Optymalizacja kryteriów selekcji dla rozpadu Λ+c pμ+μza pomocą wielowymiarowej analizy danych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Optymalizacja kryteriów selekcji dla rozpadu Λ+c pμ+μza pomocą wielowymiarowej analizy danych"

Transkrypt

1 Optymalizacja kryteriów selekcji dla rozpadu Λ+c pμ+μza pomocą wielowymiarowej analizy danych Maciej Kościelski Jakub Malczewski opiekunowie prof. dr hab. Mariusz Witek mgr inż. Małgorzata Pikies

2 LHCb kalorymetr hadronowy kalorymetr elektromagnetyczny detektor wierzchołka detektor mionowy

3 przykładowa detekcja mionów p Λ +c μ μ

4 Λ +c Rozpad Λ+c pμ+μ- jest silnie wzbroniony w ramach Modelu Standardowego. Badanie rzadkich rozpadów tego typu posiada potencjał odkrycia Nowej Fizyki, czyli niezgodności z przewidywaniami Modelu Standardowego. Przy jego poszukiwaniu używa się rozpadu rezonansowego Λ+c pφ(μ+μ-) jako kanału normalizacyjnego, którego współczynnik rozgałęzienia wynosi BF(Λ+c pφ(μ+μ- ) ) = 3.1*10-7. Celem naszej pracy była optymalizacja kryteriów selekcji dla rozpadu Λ+c pφ i ewentualna obserwacja rozpadu Λ+c pω, którego jeszcze nigdy nie obserwowano.

5 p Dane wejściowe Λ + c μ μ Po wstępnej selekcji (tzw. Stripping). - Dane z eksperymentu LHCb z lat Próbka Monte Carlo dla rozpadu Λ+c pφ(μ+μ- ) Dane w formie tzw. standardowych ntupli (ROOT) zawierają informacje o rozpadzie (kinematyka, parametry wierzchołka wtórnego, identyfikacja produktów rozpadu, zmienne izolacyjne).

6 Masa C - wycinek danych pomiarowych spodziewany sygnał w okolicach masy C

7 Do analizy danych użyliśmy narzędzia TMVA będącego częścią pakietu Root. Toolkit for Multi Variate Analysis

8 Szkolenie Do szkolenia algorytmów użyliśmy jako sygnał próbkę Monte Carlo rozpadu Λ+c pφ(μ+μ- ). Jako tło posłużyły dane z obszaru poza masą niezmienniczą Λ+c, w której spodziewaliśmy się znaleźć rzeczywisty sygnał. Strategia szkolenia: Stworzyliśmy szeroką listę zmienny dających dobrą separację sygnału i tła Wybraliśmy najefektywniejszą metodę MVA Przeprowadziliśmy szkolenie, odrzucając mało znaczące zmienne. Redukowaliśmy je, dopóki nie zaobserwowaliśmy znaczącego spadku wydajności (całka krzywej ROC)

9 Krzywa ROC dla różnych metod MVA - porównanie

10 Zmienne użyte podczas analizy za pomocą BDT Nazwa robocza Istotność zmiennej 1 : Lambda_cplus_IPCHI2_OWNPV : 1.191e-01 2 : Exp_1000_Lambda_cplus_TAU : 1.114e-01 3 : Lambda_cplus_ENDVERTEX_CHI2 : 9.357e-02 4 : Lambda_cplus_CDFiso : 8.643e-02 5 : pplus_pt : 7.873e-02 6 : min(pplus_track_chi2ndof,min(muplus_track_chi2ndof, )) : 7.817e-02 7 : Lambda_cplus_PT : 7.092e-02 8 : muplus_pt : 6.817e-02 9 : muminus_pt : 6.788e : Lambda_cplus_FD_OWNPV_/_sqrt_Lambda_cplus_FDCHI2_OWNPV : 6.348e : min(pplus_pt,min(muplus_pt,muminus_pt)) : 6.265e : mu_2_isolation : 5.263e : mu_1_isolation : 4.695e-02 Są to głównie zmienne topologiczne, dobrze symulowane przy generacji MC.

11 Przykładowe zmienne użyte podczas analizy. Histogramy unormowano.

12 Przykładowe zmienne użyte podczas analizy. Warto zauważyć różnice między rozkładami dla tła i sygnału, które pomogły lepiej odseparować badane przypadki.

13 Histogramy zmiennej dyskryminującej dla tła i sygnału wygenerowane dla próbki treningowej i testowej.

14 Po uzyskaniu dla każdego zdarzenia zmiennej dyskryminującej BDT określiliśmy dokładne wartości w których dokonaliśmy cięć. Wybraliśmy trzy zmienne: zmienna dyskryminująca BDT ProbNNmu prawdopodobieństwo identyfikacji mionów ProbNNp prawdopodobieństwo identyfikacji protonu Za kryterium optymalizacji (FoM) uznaliśmy S/ (S+B), gdzie S - ilość sygnału MC jaki pozostał po cięciu B - ilość tła jakie pozostało po cięciu Dla każdego punktu (ProbNNmu, ProbNNp) wyznaczyliśmy największe FoM oraz odpowiadające mu cięcie na zmiennej BDT. Następnie wybraliśmy punkt o najwyższym FoM na całej siatce.

15 Tło Sygnał Histogramy prawdopodobieństwa, że cząstka zaklasyfikowana jako mion w rzeczywistości jest mionem dla sygnału i tła. Widać istotne różnice w rozkładzie.

16 max( S/ S+B(bdt) )(ProbNNp, ProbNNmu) Pr ob NN p u ProbNNm Wykres największego FoM dla cięć na prawdopodobieństwach określonych na siatce.

17 Events Wartości zmiennej masa + C po selekcji

18 Po selekcji sygnału dopasowaliśmy krzywą wykładniczą do tła i krzywą Gaussa do sygnału w celu oszacowania jego ilości i błędu wyznaczonej masy. Kanał φ

19 Określenie ilości sygnału w kanale ω i w kanale φ pozwoliło nam oszacować stosunek tych rozpadów. Dało to możliwość wyznaczenie współczynnika rozgałęzienia nieobserwowanego dotąd rozpadu przez kanał ω. Kanał ω

20 Events Masa C po selekcji, w rozbiciu na kanał φ i ω kanał φ kanał ω BR Nω / NΦ = BFω / BFΦ BFΦ = (3,21 ± 0,69) 10-7 BFω = (6,8 ± 1,5) 10-8 MeV/c2

21 KONIEC Maciej Kościelski maciej.j.koscielski(małpa)student.put.poznan.pl Jakub Malczewski jakubmalczewski(małpa)opmbx.org opiekunowie prof. dr hab. Mariusz Witek mgr inż. Małgorzata Pikies

22 Źródła: Dane z eksperymentu LHCb z lat Search for Λ+c pμ+μ- decay, Marcin Chrząszcz, Tadeusz Lesiak, Borys Nowak, Mariusz Witek, nz11-agh1.ifj.edu.pl/.../lc2pmumu_ pdf Badanie rozpadów w eksperymencie LHCb, Paweł Nowak, nz11-agh1.ifj.edu.pl/.../mgr5.pdf Particle Data Group, pdg.lbl.gov ROOT a Data Analysis Framework, root.cern.ch TMVA Users Guide, tmva.sourceforge.net/docu/tmvausersguide.pdf Praktyki ATLAS - atlas.ifj.edu.pl/praktyki/materialy.html Searches for Rare or Forbidden Semileptonic Charm Decays (eksperyment BaBar), www-spires.slac.stanford.edu/.../slac-pub pdf

1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7.

1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Weronika Biela 1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Obliczenie przekroju czynnego 8. Porównanie

Bardziej szczegółowo

Prof. Jacek Ciborowski Warszawa, 12 stycznia 2015 Instytut Fizyki Doświadczalnej Uniwersytetu Warszawskiego Pasteura 5 02093 Warszawa.

Prof. Jacek Ciborowski Warszawa, 12 stycznia 2015 Instytut Fizyki Doświadczalnej Uniwersytetu Warszawskiego Pasteura 5 02093 Warszawa. Prof. Jacek Ciborowski Warszawa, 12 stycznia 2015 Instytut Fizyki Doświadczalnej Uniwersytetu Warszawskiego Pasteura 5 02093 Warszawa Recenzja rozprawy doktorskiej mgr Marcina Chrząszcza zatytułowanej:

Bardziej szczegółowo

Uczenie maszynowe w zastosowaniu do fizyki cząstek

Uczenie maszynowe w zastosowaniu do fizyki cząstek Uczenie maszynowe w zastosowaniu do fizyki cząstek Wykorzystanie uczenia maszynowego i głębokich sieci neuronowych do ćwiczenia 3. M. Kaczmarczyk, P. Górski, P. Olejniczak, O. Kosobutskyi Instytut Fizyki

Bardziej szczegółowo

Obserwacja Nowej Cząstki o Masie 125 GeV

Obserwacja Nowej Cząstki o Masie 125 GeV Obserwacja Nowej Cząstki o Masie 125 GeV Eksperyment CMS, CERN 4 lipca 2012 Streszczenie Na wspólnym seminarium w CERN i na konferencji ICHEP 2012 [1] odbywającej się w Melbourne, naukowcy pracujący przy

Bardziej szczegółowo

LEPTON TAU : jako taki, oraz zastosowania. w niskich i wysokich energiach. Zbigniew Wąs

LEPTON TAU : jako taki, oraz zastosowania. w niskich i wysokich energiach. Zbigniew Wąs LEPTON TAU : jako taki, oraz zastosowania w niskich i wysokich energiach Zbigniew Wąs Podziękowania: A. Kaczmarska, E. Richter-Wąs (Atlas); A. Bożek (Belle); T. Przedziński, P. Golonka (IT); R. Decker,

Bardziej szczegółowo

Cząstki elementarne i ich oddziaływania PROJEKT 2016 Obserwacja mezonów powabnych i dziwnych analiza danych zebranych w eksperymencie LHCb

Cząstki elementarne i ich oddziaływania PROJEKT 2016 Obserwacja mezonów powabnych i dziwnych analiza danych zebranych w eksperymencie LHCb Cząstki elementarne i ich oddziaływania PROJEKT 2016 Obserwacja mezonów powabnych i dziwnych analiza danych zebranych w eksperymencie LHCb D + D 0 D 0 K s 0 K + K K s 0 π D + D 0 K s 0 K K + π A.Obłąkowska-Mucha,

Bardziej szczegółowo

Pakiet ROOT. prosty generator Monte Carlo. Maciej Trzebiński. Instytut Fizyki Jądrowej Polskiej Akademii Nauki

Pakiet ROOT. prosty generator Monte Carlo. Maciej Trzebiński. Instytut Fizyki Jądrowej Polskiej Akademii Nauki M. Trzebiński ROOT generator MC 1/5 Pakiet ROOT prosty generator Monte Carlo Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 23 sierpnia 2016 Wprowadzenie

Bardziej szczegółowo

Artur Kalinowski WYBRANE ASPEKTY POSZUKIWA BOZONU HIGGSA Z MODELU STANDARDOWEGO W ZDERZENIACH PROTON PROTON W EKSPERYMENCIE CMS PRZY LHC

Artur Kalinowski WYBRANE ASPEKTY POSZUKIWA BOZONU HIGGSA Z MODELU STANDARDOWEGO W ZDERZENIACH PROTON PROTON W EKSPERYMENCIE CMS PRZY LHC Artur Kalinowski WYBRANE ASPEKTY POSZUKIWA BOZONU HIGGSA Z MODELU STANDARDOWEGO W ZDERZENIACH PROTON PROTON W EKSPERYMENCIE CMS PRZY LHC WYBRANE ASPEKTY POSZUKIWA BOZONU HIGGSA Z MODELU STANDARDOWEGO W

Bardziej szczegółowo

Bardzo rzadki rozpad został zaobserwowany przez CMS

Bardzo rzadki rozpad został zaobserwowany przez CMS Bardzo rzadki rozpad został zaobserwowany przez CMS Zespół badawczy CMS, CERN 19 lipca 2013 roku CMS zaobserwował ważny rzadki rozpad przewidziany przez Model Standardowy fizyki cząstek. Obserwacja rozpadu

Bardziej szczegółowo

Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS

Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS Artur Kalinowski Wydział Fizyki Uniwersytet Warszawski Warszawa, 7 grudnia 2012 DETEKTOR CMS DETEKTOR CMS Masa całkowita : 14

Bardziej szczegółowo

Poszukiwanie gwiazd zmiennych w eksperymencie Pi of the Sky

Poszukiwanie gwiazd zmiennych w eksperymencie Pi of the Sky Poszukiwanie gwiazd zmiennych w eksperymencie Pi of the Sky Łukasz Obara Wydział Fizyki, Uniwersytet Warszawski Plan prezentacji Eksperyment Pi of the Sky Projekt GLORIA Środowisko LUIZA i zaimplementowana

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków

Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

Compact Muon Solenoid

Compact Muon Solenoid Compact Muon Solenoid (po co i jak) Piotr Traczyk CERN Compact ATLAS CMS 2 Muon Detektor CMS był projektowany pod kątem optymalnej detekcji mionów Miony stanowią stosunkowo czysty sygnał Pojawiają się

Bardziej szczegółowo

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K. TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Obserwacja kandydata na bozon Higgsa przez eksperymenty ATLAS i CMS

Obserwacja kandydata na bozon Higgsa przez eksperymenty ATLAS i CMS Obserwacja kandydata na bozon Higgsa przez eksperymenty ATLAS i CMS Artur Kalinowski Wydział Fizyki Uniwersytet Warszawski Warszawa, 18 października 2012 Lagranżjan MS spisany przez T.D. Gutierrez'a na

Bardziej szczegółowo

Poszukiwania mezonu B s w eksperymencie CMS

Poszukiwania mezonu B s w eksperymencie CMS Uniwersytet Warszawski Wydział Fizyki Piotr Kuszaj Nr albumu: 277903 Poszukiwania mezonu B s w eksperymencie CMS Praca licencjacka na kierunku Fizyka Praca wykonana pod kierunkiem dr. Marcina Koneckiego

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie

Bardziej szczegółowo

Fizyka cząstek elementarnych warsztaty popularnonaukowe

Fizyka cząstek elementarnych warsztaty popularnonaukowe Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński

Bardziej szczegółowo

r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC

r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC 1 V.1 WYNIKI LEP 2 e + e - Z 0 Calkowity przekroj czynny 3 4 r. akad. 2008/2009 s Q N 3 4 s M s N Q I M 12 s ) M (s s s 2 f C 2 Z C f f

Bardziej szczegółowo

Promieniowanie kosmiczne składa się głównie z protonów, z niewielką. domieszką cięższych jąder. Przechodząc przez atmosferę cząstki

Promieniowanie kosmiczne składa się głównie z protonów, z niewielką. domieszką cięższych jąder. Przechodząc przez atmosferę cząstki Odkrycie hiperjąder Hiperjądra to struktury jądrowe w skład których, poza protonami I neutronami, wchodzą hiperony. Odkrycie hiperjąder miało miejsce w 1952 roku, 60 lat temu, w Warszawie. Wówczas nie

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Wprowadzenie do statystyki oraz analizy danych

Wprowadzenie do statystyki oraz analizy danych Wprowadzenie do statystyki oraz analizy danych Marcin Wolter IFJ PAN 11 lipca 2014 1 Statystyka Statystyka nauka, która bada i opisuje zjawiska losowe. Pierwsze prace Al-Kindi użył statystyki do złamania

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

Bozon Higgsa prawda czy kolejny fakt prasowy?

Bozon Higgsa prawda czy kolejny fakt prasowy? Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha. Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET 18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia

Bardziej szczegółowo

Boska cząstka odkryta?

Boska cząstka odkryta? FOTON 118, Jesień 2012 27 Boska cząstka odkryta? Krzysztof Fiałkowski Instytut Fizyki UJ 4 lipca 2012 roku w wielkiej sali seminaryjnej CERNu w Genewie odbyło się nadzwyczajne seminarium. Organizatorzy

Bardziej szczegółowo

Psychofizyka. Pomiary detekcji sygnałów Porównanie modeli

Psychofizyka. Pomiary detekcji sygnałów Porównanie modeli Psychofizyka Pomiary detekcji sygnałów Porównanie modeli Czym jest Teoria Detekcji Sygnałów (SDT)? W wielu przypadkach badań wydajnościowych proporcja poprawnych odpowiedzi (Pc) jest niewłaściwą lub nieinformacyjną

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2 Radon w powietrzu Marcin Polkowski marcin@polkowski.eu 10 marca 2008 Streszczenie Celem ćwiczenia był pomiar stężenia 222 Rn i produktów jego rozpadu w powietrzu. Pośrednim celem ćwiczenia było również

Bardziej szczegółowo

Zmienność wiatru w okresie wieloletnim

Zmienność wiatru w okresie wieloletnim Warsztaty: Prognozowanie produktywności farm wiatrowych PSEW, Warszawa 5.02.2015 Zmienność wiatru w okresie wieloletnim Dr Marcin Zientara DCAD / Stermedia Sp. z o.o. Zmienność wiatru w różnych skalach

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Praktyki studenckie na LHC IFJ PAN, 5 lipca 2017

Praktyki studenckie na LHC IFJ PAN, 5 lipca 2017 M. Trzebiński ROOT wprowadzenie 1/10 Pakiet ROOT wprowadzenie Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 5 lipca 2017 Wprowadzenie M. Trzebiński

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Wszechświata. Piotr Traczyk. IPJ Warszawa

Wszechświata. Piotr Traczyk. IPJ Warszawa Ciemna Strona Wszechświata Piotr Traczyk IPJ Warszawa Plan 1)Ciemna strona Wszechświata 2)Z czego składa się ciemna materia 3)Poszukiwanie ciemnej materii 2 Ciemna Strona Wszechświata 3 Z czego składa

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Czym materia różni się od antymaterii - najnowsze wyniki z eksperymentu LHCb

Czym materia różni się od antymaterii - najnowsze wyniki z eksperymentu LHCb Czym materia różni się od antymaterii - najnowsze wyniki z eksperymentu LHCb M. Witek 730 members 15 countries 54 institutes CERN LHC Large Hadron Collider LHCb CMS Atlas Alice Plan Motywacja badań Detektor

Bardziej szczegółowo

Rafał Staszewski. Praktyki studenckie Laboratorium Fizyki Cząstek Elementarnych 7 lipca 2017, IFJ PAN

Rafał Staszewski. Praktyki studenckie Laboratorium Fizyki Cząstek Elementarnych 7 lipca 2017, IFJ PAN Rafał Staszewski Instytut Fizyki Jądrowej imienia Henryka Niewodniczańskiego Polskiej Akademii Nauk Praktyki studenckie Laboratorium Fizyki Cząstek Elementarnych 7 lipca 2017, IFJ PAN 1 / 6 Uwagi ogólne

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Wprowadzenie do statystyki oraz analizy danych

Wprowadzenie do statystyki oraz analizy danych Wprowadzenie do statystyki oraz analizy danych Marcin Wolter IFJ PAN 9 lipca 2015 1 Statystyka Statystyka nauka, która bada i opisuje zjawiska losowe. Pierwsze prace أبو يوسف يعقوب بن إسحاق الصبباح الكندي

Bardziej szczegółowo

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach. Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)

Bardziej szczegółowo

Analiza danych LHC w poszukiwaniu rezonansów w rozkładzie masy niezmienniczej dwóch mionów.

Analiza danych LHC w poszukiwaniu rezonansów w rozkładzie masy niezmienniczej dwóch mionów. Uniwersytet Warszawski Wydział Fizyki Robert Boniecki Nr albumu: 7683 Analiza danych LHC w poszukiwaniu rezonansów w rozkładzie masy niezmienniczej dwóch mionów. Praca licencjacka na kierunku fizyka Praca

Bardziej szczegółowo

Wstęp do ćwiczeń na pracowni elektronicznej

Wstęp do ćwiczeń na pracowni elektronicznej Wstęp do ćwiczeń na pracowni elektronicznej Katarzyna Grzelak listopad 2011 K.Grzelak (IFD UW) listopad 2011 1 / 25 Zajęcia na pracowni elektronicznej Na kolejnych zajęciach spotykamy się na pracowni elektronicznej

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

I. Przedmiot i metodologia fizyki

I. Przedmiot i metodologia fizyki I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej

Bardziej szczegółowo

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU Tomasz Demski, StatSoft Polska Sp. z o.o. Wprowadzenie Jednym z elementów walidacji metod pomiarowych jest sprawdzenie liniowości

Bardziej szczegółowo

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU) WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

Akceleratory Cząstek

Akceleratory Cząstek M. Trzebiński Akceleratory cząstek 1/30 Akceleratory Cząstek Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 23 sierpnia 2016 Obserwacje w makroświecie

Bardziej szczegółowo

LHC i po co nam On. Piotr Traczyk CERN

LHC i po co nam On. Piotr Traczyk CERN LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC

Bardziej szczegółowo

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 1 Maria Krawczyk, Wydział Fizyki UW 2.12. 2009 Współczesne eksperymenty-wprowadzenie Detektory Akceleratory Zderzacze LHC Mapa drogowa Tevatron-

Bardziej szczegółowo

GRANICE I PRZEDZIAŁY UFNOŚCI Roman Nowak

GRANICE I PRZEDZIAŁY UFNOŚCI Roman Nowak GRANICE I PRZEDZIAŁY UFNOŚCI Roman Nowak Klasyczne przedziały ufności konstrukcja neymanowska i inne podejścia klasyczne ich blaski i cienie Bayesowskie przedziały wiarogodności (credible intervals) Limit

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Reakcje jądrowe. kanał wyjściowy

Reakcje jądrowe. kanał wyjściowy Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008 Detektor Fazowy Marcin Polkowski marcin@polkowski.eu 23 stycznia 2008 Streszczenie Raport z ćwiczenia, którego celem było zapoznanie się z działaniem detektora fazowego umożliwiającego pomiar słabych i

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 www: http://hirg.if.pw.edu.pl/~gos/students/kadd Politechnika Warszawska Wydział

Bardziej szczegółowo

Korekcja energii dżetów w eksperymencie CMS

Korekcja energii dżetów w eksperymencie CMS Maciej Misiura Wydział Fizyki UW opiekun: dr Artur Kalinowski Wstęp O czym seminarium? Zmierzyliśmy energię dżetu w CMS. Jak ona ma się do energii na poziomie hadronowym? Dlaczego taki temat? Zagadnienie

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić

Bardziej szczegółowo

Rozpady promieniotwórcze

Rozpady promieniotwórcze Rozpady promieniotwórcze Przez rozpady promieniotwórcze rozumie się spontaniczne procesy, w których niestabilne jądra atomowe przekształcają się w inne jądra atomowe i emitują specyficzne promieniowanie

Bardziej szczegółowo

Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych

Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Marcin Polkowski (251328) 1 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia

Bardziej szczegółowo

4.2 Rozgrzewka, czyli Centralne Twierdzenie Graniczne

4.2 Rozgrzewka, czyli Centralne Twierdzenie Graniczne 4.1 Wprowadzenie do modelowania Uwaga!!! Rzut monetą nie jest eksperymentem losowym. Znając warunki początkowe oraz wiedząc wszystko o otoczeniu, wyposażeni w znajomość zasad dynamiki jesteśmy w stanie

Bardziej szczegółowo

Symulacja Monte Carlo izotermy adsorpcji w układzie. ciało stałe-gaz

Symulacja Monte Carlo izotermy adsorpcji w układzie. ciało stałe-gaz Ćwiczenie nr 2 Symulacja Monte Carlo izotermy adsorpcji w układzie ciało stałe-gaz I. Cel ćwiczenia Celem ćwiczenia jest określenie wpływu parametrów takich jak temperatura, energia oddziaływania cząsteczka-powierzchnia

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Wprowadzenie do statystyki oraz analizy danych

Wprowadzenie do statystyki oraz analizy danych Wprowadzenie do statystyki oraz analizy danych Marcin Wolter IFJ PAN 25 sierpnia 2016 1 Statystyka Statystyka nauka, która bada i opisuje zjawiska losowe. Pierwsze prace ي االاصبباح االاكند ااانب إسحاق

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo