NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

Wielkość: px
Rozpocząć pokaz od strony:

Download "NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy"

Transkrypt

1 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od r. w klasach pierwszych szkół ponadgimnazjalnych Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych dobrze znanych obiektów matematycznych. Uczeń dobiera model matematyczny do prostej sytuacji i krytycznie ocenia trafność modelu. Uczeń stosuje strategię która jasno wynika z treści zadania. Uczeń prowadzi proste rozumowanie składające się z niewielkiej liczby kroków. STARA ZAKRES PODSTAWOWY (standardy maturalne) obowiązujące do 2014 r. w liceum i 2015 r. w technikum I. Wykorzystanie i tworzenie informacji. Interpretuje tekst matematyczny i formułuje uzyskane wyniki. II. Wykorzystanie i interpretowanie reprezentacji. Używa prostych dobrze znanych obiektów matematycznych. III. Modelowanie matematyczne. Dobiera model matematyczny do prostej sytuacji. IV. Użycie i tworzenie strategii. Stosuje strategię która jasno wynika z treści zadania. V. Rozumowanie i argumentacja. Prowadzi proste rozumowanie składające się z niewielkiej liczby kroków. 2. Treści nauczania wymagania szczegółowe. (w nowej podstawie programowej treści nauczania są jednocześnie standardami maturalnymi) NOWA Od r. (w klasach pierwszych) 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego ułamka dziesiętnego okresowego z użyciem symboli pierwiastków potęg); ZAKRES PODSTAWOWY 1. Liczby rzeczywiste. Uczeń: STARA (z aktualnie obowiązujących standardów maturalnych) a) planuje i wykonuje obliczenia na liczbach rzeczywistych; w szczególności oblicza pierwiastki w tym pierwiastki nieparzystego stopnia z liczb ujemnych 2) oblicza wartości wyrażeń arytmetycznych (wymiernych); 3) posługuje się w obliczeniach pierwiastkami b) bada czy wynik obliczeń jest liczbą wymierną c) wyznacza rozwinięcia dziesiętne; znajduje

2 2 dowolnego stopnia i stosuje prawa działań na pierwiastkach; 4) oblicza potęgi o wykładnikach wymiernych i stosuje prawa działań na potęgach o wykładnikach wymiernych; 5) wykorzystuje podstawowe własności potęg (również w zagadnieniach związanych z innymi dziedzinami wiedzy np. fizyką chemią informatyką); 6) wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu logarytm ilorazu i logarytm potęgi o wykładniku naturalnym; 7) oblicza błąd bezwzględny i błąd względny przybliżenia; 8) posługuje się pojęciem przedziału liczbowego zaznacza przedziały na osi liczbowej; 9) wykonuje obliczenia procentowe oblicza podatki zysk z lokat (również złożonych na procent składany i na okres krótszy niż rok). przybliżenia liczb; wykorzystuje pojecie błędu przybliżenia d) stosuje pojecie procentu i punktu procentowego w obliczeniach e) posługuje się pojęciem osi liczbowej i przedziału liczbowego; zaznacza przedziały na osi liczbowej f) wykorzystuje pojecie wartości bezwzględnej i jej interpretacja geometryczna zaznacza na osi liczbowej zbiory opisane za pomocą równań i x a = b x a > b nierówności typu: x a < b g) oblicza potęgi o wykładnikach wymiernych oraz stosuje prawa działań na potęgach o wykładnikach wymiernych i rzeczywistych h) zna definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu logarytm ilorazu i logarytm potęgi o wykładniku naturalnym 2. Wyrażenia algebraiczne. Uczeń: 1) używa wzorów skróconego mnożenia na (a ± b) 2 oraz a 2 b 2. a) posługuje się wzorami skróconego 2 3 mnożenia: ( a ± b) ( a ± b) a b a ± b 1) sprawdza czy dana liczba rzeczywista jest rozwiązaniem równania lub nierówności; b) rozkłada wielomian na czynniki stosując wzory skróconego mnożenia grupowanie wyrazów wyłączanie wspólnego czynnika poza nawias c) dodaje odejmuje i mnoży wielomiany d) wyznacza dziedzinę prostego wyrażenia wymiernego z jedną zmienną w którym w mianowniku występują tylko wyrażenia dające się sprowadzić do iloczynu wielomianów liniowych i kwadratowych za pomocą przekształceń opisanych w punkcie b) e) oblicza wartość liczbową wyrażenia wymiernego dla danej wartości zmiennej f) dodaje odejmuje mnoży i dzieli wyrażenia wymierne; skraca i rozszerza wyrażenia wymierne 3. Równania i nierówności. Uczeń: a) rozwiązuje równania i nierówności kwadratowe; zapisuje rozwiązanie w postaci sumy przedziałów

3 3 2) wykorzystuje interpretację geometryczną układu równań pierwszego stopnia z dwiema niewiadomymi; 3) rozwiązuje nierówności pierwszego stopnia z jedną niewiadomą; 4) rozwiązuje równania kwadratowe z jedną niewiadomą; 5) rozwiązuje nierówności kwadratowe z jedną niewiadomą; 6) korzysta z definicji pierwiastka do rozwiązywania równań typu x3 = 8; 7) korzysta z własności iloczynu przy rozwiązywaniu równań typu x(x + 1)(x 7) = 0; 8) rozwiązuje proste równania wymierne prowadzące do równań liniowych lub kwadratowych np. x + 1 x +1 = 2 = 2 x x + 3 x. b) rozwiązuje zadania (również umieszczone w kontekście praktycznym) prowadzące do równań i nierówności kwadratowych c) rozwiązuje układy równań prowadzące do równań kwadratowych d) rozwiązuje równania wielomianowe metodą rozkładu na czynniki e) rozwiązuje proste równania wymierne prowadzące do równań liniowych lub x + 1 x + 2 = 2 = 2 x kwadratowych np. x + 3 x f) rozwiązuje zadania (również umieszczone w kontekście praktycznym) prowadzące do prostych równań wymiernych 1) określa funkcje za pomocą wzoru tabeli wykresu opisu słownego; 2) oblicza ze wzoru wartość funkcji dla danego argumentu. Posługuje się poznanymi metodami rozwiązywania równań do obliczenia dla jakiego argumentu funkcja przyjmuje daną wartość; 3) odczytuje z wykresu własności funkcji (dziedzinę zbiór wartości miejsca zerowe maksymalne przedziały w których funkcja maleje rośnie ma stały znak; punkty w których funkcja przyjmuje w podanym przedziale wartość największą lub najmniejszą); 4) na podstawie wykresu funkcji y =ƒ(x) szkicuje wykresy funkcji y = ƒ(x + a) y = ƒ(x) + a y = ƒ(x) y =ƒ( x); 4. Funkcje. Uczeń: a) określa funkcję za pomocą wzoru tabeli wykresu opisu słownego b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości miejsca zerowe maksymalne przedziały w których funkcja rośnie maleje ma stały znak c) sporządza wykres funkcji spełniającej podane warunki d) potrafi na podstawie wykresu funkcji y =ƒ(x) szkicuje wykresy funkcji y = ƒ(x + a) y = ƒ(x) + a y = ƒ(x) y =ƒ( x); e) sporządza wykresy funkcji liniowych f) wyznacza wzór funkcji liniowej g) wykorzystuje interpretację współczynników we wzorze funkcji liniowej 5) rysuje wykres funkcji liniowej korzystając z jej wzoru; 6) wyznacza wzór funkcji liniowej na podstawie informacji o funkcji lub o jej wykresie; 7) interpretuje współczynniki występujące we wzorze funkcji liniowej; 8) szkicuje wykres funkcji kwadratowej korzystając z jej wzoru; h) sporządza wykresy funkcji kwadratowych i) wyznacza wzór funkcji kwadratowej j) wyznacza miejsca zerowe funkcji kwadratowej k) wyznacza wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym l) rozwiązuje zadania (również umieszczone w

4 4 9) wyznacza wzór funkcji kwadratowej na podstawie pewnych informacji o tej funkcji lub o jej wykresie; 10) interpretuje współczynniki występujące we wzorze funkcji kwadratowej w postaci kanonicznej w postaci ogólnej i w postaci iloczynowej (o ile istnieje); 11) wyznacza wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym; kontekście praktycznym) prowadzące do badania funkcji kwadratowej m) sporządza wykres odczytuje własności i rozwiązuje zadania umieszczone w kontekście praktycznym związane z proporcjonalnością odwrotną n) sporządza wykresy funkcji wykładniczych dla różnych podstaw i rozwiązuje zadania umieszczone w kontekście praktycznym 12) wykorzystuje własności funkcji liniowej i kwadratowej do interpretacji zagadnień geometrycznych fizycznych itp. (także osadzonych w kontekście praktycznym); 13) szkicuje wykres funkcji ƒ(x) = a/x dla danego a korzysta ze wzoru i wykresu tej funkcji do interpretacji zagadnień związanych z wielkościami odwrotnie proporcjonalnymi; 14) szkicuje wykresy funkcji wykładniczych dla różnych podstaw; 15) posługuje się funkcjami wykładniczymi do opisu zjawisk fizycznych chemicznych a także w zagadnieniach osadzonych w kontekście praktycznym. 1) wyznacza wyrazy ciągu określonego wzorem ogólnym; 5. Ciągi. Uczeń: a) wyznacza wyrazy ciągu określonego wzorem ogólnym 2) bada czy dany ciąg jest arytmetyczny lub geometryczny; b) bada czy dany ciąg jest arytmetyczny lub geometryczny 3) stosuje wzór na n ty wyraz i na sumę n początkowych wyrazów ciągu arytmetycznego; 4) stosuje wzór na n ty wyraz i na sumę n początkowych wyrazów ciągu geometrycznego. c) stosuje wzory na n-ty wyraz i sumę n początkowych wyrazów ciągu arytmetycznego i ciągu geometrycznego również umieszczone w kontekście praktycznym 1) wykorzystuje definicje i wyznacza wartości funkcji sinus cosinus i tangens kątów o miarach od 0 do 180 ; 6. Trygonometria. Uczeń: a) wykorzystuje definicje i wyznacza wartości funkcji trygonometrycznych dla kątów ostrych 2) korzysta z przybliżonych wartości funkcji trygonometrycznych (odczytanych z tablic lub obliczonych za pomocą kalkulatora); 3) oblicza miarę kąta ostrego dla której funkcja b) rozwiązuje równania typu sin x = a cos x = a tgx = a 0 0 dla 0 < x < 90 c) stosuje proste związki między funkcjami

5 5 trygonometryczna przyjmuje daną wartość (miarę dokładną albo korzystając z tablic lub kalkulatora przybliżoną); 4) stosuje proste zależności między funkcjami trygonometrycznymi: sin2 α + cos2 α = 1 oraz sin(90 α) = cos α trygonometrycznymi kąta ostrego d) znając wartość jednej z funkcji trygonometrycznych wyznacza wartości pozostałych funkcji tego samego kąta ostrego. 5) znając wartość jednej z funkcji: sinus lub cosinus wyznacza wartości pozostałych funkcji tego samego kąta ostrego. 1) stosuje zależności między kątem środkowym i kątem wpisanym; 2) korzysta z własności stycznej do okręgu i własności okręgów stycznych; 3) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych) cechy podobieństwa trójkątów; 4) korzysta z własności funkcji trygonometrycznych w łatwych obliczeniach geometrycznych w tym ze wzoru na pole trójkąta ostrokątnego o danych dwóch bokach i kącie między nimi. 1) wyznacza równanie prostej przechodzącej przez dwa dane punkty (w postaci kierunkowej lub ogólnej); 2) bada równoległość i prostopadłość prostych na podstawie ich równań kierunkowych; 3) wyznacza równanie prostej która jest równoległa lub prostopadła do prostej danej w postaci kierunkowej i przechodzi przez dany punkt; 4) oblicza współrzędne punktu przecięcia dwóch prostych; 5) wyznacza współrzędne środka odcinka; 6) oblicza odległość dwóch punktów; 7) znajduje obrazy niektórych figur geometrycznych (punktu prostej odcinka okręgu trójkąta itp.) w symetrii osiowej względem osi układu współrzędnych i symetrii środkowej względem początku układu. 7. Planimetria. Uczeń: a) korzysta ze związków między kątem środkowym kątem wpisanym i kątem między styczną a cięciwą okręgu b) wykorzystuje własności figur podobnych w zadaniach w tym umieszczonych w kontekście praktycznym c) znajduje związki miarowe w figurach płaskich także z zastosowaniem trygonometrii również w zadaniach umieszczonych w kontekście praktycznym d) określa wzajemne położenie prostej i okręgu 8. Geometria na płaszczyźnie kartezjańskiej. Uczeń: a) wykorzystuje pojęcie układu współrzędnych na płaszczyźnie b) podaje równanie prostej w postaci Ax + By + C = 0 lub y = ax + b mając dane dwa jej punkty lub jeden punkt i współczynnik a w równaniu kierunkowym c) bada równoległość i prostopadłość prostych na podstawie ich równań kierunkowych d) interpretuje geometrycznie układ dwóch równań liniowych z dwiema niewiadomymi e) oblicza odległości punktów na płaszczyźnie kartezjańskiej f) wyznacza współrzędne środka odcinka g) posługuje się równaniem okręgu ( x a) + ( y b) = r

6 6 9. Stereometria. Uczeń: 1) rozpoznaje w graniastosłupach i ostrosłupach kąty między odcinkami (np. krawędziami krawędziami i przekątnymi itp.) oblicza miary tych kątów; a) wskazuje i oblicza kąty miedzy ścianami wielościanu między ścianami i odcinkami oraz między odcinkami takimi jak krawędzie przekątne wysokości 2) rozpoznaje w graniastosłupach i ostrosłupach kąt między odcinkami i płaszczyznami (między krawędziami i ścianami przekątnymi i ścianami) oblicza miary tych kątów; 3) rozpoznaje w walcach i w stożkach kąt między odcinkami oraz kąt między odcinkami i płaszczyznami (np. kąt rozwarcia stożka kąt między tworzącą a podstawą) oblicza miary tych kątów; 4) rozpoznaje w graniastosłupach i ostrosłupach kąty między ścianami; 5) określa jaką figurą jest dany przekrój prostopadłościanu płaszczyzną; 6) stosuje trygonometrię do obliczeń długości odcinków miar kątów pól powierzchni i objętości. b) wyznacza związki miarowe w wielościanach i bryłach obrotowych z zastosowaniem trygonometrii 10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Uczeń: 1) oblicza średnią ważoną i odchylenie standardowe zestawu danych (także w przypadku danych odpowiednio pogrupowanych) interpretuje te parametry dla danych empirycznych; 2) zlicza obiekty w prostych sytuacjach kombinatorycznych niewymagających użycia wzorów kombinatorycznych stosuje regułę mnożenia i regułę dodawania; 3) oblicza prawdopodobieństwa w prostych sytuacjach stosując klasyczną definicję prawdopodobieństwa. a) oblicza średnią arytmetyczną średnią ważoną medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych b) zlicza obiekty w prostych sytuacjach kombinatorycznych niewymagających użycia wzorów kombinatorycznych; stosuje zasadę mnożenia c) wykorzystuje sumę iloczyn i różnicę zdarzeń do obliczania prawdopodobieństw zdarzeń! d) wykorzystuje własności prawdopodobieństwa i stosuje twierdzenie znane jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń treści które nie znalazły się w nowej podstawie programowej na poziomie podstawowym

7 7 NOWA PODSTAWA PROGRAMOWA KOMENTARZ Podstawa programowa to zapis tego czego państwo polskie zobowiązuje się nauczyć przeciętnie uzdolnionego ucznia. Nowa podstawa określa to co uczeń powinien umieć. Podstawa nie opisuje tego co ma być przerabiane na lekcjach lecz to czego uczeń ma być nauczony a ściślej: czego będzie się od niego wymagać. W przypadku liceum nowa podstawa określa to czego będzie się wymagać na egzaminie na koniec tego etapu. Natomiast wiedzę jakiej od ucznia będzie mógł oczekiwać nauczyciel na początku liceum określa podstawa dla gimnazjum. W podstawie wyróżnia się: cele kształcenia (sformułowane jako wymagania ogólne) treści nauczania (sformułowane jako wymagania szczegółowe) Czytając treści nauczania należy pamiętać o dwóch zasadach które zostały przyjęte przy ich redagowaniu: Jeżeli jakieś wymaganie znajduje się w podstawie dla etapu n to automatycznie jest też wymagane na etapie n+1 (n = 1 2 3). Jeżeli jakieś wymaganie znajduje się w podstawie dla etapu n+1 to automatycznie wynika stąd że nie jest wymagane na etapie n. Powtórki są niezbędne ale nie ma to być przerabianie znów wszystkiego od początku na wyższym etapie. Ogólnym założeniem jest to że nauczyciel ma prawo uczyć więcej niż jest zapisane w podstawie ale nie kosztem tego czego się będzie wymagać. Przydział godzin dla matematyki: liceum klasa pierwsza 4 godziny tygodniowo liceum klasy II-III zakres podstawowy po 3 godziny tygodniowo (uczniowie wybierający ten zakres mają więc razem 4+3+3=10 godzin na całe liceum) liceum klasy II-III zakres rozszerzony po 6 godzin tygodniowo (uczniowie wybierający ten zakres mają więc razem 4+6+6=16 godzin na całe liceum). Należy pamiętać że nawet w zakresie rozszerzonym nie da się utrzymać poziomu dawnych liceów matematyczno-fizycznych. ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ z dnia r. w sprawie ramowych planów nauczania w szkołach publicznych i załącznika nr 8 Komentarz do podstawy: wartość bezwzględna Nie ma jej w podstawie dla gimnazjum. Po pierwsze do niczego nie jest to potrzebne. Po drugie nie chcemy by w gimnazjum wprowadzano określenie wartości bezwzględnej w standardowy sposób (wzór z zapisem klamrowym). Do czego potrzebna jest wartość bezwzględna w szkole? Wartość bezwzględna potrzebna jest tak naprawdę jedynie do definicji granicy w której pojawia się nierówność: a n g < ε. To głównie po to spędza się w szkole wiele czasu na przekształcaniu nierówności typu x a < b. Po to aby móc wykazać zbieżność pewnych ciągów wprost na podstawie definicji granicy. Wymagania dotyczące wartości bezwzględnej pojawiają się w liceum ale jedynie w zakresie rozszerzonym.

8 8 Komentarz do podstawy: logika matematyczna Z podstawy usunięto elementy logiki matematycznej. Znajomość ogólnych pojęć i symboli rachunku zdań i kwantyfikatorów nie jest ani warunkiem koniecznym ani dostatecznym dla logicznego rozumowania w matematyce W podstawie dla liceum wśród wymagań ogólnych mamy: Rozumowanie i argumentacja (o zakresie wymagań sformułowanym osobno dla zakresu podstawowego i dla rozszerzonego). Szkoła ma uczyć rozumowania matematycznego i na maturze będą zadania to sprawdzające. Rozumowań należy uczyć w trakcie wszelkich wywodów matematycznych przez wiele lat. Komentarz do podstawy: teoria mnogości Samo pojęcie zbioru intuicyjnie rozumiane pojawia się w podstawie wielokrotnie (również w zakresie podstawowym). Nie ma natomiast symboli działań na zbiorach. Tu zadecydował m.in. bilans godzin. Ile czasu trzeba przeznaczyć na rzetelne opanowanie działań na zbiorach? Ile czasu zyska się przy realizacji innych działów dzięki wykorzystaniu pojęć teorii zbiorów? W 1967 wprowadzono do liceum spory zakres teorii zbiorów. Miało to być fundamentem całej matematyki licealnej a szczególnie geometrii. Niestety radykalna wersja tej koncepcji poniosła fiasko a szczególnie dramatycznie załamało się w szkole mnogościowe ujęcie geometrii. Komentarz do podstawy: trygonometria W liceum w zakresie podstawowym wprowadzono wymaganie: wykorzystuje definicje i wyznacza wartości funkcji sinus cosinus i tangens kątów o miarach od 0 do 180. Głównym argumentem było to że taki zakres kątów jest niezbędny dla interpretacji współczynnika a w równaniu kierunkowym prostej y = ax +b jako tangensa kąta nachylenia prostej. Nie ma jednak w profilu podstawowym funkcji trygonometrycznych ani kątów skierowanych ani miary łukowej kąta. Z podstaw zniknęła funkcja cotangens bowiem ctg α to to samo co 1/tg α bądź tg (90 α) i cała trygonometria bez trudu da się wyrazić za pomocą tych trzech funkcji: sinus cosinus tangens tych które są na kalkulatorze. Komentarz do podstawy: logarytm Pojęcie logarytmu wróciło do zakresu podstawowego w sformułowaniu: Wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu logarytm ilorazu i logarytm potęgi o wykładniku naturalnym. To takie minimum. W zakresie rozszerzonym mamy ponadto logarytm potęgi o dowolnym wykładniku wzór na zamianę podstawy logarytmu oraz funkcję logarytmiczną. Komentarz do podstawy: rachunek różniczkowy oraz zasada indukcji matematycznej Rachunek różniczkowy jest tylko w zakresie rozszerzonym. Zasada indukcji matematycznej została usunięta z zakresu rozszerzonego. Jest specyficznie trudna. Stosowanie tej zasady stało się pewnym rytuałem którego sensu wielu uczniów nie pojmowało. Należy pamiętać że nawet w zakresie rozszerzonym nie da się utrzymać poziomu dawnych liceów matematyczno-fizycznych.

9 9 Powodów tego jest wiele a jednym z nich jest to że uczniowie będą zdawać maturę w wieku 18 lat a nie 19 lat jak teraz. Nauka szkolna od klasy I po maturę będzie trwała 12 lat a dotąd od klasy zerowej po maturę trwała 13 lat. 1. Wykorzystanie i tworzenie informacji. Interpretuje tekst matematyczny i formułuje uzyskane wyniki. Zdający potrafi: odczytać informację bezpośrednio wynikającą z treści zadania zastosować podany wzór lub podany przepis postępowania wykonać rutynową procedurę dla typowych danych przejrzyście zapisać przebieg i wynik obliczeń oraz uzyskaną odpowiedź. 2. Wykorzystanie i interpretowanie reprezentacji. Używa prostych dobrze znanych obiektów matematycznych. Zdający potrafi: poprawnie wykonywać działania na liczbach i przedziałach liczbowych przekształcać wyrażenia algebraiczne rozwiązywać niezbyt złożone równania ich układy oraz nierówności odczytywać z wykresu własności funkcji sporządzać wykresy niektórych funkcji znajdować stosunki miarowe w figurach płaskich i przestrzennych (także z wykorzystaniem układu współrzędnych lub trygonometrii) zliczać obiekty i wyznaczać prawdopodobieństwo w prostych sytuacjach kombinatorycznych zastosować dobrze znaną definicję lub twierdzenie w typowym kontekście. 3. Modelowanie matematyczne. Dobiera model matematyczny do prostej sytuacji. Zdający potrafi także w sytuacjach praktycznych: podać wyrażenie algebraiczne funkcję równanie nierówność interpretację geometryczną przestrzeń zdarzeń elementarnych opisujące przedstawioną sytuację przetworzyć informację wyrażone w jednej postaci w inną ułatwiającą rozwiązanie problemu ocenić przydatność otrzymanych wyników z perspektywy sytuacji dla której zbudowano model. 4. Użycie i tworzenie strategii. Stosuje strategię która jasno wynika z treści zadania. Zdający potrafi: dobrać odpowiedni algorytm do wskazanej sytuacji problemowej ustalić zależności między podanymi informacjami zaplanować kolejność wykonywania czynności wprost wynikających z treści zadania lecz nie mieszczących się w ramach rutynowego algorytmu krytycznie ocenić otrzymane wyniki. 5. Rozumowanie i argumentacja. Prowadzi proste rozumowanie składające się z niewielkiej liczby kroków. Zdający potrafi: wyprowadzić wniosek z prostego układu przesłanek i go uzasadnić zastosować twierdzenie które nie występuje w treści zadania.

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

IV etap edukacyjny Cele kształcenia wymagania ogólne

IV etap edukacyjny Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum, technikum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Egzamin maturalny od 2015 r. wieńczy proces wchodzenia w życie podstawy programowej kształcenia ogólnego, którą zaczęto stosować w klasach I liceum

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny

MATEMATYKA IV etap edukacyjny MATEMATYKA IV etap edukacyjny Cele kształcenia wymagania ogólne POZIOM PODSTAWOWY POZIOM ROZSZERZONY Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik Uczeń uŝywa

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu umiejętności

Bardziej szczegółowo

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole Cele kształcenia wymagania ogólne MATEMATYKA III etap edukacyjny I. Wykorzystanie

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Projekt pt. Wyższe kwalifikacje lepszy start zawodowy

Projekt pt. Wyższe kwalifikacje lepszy start zawodowy Projekt pt. Wyższe kwalifikacje lepszy start zawodowy realizowany przez Zespół Szkół Ponadgimnazjalnych im. Jana Kochanowskiego w Garbatce-Letnisku w ramach Programu Operacyjnego Kapitał Ludzki Priorytet

Bardziej szczegółowo

Procedury osiągania celów

Procedury osiągania celów Cele wychowawcze Istotną część procesu nauczania stanowi proces wychowywania. W nauczaniu matematyki szczególnie eksponowane są następujące cele wychowawcze: przygotowanie do życia we współczesnym świecie,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I.

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I. XCII LO z Oddziałami Integracyjnymi i Sportowymi Materiał nauczania i przewidywane umiejętności uczniów Klasa I Treści nauczania I. Liczby 1. Liczby rzeczywiste, zapis dziesiętny liczby rzeczywistej, zamiana

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. podstawowym. dla uczniów technikum

Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. podstawowym. dla uczniów technikum Wymagania edukacyjne i kryteria oceniania w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum Wymagania podstawowe obejmują wiedzę i umiejętności całkowicie niezbędne do dalszego kształcenia

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury LICZBY RZECZYWISTE Na poziomie wymagań koniecznych - na ocenę dopuszczającą (2) uczeń potrafi: zamieniać ułamek zwykły na ułamek dziesiętny podać przykłady liczb niewymiernych podać przybliżenie dziesiętne

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka Poznać, zrozumieć. Zakres podstawowy Klasa 1 Liceum i technikum Katalog

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na

Bardziej szczegółowo

Kalendarium maturzysty

Kalendarium maturzysty Matura 2012 Kalendarium maturzysty matematyka poziom podstawowy Liczby i ich zbiory TYDZIEŃ 1-4 (4 tygodnie) 3-28 października liczby naturalne, całkowite, wymierne i niewymierne planowanie i wykonywanie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

Wymagania edukacyjne zakres podstawowy klasa 3A

Wymagania edukacyjne zakres podstawowy klasa 3A Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum

Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum Wymagania edukacyjne i kryteria oceniania w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum Wymagania podstawowe obejmują wiedzę i umiejętności całkowicie niezbędne do dalszego kształcenia

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era

Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era Ocena: dopuszczający dostateczny dobry bardzo dobry celujący Funkcja liniowa

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,

Bardziej szczegółowo

Załącznik nr 2 do PSO z matematyki, ZSP Nr 1 w Krośnie. Treści nauczania zakres rozszerzony

Załącznik nr 2 do PSO z matematyki, ZSP Nr 1 w Krośnie. Treści nauczania zakres rozszerzony Załącznik nr 2 do PSO z matematyki, ZSP Nr 1 w Krośnie. Treści nauczania zakres rozszerzony W poniższych tabelach: Pogrubieniem oznaczono te hasła i wymagania, które wykraczają poza podstawę programową

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA.

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2011 w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA oraz WYBRANYCH WZORÓW MATEMATYCZNYCH 2 Próbny egzamin maturalny

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

MATEMATYKA Katalog wymagań programowych

MATEMATYKA Katalog wymagań programowych MATEMATYKA Katalog wymagań programowych KLASA 1H LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub dostateczną przedstawiać liczby rzeczywiste w różnych

Bardziej szczegółowo

System oceniania z matematyki -katalog wymagań programowych

System oceniania z matematyki -katalog wymagań programowych System oceniania z matematyki -katalog wymagań programowych klasa I LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub przedstawiać liczby rzeczywiste w

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo