysiłku uczniów oraz zaangażowanie w wykonywanie powierzonych im zadań. Dwa razy w roku planuję przeprowadzenie próbnej matury. Program zostanie poddany ewaluacji w formie:

17 analizy wyników próbnej matury z matematyki, Analizy ocen z matematyki w klasie przedmaturalnej z ocenami w klasie maturalnej. ankiety dla uczniów uczestniczących w zajęciach, Uzyskane dzięki ewaluacji wnioski zostaną wykorzystane do zmodyfikowania tego programu, gdyż jego realizacja będzie cykliczna. Ankieta ewaluacyjna dla uczniów biorących udział w projekcie Wyższe kwalifikacje lepszy start zawodowy zajęcia wyrównawcze z matematyki Drogi uczniu, zwracam się do Ciebie z prośbą o wypełnienie tej anonimowej ankiety. Uzyskane przeze mnie informacje wykorzystam do lepszej i bardziej efektywnej pracy na zajęciach z matematyki. 1. Jak oceniasz sposób prowadzenia zajęć? bardzo dobry, dobry, słaby, bardzo słaby, nie mam zdania 2. Czy treści przekazywane na zajęciach spełniły Twoje oczekiwania? tak, raczej tak, raczej nie, nie, nie mam zdania 3. Czy udział w zajęciach pomógł Ci przygotować się do egzaminu maturalnego? tak,

18 raczej tak, raczej nie, nie, nie mam zdania 4. Jaka jest Twoja opinia o zajęciach? Co byś zmienił(a) w zajęciach?... Dziękuję

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Zakres materiału obowiązujący do próbnej matury z matematyki

Zakres materiału obowiązujący do próbnej matury z matematyki ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Egzamin maturalny od 2015 r. wieńczy proces wchodzenia w życie podstawy programowej kształcenia ogólnego, którą zaczęto stosować w klasach I liceum

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

IV etap edukacyjny. Cele kształcenia wymagania ogólne

IV etap edukacyjny. Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych,

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.

Bardziej szczegółowo

IV etap edukacyjny Cele kształcenia wymagania ogólne

IV etap edukacyjny Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje

Bardziej szczegółowo

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od 01.09.2012 r. w klasach pierwszych

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć wyrównawczych z matematyki w ramach projektu Młodzieżowe Uniwersytety

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum, technikum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY 1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć wyrównawczych z matematyki w ramach projektu Młodzieżowe Uniwersytety

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,

Bardziej szczegółowo

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku C e l e e d u k a c y j n e 1. Przygotowanie do świadomego i

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny

07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny 07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover 11-06-17 11:58 Strona 1 Kalendarz przygotowań plan pracy na rok szkolny ISBN 978-83-7680-389-0 9 788376 803890 rogram Matura z Operonem Lista uczestników

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA.

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2011 w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA oraz WYBRANYCH WZORÓW MATEMATYCZNYCH 2 Próbny egzamin maturalny

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

Kalendarium maturzysty

Kalendarium maturzysty Matura 2012 Kalendarium maturzysty matematyka poziom podstawowy Liczby i ich zbiory TYDZIEŃ 1-4 (4 tygodnie) 3-28 października liczby naturalne, całkowite, wymierne i niewymierne planowanie i wykonywanie

Bardziej szczegółowo

Rozkład. materiału nauczania

Rozkład. materiału nauczania Rozkład materiału nauczania Ramowy rozkład materiału nauczania Matematyka. Poznać, zrozumieć Klasa 1 42 Lp. Klasa 2 Dział Liczba godzin zakres podstawowy Liczba godzin zakres rozszerzony 1. 36 30 2. Funkcja

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć wyrównawczych z matematyki w ramach projektu Młodzieżowe Uniwersytety

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny

MATEMATYKA IV etap edukacyjny MATEMATYKA IV etap edukacyjny Cele kształcenia wymagania ogólne POZIOM PODSTAWOWY POZIOM ROZSZERZONY Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik Uczeń uŝywa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie

Bardziej szczegółowo

Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. podstawowym. dla uczniów technikum

Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. podstawowym. dla uczniów technikum Wymagania edukacyjne i kryteria oceniania w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum Wymagania podstawowe obejmują wiedzę i umiejętności całkowicie niezbędne do dalszego kształcenia

Bardziej szczegółowo

Spis treści. Zadania z rozwiązaniem krok po kroku Arkusz maturalny przykładowy zestaw zadań Odpowiedzi do zadań Indeks...

Spis treści. Zadania z rozwiązaniem krok po kroku Arkusz maturalny przykładowy zestaw zadań Odpowiedzi do zadań Indeks... Spis treści 3 Spis treści I. Liczby rzeczywiste 1. Liczby naturalne, całkowite, wymierne... 5. Pierwiastki, liczby niewymierne... 11 3. Potęga o wykładniku naturalnym, całkowitym, wymiernym... 15 4. Wyrażenia

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

MATEMATYKA POZIOM PODSTAWOWY

MATEMATYKA POZIOM PODSTAWOWY EGZMN MTURLNY W ROKU SZKOLNYM 06/0 FORMUŁ O 04 ( STR MTUR ) MTEMTYK POZOM POSTWOWY ZSY OENN ROZWĄZŃ ZŃ RKUSZ MM-P MJ 0 Zadania zamknięte Punkt przyznaje się za wskazanie poprawnej odpowiedzi Zadanie (0

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Program nauczania przeznaczony dla IV etapu edukacyjnego.

Program nauczania przeznaczony dla IV etapu edukacyjnego. Program nauczania przeznaczony dla IV etapu edukacyjnego. Program nauczania dostosowany do nowej podstawy programowej zgodnie z rozporządzeniem Ministra Edukacji Narodowej z dnia 23 grudnia 2008 r. w sprawie

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu umiejętności

Bardziej szczegółowo