NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

Wielkość: px
Rozpocząć pokaz od strony:

Download "NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy"

Transkrypt

1 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od r. w klasach pierwszych szkół ponadgimnazjalnych Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych dobrze znanych obiektów matematycznych. Uczeń dobiera model matematyczny do prostej sytuacji i krytycznie ocenia trafność modelu. Uczeń stosuje strategię która jasno wynika z treści zadania. Uczeń prowadzi proste rozumowanie składające się z niewielkiej liczby kroków. STARA ZAKRES PODSTAWOWY (standardy maturalne) obowiązujące do 2014 r. w liceum i 2015 r. w technikum I. Wykorzystanie i tworzenie informacji. Interpretuje tekst matematyczny i formułuje uzyskane wyniki. II. Wykorzystanie i interpretowanie reprezentacji. Używa prostych dobrze znanych obiektów matematycznych. III. Modelowanie matematyczne. Dobiera model matematyczny do prostej sytuacji. IV. Użycie i tworzenie strategii. Stosuje strategię która jasno wynika z treści zadania. V. Rozumowanie i argumentacja. Prowadzi proste rozumowanie składające się z niewielkiej liczby kroków. 2. Treści nauczania wymagania szczegółowe. (w nowej podstawie programowej treści nauczania są jednocześnie standardami maturalnymi) NOWA Od r. (w klasach pierwszych) 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego ułamka dziesiętnego okresowego z użyciem symboli pierwiastków potęg); ZAKRES PODSTAWOWY 1. Liczby rzeczywiste. Uczeń: STARA (z aktualnie obowiązujących standardów maturalnych) a) planuje i wykonuje obliczenia na liczbach rzeczywistych; w szczególności oblicza pierwiastki w tym pierwiastki nieparzystego stopnia z liczb ujemnych 2) oblicza wartości wyrażeń arytmetycznych (wymiernych); 3) posługuje się w obliczeniach pierwiastkami b) bada czy wynik obliczeń jest liczbą wymierną c) wyznacza rozwinięcia dziesiętne; znajduje

2 2 dowolnego stopnia i stosuje prawa działań na pierwiastkach; 4) oblicza potęgi o wykładnikach wymiernych i stosuje prawa działań na potęgach o wykładnikach wymiernych; 5) wykorzystuje podstawowe własności potęg (również w zagadnieniach związanych z innymi dziedzinami wiedzy np. fizyką chemią informatyką); 6) wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu logarytm ilorazu i logarytm potęgi o wykładniku naturalnym; 7) oblicza błąd bezwzględny i błąd względny przybliżenia; 8) posługuje się pojęciem przedziału liczbowego zaznacza przedziały na osi liczbowej; 9) wykonuje obliczenia procentowe oblicza podatki zysk z lokat (również złożonych na procent składany i na okres krótszy niż rok). przybliżenia liczb; wykorzystuje pojecie błędu przybliżenia d) stosuje pojecie procentu i punktu procentowego w obliczeniach e) posługuje się pojęciem osi liczbowej i przedziału liczbowego; zaznacza przedziały na osi liczbowej f) wykorzystuje pojecie wartości bezwzględnej i jej interpretacja geometryczna zaznacza na osi liczbowej zbiory opisane za pomocą równań i x a = b x a > b nierówności typu: x a < b g) oblicza potęgi o wykładnikach wymiernych oraz stosuje prawa działań na potęgach o wykładnikach wymiernych i rzeczywistych h) zna definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu logarytm ilorazu i logarytm potęgi o wykładniku naturalnym 2. Wyrażenia algebraiczne. Uczeń: 1) używa wzorów skróconego mnożenia na (a ± b) 2 oraz a 2 b 2. a) posługuje się wzorami skróconego 2 3 mnożenia: ( a ± b) ( a ± b) a b a ± b 1) sprawdza czy dana liczba rzeczywista jest rozwiązaniem równania lub nierówności; b) rozkłada wielomian na czynniki stosując wzory skróconego mnożenia grupowanie wyrazów wyłączanie wspólnego czynnika poza nawias c) dodaje odejmuje i mnoży wielomiany d) wyznacza dziedzinę prostego wyrażenia wymiernego z jedną zmienną w którym w mianowniku występują tylko wyrażenia dające się sprowadzić do iloczynu wielomianów liniowych i kwadratowych za pomocą przekształceń opisanych w punkcie b) e) oblicza wartość liczbową wyrażenia wymiernego dla danej wartości zmiennej f) dodaje odejmuje mnoży i dzieli wyrażenia wymierne; skraca i rozszerza wyrażenia wymierne 3. Równania i nierówności. Uczeń: a) rozwiązuje równania i nierówności kwadratowe; zapisuje rozwiązanie w postaci sumy przedziałów

3 3 2) wykorzystuje interpretację geometryczną układu równań pierwszego stopnia z dwiema niewiadomymi; 3) rozwiązuje nierówności pierwszego stopnia z jedną niewiadomą; 4) rozwiązuje równania kwadratowe z jedną niewiadomą; 5) rozwiązuje nierówności kwadratowe z jedną niewiadomą; 6) korzysta z definicji pierwiastka do rozwiązywania równań typu x3 = 8; 7) korzysta z własności iloczynu przy rozwiązywaniu równań typu x(x + 1)(x 7) = 0; 8) rozwiązuje proste równania wymierne prowadzące do równań liniowych lub kwadratowych np. x + 1 x +1 = 2 = 2 x x + 3 x. b) rozwiązuje zadania (również umieszczone w kontekście praktycznym) prowadzące do równań i nierówności kwadratowych c) rozwiązuje układy równań prowadzące do równań kwadratowych d) rozwiązuje równania wielomianowe metodą rozkładu na czynniki e) rozwiązuje proste równania wymierne prowadzące do równań liniowych lub x + 1 x + 2 = 2 = 2 x kwadratowych np. x + 3 x f) rozwiązuje zadania (również umieszczone w kontekście praktycznym) prowadzące do prostych równań wymiernych 1) określa funkcje za pomocą wzoru tabeli wykresu opisu słownego; 2) oblicza ze wzoru wartość funkcji dla danego argumentu. Posługuje się poznanymi metodami rozwiązywania równań do obliczenia dla jakiego argumentu funkcja przyjmuje daną wartość; 3) odczytuje z wykresu własności funkcji (dziedzinę zbiór wartości miejsca zerowe maksymalne przedziały w których funkcja maleje rośnie ma stały znak; punkty w których funkcja przyjmuje w podanym przedziale wartość największą lub najmniejszą); 4) na podstawie wykresu funkcji y =ƒ(x) szkicuje wykresy funkcji y = ƒ(x + a) y = ƒ(x) + a y = ƒ(x) y =ƒ( x); 4. Funkcje. Uczeń: a) określa funkcję za pomocą wzoru tabeli wykresu opisu słownego b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości miejsca zerowe maksymalne przedziały w których funkcja rośnie maleje ma stały znak c) sporządza wykres funkcji spełniającej podane warunki d) potrafi na podstawie wykresu funkcji y =ƒ(x) szkicuje wykresy funkcji y = ƒ(x + a) y = ƒ(x) + a y = ƒ(x) y =ƒ( x); e) sporządza wykresy funkcji liniowych f) wyznacza wzór funkcji liniowej g) wykorzystuje interpretację współczynników we wzorze funkcji liniowej 5) rysuje wykres funkcji liniowej korzystając z jej wzoru; 6) wyznacza wzór funkcji liniowej na podstawie informacji o funkcji lub o jej wykresie; 7) interpretuje współczynniki występujące we wzorze funkcji liniowej; 8) szkicuje wykres funkcji kwadratowej korzystając z jej wzoru; h) sporządza wykresy funkcji kwadratowych i) wyznacza wzór funkcji kwadratowej j) wyznacza miejsca zerowe funkcji kwadratowej k) wyznacza wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym l) rozwiązuje zadania (również umieszczone w

4 4 9) wyznacza wzór funkcji kwadratowej na podstawie pewnych informacji o tej funkcji lub o jej wykresie; 10) interpretuje współczynniki występujące we wzorze funkcji kwadratowej w postaci kanonicznej w postaci ogólnej i w postaci iloczynowej (o ile istnieje); 11) wyznacza wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym; kontekście praktycznym) prowadzące do badania funkcji kwadratowej m) sporządza wykres odczytuje własności i rozwiązuje zadania umieszczone w kontekście praktycznym związane z proporcjonalnością odwrotną n) sporządza wykresy funkcji wykładniczych dla różnych podstaw i rozwiązuje zadania umieszczone w kontekście praktycznym 12) wykorzystuje własności funkcji liniowej i kwadratowej do interpretacji zagadnień geometrycznych fizycznych itp. (także osadzonych w kontekście praktycznym); 13) szkicuje wykres funkcji ƒ(x) = a/x dla danego a korzysta ze wzoru i wykresu tej funkcji do interpretacji zagadnień związanych z wielkościami odwrotnie proporcjonalnymi; 14) szkicuje wykresy funkcji wykładniczych dla różnych podstaw; 15) posługuje się funkcjami wykładniczymi do opisu zjawisk fizycznych chemicznych a także w zagadnieniach osadzonych w kontekście praktycznym. 1) wyznacza wyrazy ciągu określonego wzorem ogólnym; 5. Ciągi. Uczeń: a) wyznacza wyrazy ciągu określonego wzorem ogólnym 2) bada czy dany ciąg jest arytmetyczny lub geometryczny; b) bada czy dany ciąg jest arytmetyczny lub geometryczny 3) stosuje wzór na n ty wyraz i na sumę n początkowych wyrazów ciągu arytmetycznego; 4) stosuje wzór na n ty wyraz i na sumę n początkowych wyrazów ciągu geometrycznego. c) stosuje wzory na n-ty wyraz i sumę n początkowych wyrazów ciągu arytmetycznego i ciągu geometrycznego również umieszczone w kontekście praktycznym 1) wykorzystuje definicje i wyznacza wartości funkcji sinus cosinus i tangens kątów o miarach od 0 do 180 ; 6. Trygonometria. Uczeń: a) wykorzystuje definicje i wyznacza wartości funkcji trygonometrycznych dla kątów ostrych 2) korzysta z przybliżonych wartości funkcji trygonometrycznych (odczytanych z tablic lub obliczonych za pomocą kalkulatora); 3) oblicza miarę kąta ostrego dla której funkcja b) rozwiązuje równania typu sin x = a cos x = a tgx = a 0 0 dla 0 < x < 90 c) stosuje proste związki między funkcjami

5 5 trygonometryczna przyjmuje daną wartość (miarę dokładną albo korzystając z tablic lub kalkulatora przybliżoną); 4) stosuje proste zależności między funkcjami trygonometrycznymi: sin2 α + cos2 α = 1 oraz sin(90 α) = cos α trygonometrycznymi kąta ostrego d) znając wartość jednej z funkcji trygonometrycznych wyznacza wartości pozostałych funkcji tego samego kąta ostrego. 5) znając wartość jednej z funkcji: sinus lub cosinus wyznacza wartości pozostałych funkcji tego samego kąta ostrego. 1) stosuje zależności między kątem środkowym i kątem wpisanym; 2) korzysta z własności stycznej do okręgu i własności okręgów stycznych; 3) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych) cechy podobieństwa trójkątów; 4) korzysta z własności funkcji trygonometrycznych w łatwych obliczeniach geometrycznych w tym ze wzoru na pole trójkąta ostrokątnego o danych dwóch bokach i kącie między nimi. 1) wyznacza równanie prostej przechodzącej przez dwa dane punkty (w postaci kierunkowej lub ogólnej); 2) bada równoległość i prostopadłość prostych na podstawie ich równań kierunkowych; 3) wyznacza równanie prostej która jest równoległa lub prostopadła do prostej danej w postaci kierunkowej i przechodzi przez dany punkt; 4) oblicza współrzędne punktu przecięcia dwóch prostych; 5) wyznacza współrzędne środka odcinka; 6) oblicza odległość dwóch punktów; 7) znajduje obrazy niektórych figur geometrycznych (punktu prostej odcinka okręgu trójkąta itp.) w symetrii osiowej względem osi układu współrzędnych i symetrii środkowej względem początku układu. 7. Planimetria. Uczeń: a) korzysta ze związków między kątem środkowym kątem wpisanym i kątem między styczną a cięciwą okręgu b) wykorzystuje własności figur podobnych w zadaniach w tym umieszczonych w kontekście praktycznym c) znajduje związki miarowe w figurach płaskich także z zastosowaniem trygonometrii również w zadaniach umieszczonych w kontekście praktycznym d) określa wzajemne położenie prostej i okręgu 8. Geometria na płaszczyźnie kartezjańskiej. Uczeń: a) wykorzystuje pojęcie układu współrzędnych na płaszczyźnie b) podaje równanie prostej w postaci Ax + By + C = 0 lub y = ax + b mając dane dwa jej punkty lub jeden punkt i współczynnik a w równaniu kierunkowym c) bada równoległość i prostopadłość prostych na podstawie ich równań kierunkowych d) interpretuje geometrycznie układ dwóch równań liniowych z dwiema niewiadomymi e) oblicza odległości punktów na płaszczyźnie kartezjańskiej f) wyznacza współrzędne środka odcinka g) posługuje się równaniem okręgu ( x a) + ( y b) = r

6 6 9. Stereometria. Uczeń: 1) rozpoznaje w graniastosłupach i ostrosłupach kąty między odcinkami (np. krawędziami krawędziami i przekątnymi itp.) oblicza miary tych kątów; a) wskazuje i oblicza kąty miedzy ścianami wielościanu między ścianami i odcinkami oraz między odcinkami takimi jak krawędzie przekątne wysokości 2) rozpoznaje w graniastosłupach i ostrosłupach kąt między odcinkami i płaszczyznami (między krawędziami i ścianami przekątnymi i ścianami) oblicza miary tych kątów; 3) rozpoznaje w walcach i w stożkach kąt między odcinkami oraz kąt między odcinkami i płaszczyznami (np. kąt rozwarcia stożka kąt między tworzącą a podstawą) oblicza miary tych kątów; 4) rozpoznaje w graniastosłupach i ostrosłupach kąty między ścianami; 5) określa jaką figurą jest dany przekrój prostopadłościanu płaszczyzną; 6) stosuje trygonometrię do obliczeń długości odcinków miar kątów pól powierzchni i objętości. b) wyznacza związki miarowe w wielościanach i bryłach obrotowych z zastosowaniem trygonometrii 10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Uczeń: 1) oblicza średnią ważoną i odchylenie standardowe zestawu danych (także w przypadku danych odpowiednio pogrupowanych) interpretuje te parametry dla danych empirycznych; 2) zlicza obiekty w prostych sytuacjach kombinatorycznych niewymagających użycia wzorów kombinatorycznych stosuje regułę mnożenia i regułę dodawania; 3) oblicza prawdopodobieństwa w prostych sytuacjach stosując klasyczną definicję prawdopodobieństwa. a) oblicza średnią arytmetyczną średnią ważoną medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych b) zlicza obiekty w prostych sytuacjach kombinatorycznych niewymagających użycia wzorów kombinatorycznych; stosuje zasadę mnożenia c) wykorzystuje sumę iloczyn i różnicę zdarzeń do obliczania prawdopodobieństw zdarzeń! d) wykorzystuje własności prawdopodobieństwa i stosuje twierdzenie znane jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń treści które nie znalazły się w nowej podstawie programowej na poziomie podstawowym

7 7 NOWA PODSTAWA PROGRAMOWA KOMENTARZ Podstawa programowa to zapis tego czego państwo polskie zobowiązuje się nauczyć przeciętnie uzdolnionego ucznia. Nowa podstawa określa to co uczeń powinien umieć. Podstawa nie opisuje tego co ma być przerabiane na lekcjach lecz to czego uczeń ma być nauczony a ściślej: czego będzie się od niego wymagać. W przypadku liceum nowa podstawa określa to czego będzie się wymagać na egzaminie na koniec tego etapu. Natomiast wiedzę jakiej od ucznia będzie mógł oczekiwać nauczyciel na początku liceum określa podstawa dla gimnazjum. W podstawie wyróżnia się: cele kształcenia (sformułowane jako wymagania ogólne) treści nauczania (sformułowane jako wymagania szczegółowe) Czytając treści nauczania należy pamiętać o dwóch zasadach które zostały przyjęte przy ich redagowaniu: Jeżeli jakieś wymaganie znajduje się w podstawie dla etapu n to automatycznie jest też wymagane na etapie n+1 (n = 1 2 3). Jeżeli jakieś wymaganie znajduje się w podstawie dla etapu n+1 to automatycznie wynika stąd że nie jest wymagane na etapie n. Powtórki są niezbędne ale nie ma to być przerabianie znów wszystkiego od początku na wyższym etapie. Ogólnym założeniem jest to że nauczyciel ma prawo uczyć więcej niż jest zapisane w podstawie ale nie kosztem tego czego się będzie wymagać. Przydział godzin dla matematyki: liceum klasa pierwsza 4 godziny tygodniowo liceum klasy II-III zakres podstawowy po 3 godziny tygodniowo (uczniowie wybierający ten zakres mają więc razem 4+3+3=10 godzin na całe liceum) liceum klasy II-III zakres rozszerzony po 6 godzin tygodniowo (uczniowie wybierający ten zakres mają więc razem 4+6+6=16 godzin na całe liceum). Należy pamiętać że nawet w zakresie rozszerzonym nie da się utrzymać poziomu dawnych liceów matematyczno-fizycznych. ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ z dnia r. w sprawie ramowych planów nauczania w szkołach publicznych i załącznika nr 8 Komentarz do podstawy: wartość bezwzględna Nie ma jej w podstawie dla gimnazjum. Po pierwsze do niczego nie jest to potrzebne. Po drugie nie chcemy by w gimnazjum wprowadzano określenie wartości bezwzględnej w standardowy sposób (wzór z zapisem klamrowym). Do czego potrzebna jest wartość bezwzględna w szkole? Wartość bezwzględna potrzebna jest tak naprawdę jedynie do definicji granicy w której pojawia się nierówność: a n g < ε. To głównie po to spędza się w szkole wiele czasu na przekształcaniu nierówności typu x a < b. Po to aby móc wykazać zbieżność pewnych ciągów wprost na podstawie definicji granicy. Wymagania dotyczące wartości bezwzględnej pojawiają się w liceum ale jedynie w zakresie rozszerzonym.

8 8 Komentarz do podstawy: logika matematyczna Z podstawy usunięto elementy logiki matematycznej. Znajomość ogólnych pojęć i symboli rachunku zdań i kwantyfikatorów nie jest ani warunkiem koniecznym ani dostatecznym dla logicznego rozumowania w matematyce W podstawie dla liceum wśród wymagań ogólnych mamy: Rozumowanie i argumentacja (o zakresie wymagań sformułowanym osobno dla zakresu podstawowego i dla rozszerzonego). Szkoła ma uczyć rozumowania matematycznego i na maturze będą zadania to sprawdzające. Rozumowań należy uczyć w trakcie wszelkich wywodów matematycznych przez wiele lat. Komentarz do podstawy: teoria mnogości Samo pojęcie zbioru intuicyjnie rozumiane pojawia się w podstawie wielokrotnie (również w zakresie podstawowym). Nie ma natomiast symboli działań na zbiorach. Tu zadecydował m.in. bilans godzin. Ile czasu trzeba przeznaczyć na rzetelne opanowanie działań na zbiorach? Ile czasu zyska się przy realizacji innych działów dzięki wykorzystaniu pojęć teorii zbiorów? W 1967 wprowadzono do liceum spory zakres teorii zbiorów. Miało to być fundamentem całej matematyki licealnej a szczególnie geometrii. Niestety radykalna wersja tej koncepcji poniosła fiasko a szczególnie dramatycznie załamało się w szkole mnogościowe ujęcie geometrii. Komentarz do podstawy: trygonometria W liceum w zakresie podstawowym wprowadzono wymaganie: wykorzystuje definicje i wyznacza wartości funkcji sinus cosinus i tangens kątów o miarach od 0 do 180. Głównym argumentem było to że taki zakres kątów jest niezbędny dla interpretacji współczynnika a w równaniu kierunkowym prostej y = ax +b jako tangensa kąta nachylenia prostej. Nie ma jednak w profilu podstawowym funkcji trygonometrycznych ani kątów skierowanych ani miary łukowej kąta. Z podstaw zniknęła funkcja cotangens bowiem ctg α to to samo co 1/tg α bądź tg (90 α) i cała trygonometria bez trudu da się wyrazić za pomocą tych trzech funkcji: sinus cosinus tangens tych które są na kalkulatorze. Komentarz do podstawy: logarytm Pojęcie logarytmu wróciło do zakresu podstawowego w sformułowaniu: Wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu logarytm ilorazu i logarytm potęgi o wykładniku naturalnym. To takie minimum. W zakresie rozszerzonym mamy ponadto logarytm potęgi o dowolnym wykładniku wzór na zamianę podstawy logarytmu oraz funkcję logarytmiczną. Komentarz do podstawy: rachunek różniczkowy oraz zasada indukcji matematycznej Rachunek różniczkowy jest tylko w zakresie rozszerzonym. Zasada indukcji matematycznej została usunięta z zakresu rozszerzonego. Jest specyficznie trudna. Stosowanie tej zasady stało się pewnym rytuałem którego sensu wielu uczniów nie pojmowało. Należy pamiętać że nawet w zakresie rozszerzonym nie da się utrzymać poziomu dawnych liceów matematyczno-fizycznych.

9 9 Powodów tego jest wiele a jednym z nich jest to że uczniowie będą zdawać maturę w wieku 18 lat a nie 19 lat jak teraz. Nauka szkolna od klasy I po maturę będzie trwała 12 lat a dotąd od klasy zerowej po maturę trwała 13 lat. 1. Wykorzystanie i tworzenie informacji. Interpretuje tekst matematyczny i formułuje uzyskane wyniki. Zdający potrafi: odczytać informację bezpośrednio wynikającą z treści zadania zastosować podany wzór lub podany przepis postępowania wykonać rutynową procedurę dla typowych danych przejrzyście zapisać przebieg i wynik obliczeń oraz uzyskaną odpowiedź. 2. Wykorzystanie i interpretowanie reprezentacji. Używa prostych dobrze znanych obiektów matematycznych. Zdający potrafi: poprawnie wykonywać działania na liczbach i przedziałach liczbowych przekształcać wyrażenia algebraiczne rozwiązywać niezbyt złożone równania ich układy oraz nierówności odczytywać z wykresu własności funkcji sporządzać wykresy niektórych funkcji znajdować stosunki miarowe w figurach płaskich i przestrzennych (także z wykorzystaniem układu współrzędnych lub trygonometrii) zliczać obiekty i wyznaczać prawdopodobieństwo w prostych sytuacjach kombinatorycznych zastosować dobrze znaną definicję lub twierdzenie w typowym kontekście. 3. Modelowanie matematyczne. Dobiera model matematyczny do prostej sytuacji. Zdający potrafi także w sytuacjach praktycznych: podać wyrażenie algebraiczne funkcję równanie nierówność interpretację geometryczną przestrzeń zdarzeń elementarnych opisujące przedstawioną sytuację przetworzyć informację wyrażone w jednej postaci w inną ułatwiającą rozwiązanie problemu ocenić przydatność otrzymanych wyników z perspektywy sytuacji dla której zbudowano model. 4. Użycie i tworzenie strategii. Stosuje strategię która jasno wynika z treści zadania. Zdający potrafi: dobrać odpowiedni algorytm do wskazanej sytuacji problemowej ustalić zależności między podanymi informacjami zaplanować kolejność wykonywania czynności wprost wynikających z treści zadania lecz nie mieszczących się w ramach rutynowego algorytmu krytycznie ocenić otrzymane wyniki. 5. Rozumowanie i argumentacja. Prowadzi proste rozumowanie składające się z niewielkiej liczby kroków. Zdający potrafi: wyprowadzić wniosek z prostego układu przesłanek i go uzasadnić zastosować twierdzenie które nie występuje w treści zadania.

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole Cele kształcenia wymagania ogólne MATEMATYKA III etap edukacyjny I. Wykorzystanie

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Procedury osiągania celów

Procedury osiągania celów Cele wychowawcze Istotną część procesu nauczania stanowi proces wychowywania. W nauczaniu matematyki szczególnie eksponowane są następujące cele wychowawcze: przygotowanie do życia we współczesnym świecie,

Bardziej szczegółowo

Projekt pt. Wyższe kwalifikacje lepszy start zawodowy

Projekt pt. Wyższe kwalifikacje lepszy start zawodowy Projekt pt. Wyższe kwalifikacje lepszy start zawodowy realizowany przez Zespół Szkół Ponadgimnazjalnych im. Jana Kochanowskiego w Garbatce-Letnisku w ramach Programu Operacyjnego Kapitał Ludzki Priorytet

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I.

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I. XCII LO z Oddziałami Integracyjnymi i Sportowymi Materiał nauczania i przewidywane umiejętności uczniów Klasa I Treści nauczania I. Liczby 1. Liczby rzeczywiste, zapis dziesiętny liczby rzeczywistej, zamiana

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka Poznać, zrozumieć. Zakres podstawowy Klasa 1 Liceum i technikum Katalog

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy i rozszerzony do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 05/06 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody Przedmiot: MATEMATYKA Klasa I (60 godz) Rozdział. Liczby rzeczywiste Numer

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K)

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K) - 1 - Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Przedmiotowy System Oceniania z matematyki

Przedmiotowy System Oceniania z matematyki Przedmiotowy System Oceniania z matematyki Opracowany zgodnie ze Statutem oraz z Wewnątrzszkolnym Systemem Oceniania Liceum Ogólnokształcącego im. Janka Bytnara w Kolbuszowej. I. Kontrakt między nauczycielem

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

Informator o egzaminie eksternistycznym. od 2007 roku MATEMATYKA. Liceum ogólnokształcące

Informator o egzaminie eksternistycznym. od 2007 roku MATEMATYKA. Liceum ogólnokształcące Informator o egzaminie eksternistycznym od 007 roku MATEMATYKA Liceum ogólnokształcące Warszawa 007 Opracowano w Centralnej Komisji Egzaminacyjnej we współpracy z okręgowymi komisjami egzaminacyjnymi w

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

1.Funkcja logarytmiczna

1.Funkcja logarytmiczna Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Liceum Ogólnokształcące zakres podstawowy

Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Liceum Ogólnokształcące zakres podstawowy Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Liceum Ogólnokształcące zakres podstawowy Formy i metody sprawdzania i oceniania osiągnięć ucznia: Osiągnięcia

Bardziej szczegółowo

PROPOZYCJA PLANU WYNIKOWEGOREALIZACJI PROGRAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DRUGIEJ KLASIE SZKOŁY PONADGIMNAZJALNEJ

PROPOZYCJA PLANU WYNIKOWEGOREALIZACJI PROGRAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DRUGIEJ KLASIE SZKOŁY PONADGIMNAZJALNEJ OOZYCJA LANU WYNIKOWEGOEALIZACJI OGAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DUGIEJ KLASIE SZKOŁY ONADGIMNAZJALNEJ ZAKES OZSZEZONY DZIAŁ I: CIĄGI Tematyka jednostki lekcyjnej lub Liczba oziomy

Bardziej szczegółowo

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

Dorota Ponczek. MATeMAtyka. Program nauczania matematyki. dla szkół ponadgimnazjalnych kończących się maturą

Dorota Ponczek. MATeMAtyka. Program nauczania matematyki. dla szkół ponadgimnazjalnych kończących się maturą Dorota Ponczek MATeMAtyka Program nauczania matematyki dla szkół ponadgimnazjalnych kończących się maturą Spis treści Podstawa programowa nauczania matematyki na III i IV etapie edukacyjnym 3 Wstęp do

Bardziej szczegółowo

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra)

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM PODRĘCZNIK: MATEMATYKA WOKÓŁ NAS KLASA 2 NAUCZYCIEL: BARBARA MIKA Ocena dopuszczająca:

Bardziej szczegółowo

3 D. Wymagania ogólne II. Wykorzystanie i interpretowanie reprezentacji. Zdający używa prostych, dobrze znanych obiektów matematycznych.

3 D. Wymagania ogólne II. Wykorzystanie i interpretowanie reprezentacji. Zdający używa prostych, dobrze znanych obiektów matematycznych. Przykładowe zadania z rozwiązaniami: poziom podstawowy. Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami Zadanie. (0 ) Liczba 8 9 jest równa A. B. 9 C. D. 5. Zdający oblicza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy.

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku

Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku Przedmiotowy system oceniania został skonstruowany w oparciu o następujące

Bardziej szczegółowo

W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:

W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi: PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (kształcenie ogólne w zakresie podstawowym z obowiązkową maturą z matematyki, wydawnictwo Nowa Era)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY

PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY ZAKRES PODSTAWOWY I ROZSZERZONY Maria Zioło Program nauczania matematyki dla szkół ponadgimnazjalnych, których ukończenie umożliwia uzyskanie świadectwa

Bardziej szczegółowo

Klasa II LP. Matematyka

Klasa II LP. Matematyka Klasa II LP Matematyka zakres podstawowy (3 godz. tygodniowo) Nauczyciel: Urszula Stopka I. FORMY SPRAWDZANIA WIADOMOŚCI: 1) zadanie domowe- uczeń może otrzymać z zadania domowego ocenę (jeśli zadanie

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 W planie wynikowym wraz z rozkładem materiału dla klasy trzeciej uwzględniono zarówno nowy materiał, zawarty w programie nauczania Matematyka wokół nas Gimnazjum

Bardziej szczegółowo

Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki Rok szkolny 2014/2015

Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki Rok szkolny 2014/2015 Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki Rok szkolny 2014/2015 Ocena celująca Ocenę tę otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają w przybliżeniu

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

III. Wyrażenia algebraiczne, równania i nierówności. Uczeń: 1) używa wzorów skróconego mnożenia na. b ;

III. Wyrażenia algebraiczne, równania i nierówności. Uczeń: 1) używa wzorów skróconego mnożenia na. b ; Wymagania edukacyjne, kryteria oceniania oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów XV LO w Krakowie Matematyka Klasa pierwsza. Poziom podstawowy. Rok szkolny 2014/2015 Wymagania ogólne zdobywa

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM

WYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM WYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM I. Wymagania na poszczególne oceny semestralne i roczne Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych przedmiotów,

Bardziej szczegółowo