Zastosowania matematyki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowania matematyki"

Transkrypt

1 Zastosowania matematyki Monika Bartkiewicz 1 / 126

2 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent jest cen jak dªu»nik musi zapªaci wierzycielowi za czasowe przekazanie i u»ytkowanie w okre±lonym okresie czasu warto±ci maj tkowej. ±w. Šukasz Czy-rata-mojego-kredytu-nie-jest-za-wysoka-tcm pdf 2 / 126

3 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent jest cen jak dªu»nik musi zapªaci wierzycielowi za czasowe przekazanie i u»ytkowanie w okre±lonym okresie czasu warto±ci maj tkowej. ±w. Šukasz Czy-rata-mojego-kredytu-nie-jest-za-wysoka-tcm pdf 3 / 126

4 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent jest cen jak dªu»nik musi zapªaci wierzycielowi za czasowe przekazanie i u»ytkowanie w okre±lonym okresie czasu warto±ci maj tkowej. ±w. Šukasz Czy-rata-mojego-kredytu-nie-jest-za-wysoka-tcm pdf 4 / 126

5 Procent w matematyce Procent oznacza setn cz ± caªo±ci x% = x 100 7% = = 135% 100% = = 2.34% 0.5% = = 50% Przed rokiem cena odtwarzacza CD wynosiªa 300zª. cena wzrosªa w ci gu roku o 15% % = = 45zª zatem cena wynosi 345zª( = 345) gdyby odtwarzacz zdro»aª o 60zª, to stopa wzrostu ceny wynosi % = 20% 300 w drugim przypadku cena nie wzrosªa o 5% gdyby cena wzrosªa o 15% a nast pnie o 5% wówczas wzrosªaby o 15%(1 + 5%) = 15% 1.05 = 15.75% 5 / 126

6 Procent w matematyce Procent oznacza setn cz ± caªo±ci x% = x 100 7% = = 135% 100% = = 2.34% 0.5% = = 50% Przed rokiem cena odtwarzacza CD wynosiªa 300zª. cena wzrosªa w ci gu roku o 15% % = = 45zª zatem cena wynosi 345zª( = 345) gdyby odtwarzacz zdro»aª o 60zª, to stopa wzrostu ceny wynosi % = 20% 300 w drugim przypadku cena nie wzrosªa o 5% gdyby cena wzrosªa o 15% a nast pnie o 5% wówczas wzrosªaby o 15%(1 + 5%) = 15% 1.05 = 15.75% 6 / 126

7 Procent w matematyce Procent oznacza setn cz ± caªo±ci x% = x 100 7% = = 135% 100% = = 2.34% 0.5% = = 50% Przed rokiem cena odtwarzacza CD wynosiªa 300zª. cena wzrosªa w ci gu roku o 15% % = = 45zª zatem cena wynosi 345zª( = 345) gdyby odtwarzacz zdro»aª o 60zª, to stopa wzrostu ceny wynosi % = 20% 300 w drugim przypadku cena nie wzrosªa o 5% gdyby cena wzrosªa o 15% a nast pnie o 5% wówczas wzrosªaby o 15%(1 + 5%) = 15% 1.05 = 15.75% 7 / 126

8 Procent w matematyce Procent oznacza setn cz ± caªo±ci x% = x 100 7% = = 135% 100% = = 2.34% 0.5% = = 50% Przed rokiem cena odtwarzacza CD wynosiªa 300zª. cena wzrosªa w ci gu roku o 15% % = = 45zª zatem cena wynosi 345zª( = 345) gdyby odtwarzacz zdro»aª o 60zª, to stopa wzrostu ceny wynosi % = 20% 300 w drugim przypadku cena nie wzrosªa o 5% gdyby cena wzrosªa o 15% a nast pnie o 5% wówczas wzrosªaby o 15%(1 + 5%) = 15% 1.05 = 15.75% 8 / 126

9 Procent w matematyce Procent oznacza setn cz ± caªo±ci x% = x 100 7% = = 135% 100% = = 2.34% 0.5% = = 50% Przed rokiem cena odtwarzacza CD wynosiªa 300zª. cena wzrosªa w ci gu roku o 15% % = = 45zª zatem cena wynosi 345zª( = 345) gdyby odtwarzacz zdro»aª o 60zª, to stopa wzrostu ceny wynosi % = 20% 300 w drugim przypadku cena nie wzrosªa o 5% gdyby cena wzrosªa o 15% a nast pnie o 5% wówczas wzrosªaby o 15%(1 + 5%) = 15% 1.05 = 15.75% 9 / 126

10 Procent w matematyce Procent oznacza setn cz ± caªo±ci x% = x 100 7% = = 135% 100% = = 2.34% 0.5% = = 50% Przed rokiem cena odtwarzacza CD wynosiªa 300zª. cena wzrosªa w ci gu roku o 15% % = = 45zª zatem cena wynosi 345zª( = 345) gdyby odtwarzacz zdro»aª o 60zª, to stopa wzrostu ceny wynosi % = 20% 300 w drugim przypadku cena nie wzrosªa o 5% gdyby cena wzrosªa o 15% a nast pnie o 5% wówczas wzrosªaby o 15%(1 + 5%) = 15% 1.05 = 15.75% 10 / 126

11 Punkt procentowy Punktem procentowym (pp)nazywamy ró»nic pomi dzy wielko±ciami wyra»onymi procentowo. pp = w k w p gdzie w k jest warto±ci ko«cow a w p jest warto±ci pocz tkow. w poprzednim przykªadzie ró»nica wynosiªa pp = 20% 15% = 5pp je»eli stopa bezrobocia wynosi 9% a kilka lat temu wynosiªa 18%, wi c obni»yªa si o pp = 9% 18% = 9pp Minus wskazuje kierunek zmiany, czyli spadek o 9 punktów procentowych. Oblicz, ile wynosi oprocentowanie kredytu, je»eli bank obni»yª oprocentowanie o jeden pp? Dotychczas wynosiªo 8.34%. 8.34% 1pp = 7.34% 11 / 126

12 Punkt procentowy Punktem procentowym (pp)nazywamy ró»nic pomi dzy wielko±ciami wyra»onymi procentowo. pp = w k w p gdzie w k jest warto±ci ko«cow a w p jest warto±ci pocz tkow. w poprzednim przykªadzie ró»nica wynosiªa pp = 20% 15% = 5pp je»eli stopa bezrobocia wynosi 9% a kilka lat temu wynosiªa 18%, wi c obni»yªa si o pp = 9% 18% = 9pp Minus wskazuje kierunek zmiany, czyli spadek o 9 punktów procentowych. Oblicz, ile wynosi oprocentowanie kredytu, je»eli bank obni»yª oprocentowanie o jeden pp? Dotychczas wynosiªo 8.34%. 8.34% 1pp = 7.34% 12 / 126

13 Punkt procentowy Punktem procentowym (pp)nazywamy ró»nic pomi dzy wielko±ciami wyra»onymi procentowo. pp = w k w p gdzie w k jest warto±ci ko«cow a w p jest warto±ci pocz tkow. w poprzednim przykªadzie ró»nica wynosiªa pp = 20% 15% = 5pp je»eli stopa bezrobocia wynosi 9% a kilka lat temu wynosiªa 18%, wi c obni»yªa si o pp = 9% 18% = 9pp Minus wskazuje kierunek zmiany, czyli spadek o 9 punktów procentowych. Oblicz, ile wynosi oprocentowanie kredytu, je»eli bank obni»yª oprocentowanie o jeden pp? Dotychczas wynosiªo 8.34%. 8.34% 1pp = 7.34% 13 / 126

14 Punkt procentowy Punktem procentowym (pp)nazywamy ró»nic pomi dzy wielko±ciami wyra»onymi procentowo. pp = w k w p gdzie w k jest warto±ci ko«cow a w p jest warto±ci pocz tkow. w poprzednim przykªadzie ró»nica wynosiªa pp = 20% 15% = 5pp je»eli stopa bezrobocia wynosi 9% a kilka lat temu wynosiªa 18%, wi c obni»yªa si o pp = 9% 18% = 9pp Minus wskazuje kierunek zmiany, czyli spadek o 9 punktów procentowych. Oblicz, ile wynosi oprocentowanie kredytu, je»eli bank obni»yª oprocentowanie o jeden pp? Dotychczas wynosiªo 8.34%. 8.34% 1pp = 7.34% 14 / 126

15 Zmiany wzgl dne w procentach Zmiana wzgl dna w procentach wynosi w = w k w p w p 100% = pp w p 100% Je»eli stopa bezrobocia wynosi 9% a kilka lat temu wynosiªa 18%, to o ile si zmieniªa? w = 9% 18% 18% 100% = 9pp 18% Stopa bezrobocia zmniejszyªa si o 50% % = 100% = % = 50% 0, 18 O ile procent bank zwi kszyª oprocentowanie kwartalnych lokat bankowych, je»eli wzrosªo ono z 4% do 5.2%? oraz w = 5.2% 4% 4% pp = 5.2% 4% = 1.2pp 100% = 1.2pp 4% % = 100% = % = 30% 0.04 Oprocentowanie lokat bankowych wzrosªo o 1.2pp, czyli o 30%. 15 / 126

16 Zmiany wzgl dne w procentach Zmiana wzgl dna w procentach wynosi w = w k w p w p 100% = pp w p 100% Je»eli stopa bezrobocia wynosi 9% a kilka lat temu wynosiªa 18%, to o ile si zmieniªa? w = 9% 18% 18% 100% = 9pp 18% Stopa bezrobocia zmniejszyªa si o 50% % = 100% = % = 50% 0, 18 O ile procent bank zwi kszyª oprocentowanie kwartalnych lokat bankowych, je»eli wzrosªo ono z 4% do 5.2%? oraz w = 5.2% 4% 4% pp = 5.2% 4% = 1.2pp 100% = 1.2pp 4% % = 100% = % = 30% 0.04 Oprocentowanie lokat bankowych wzrosªo o 1.2pp, czyli o 30%. 16 / 126

17 Zmiany wzgl dne w procentach Zmiana wzgl dna w procentach wynosi w = w k w p w p 100% = pp w p 100% Je»eli stopa bezrobocia wynosi 9% a kilka lat temu wynosiªa 18%, to o ile si zmieniªa? w = 9% 18% 18% 100% = 9pp 18% Stopa bezrobocia zmniejszyªa si o 50% % = 100% = % = 50% 0, 18 O ile procent bank zwi kszyª oprocentowanie kwartalnych lokat bankowych, je»eli wzrosªo ono z 4% do 5.2%? oraz w = 5.2% 4% 4% pp = 5.2% 4% = 1.2pp 100% = 1.2pp 4% % = 100% = % = 30% 0.04 Oprocentowanie lokat bankowych wzrosªo o 1.2pp, czyli o 30%. 17 / 126

18 Przykªad Ile wynosi oprocentowanie kredytu, je»eli wynosiªo ono 6%, a podniesiono go o 20%? 6% + 20% 6% = = , 012 = = 7.2% Nowe oprocentowanie kredytu wynosi 7.2% Bank centralny obni»yª podstawow stop procentow o 10%. Dotychczas wynosiªa ona 5%. Ile b dzie wynosi? 5% 10% 5% = = , 005 = 0, 045 = 4.5% Nowa stopa procentowa wynosi b dzie 4.5%. 18 / 126

19 Przykªad Ile wynosi oprocentowanie kredytu, je»eli wynosiªo ono 6%, a podniesiono go o 20%? 6% + 20% 6% = = , 012 = = 7.2% Nowe oprocentowanie kredytu wynosi 7.2% Bank centralny obni»yª podstawow stop procentow o 10%. Dotychczas wynosiªa ona 5%. Ile b dzie wynosi? 5% 10% 5% = = , 005 = 0, 045 = 4.5% Nowa stopa procentowa wynosi b dzie 4.5%. 19 / 126

20 Zadanie Mateusz kupuje wymarzona gr video. Gdy kasjerka oznajmia mu cen tej gry, Mateusz wydaje okrzyk (zdziwienia). To niemo»liwe, musiaªa pani przestawi cyfr jedno±ci i cyfr dziesi tek! Przykro mi odpowiada mu kasjerka od wczoraj wszystkie gry video podro»aªy o 20%! Cena, która zapªaciª Mateusz, jest liczb caªkowit mniejsza od 100zª. Jaka jest ta cena? 20 / 126

21 Zadanie Mateusz kupuje wymarzona gr video. Gdy kasjerka oznajmia mu cen tej gry, Mateusz wydaje okrzyk (zdziwienia). To niemo»liwe, musiaªa pani przestawi cyfr jedno±ci i cyfr dziesi tek! Przykro mi odpowiada mu kasjerka od wczoraj wszystkie gry video podro»aªy o 20%! Cena, która zapªaciª Mateusz, jest liczb caªkowit mniejsza od 100zª. Jaka jest ta cena? 21 / 126

22 Zadanie Mateusz kupuje wymarzona gr video. Gdy kasjerka oznajmia mu cen tej gry, Mateusz wydaje okrzyk (zdziwienia). To niemo»liwe, musiaªa pani przestawi cyfr jedno±ci i cyfr dziesi tek! Przykro mi odpowiada mu kasjerka od wczoraj wszystkie gry video podro»aªy o 20%! Cena, która zapªaciª Mateusz, jest liczb caªkowit mniejsza od 100zª. Jaka jest ta cena? 22 / 126

23 Zadanie Mateusz kupuje wymarzona gr video. Gdy kasjerka oznajmia mu cen tej gry, Mateusz wydaje okrzyk (zdziwienia). To niemo»liwe, musiaªa pani przestawi cyfr jedno±ci i cyfr dziesi tek! Przykro mi odpowiada mu kasjerka od wczoraj wszystkie gry video podro»aªy o 20%! Cena, która zapªaciª Mateusz, jest liczb caªkowit mniejsza od 100zª. Jaka jest ta cena? 23 / 126

24 Zadania matematyki nansowej Pieni dz otrzymany dzisiaj jest wi cej wart, ni» pieni dz otrzymany jutro. inacja, która zmniejsza warto± pieni dza pieni dz otrzymany dzisiaj mo»na zainwestowa i w przyszªo±ci otrzyma zysk. Konsekwencj zmiennej warto±ci pieni dza w czasie jest to,»e przy podejmowaniu wszelkiego rodzaju dziaªa«maj cych skutki nansowe, zachodzi konieczno± porównania kwot pieni»nych pochodz cych z ró»nych okresów. Badanie zmiany warto±ci pieni dza w czasie jest jednym z wa»niejszych zada«(klasycznej) matematyki nansowej. 24 / 126

25 Zadania matematyki nansowej Pieni dz otrzymany dzisiaj jest wi cej wart, ni» pieni dz otrzymany jutro. inacja, która zmniejsza warto± pieni dza pieni dz otrzymany dzisiaj mo»na zainwestowa i w przyszªo±ci otrzyma zysk. Konsekwencj zmiennej warto±ci pieni dza w czasie jest to,»e przy podejmowaniu wszelkiego rodzaju dziaªa«maj cych skutki nansowe, zachodzi konieczno± porównania kwot pieni»nych pochodz cych z ró»nych okresów. Badanie zmiany warto±ci pieni dza w czasie jest jednym z wa»niejszych zada«(klasycznej) matematyki nansowej. 25 / 126

26 Zadania matematyki nansowej Pieni dz otrzymany dzisiaj jest wi cej wart, ni» pieni dz otrzymany jutro. inacja, która zmniejsza warto± pieni dza pieni dz otrzymany dzisiaj mo»na zainwestowa i w przyszªo±ci otrzyma zysk. Konsekwencj zmiennej warto±ci pieni dza w czasie jest to,»e przy podejmowaniu wszelkiego rodzaju dziaªa«maj cych skutki nansowe, zachodzi konieczno± porównania kwot pieni»nych pochodz cych z ró»nych okresów. Badanie zmiany warto±ci pieni dza w czasie jest jednym z wa»niejszych zada«(klasycznej) matematyki nansowej. 26 / 126

27 Zadania matematyki nansowej Pieni dz otrzymany dzisiaj jest wi cej wart, ni» pieni dz otrzymany jutro. inacja, która zmniejsza warto± pieni dza pieni dz otrzymany dzisiaj mo»na zainwestowa i w przyszªo±ci otrzyma zysk. Konsekwencj zmiennej warto±ci pieni dza w czasie jest to,»e przy podejmowaniu wszelkiego rodzaju dziaªa«maj cych skutki nansowe, zachodzi konieczno± porównania kwot pieni»nych pochodz cych z ró»nych okresów. Badanie zmiany warto±ci pieni dza w czasie jest jednym z wa»niejszych zada«(klasycznej) matematyki nansowej. 27 / 126

28 Zadania matematyki nansowej Pieni dz otrzymany dzisiaj jest wi cej wart, ni» pieni dz otrzymany jutro. inacja, która zmniejsza warto± pieni dza pieni dz otrzymany dzisiaj mo»na zainwestowa i w przyszªo±ci otrzyma zysk. Konsekwencj zmiennej warto±ci pieni dza w czasie jest to,»e przy podejmowaniu wszelkiego rodzaju dziaªa«maj cych skutki nansowe, zachodzi konieczno± porównania kwot pieni»nych pochodz cych z ró»nych okresów. Badanie zmiany warto±ci pieni dza w czasie jest jednym z wa»niejszych zada«(klasycznej) matematyki nansowej. 28 / 126

29 W zale»no±ci od wyboru momentu czasu w którym chcemy ustali warto± pieni dza rozwa»ane s dwa odmienne zagadnienia ustalenie przyszªej warto±ci pieni dza (ang. future value), któr b dziemy oznacza jako F V ustalenie obecnej, tera¹niejszej, zaktualizowanej, bie» cej warto±ci pieni dza (ang. present value), któr b dziemy oznacza jako P V Ró»nic mi dzy warto±ci przyszª danej kwoty pieni dzy, a jej warto±ci aktualn nazywa si procentem (odsetkami) (ang. interest) i jest oznaczana przez I. Czas, w ci gu którego odsetki s generowane, nazywa si czasem oprocentowania. 29 / 126

30 W zale»no±ci od wyboru momentu czasu w którym chcemy ustali warto± pieni dza rozwa»ane s dwa odmienne zagadnienia ustalenie przyszªej warto±ci pieni dza (ang. future value), któr b dziemy oznacza jako F V ustalenie obecnej, tera¹niejszej, zaktualizowanej, bie» cej warto±ci pieni dza (ang. present value), któr b dziemy oznacza jako P V Ró»nic mi dzy warto±ci przyszª danej kwoty pieni dzy, a jej warto±ci aktualn nazywa si procentem (odsetkami) (ang. interest) i jest oznaczana przez I. Czas, w ci gu którego odsetki s generowane, nazywa si czasem oprocentowania. 30 / 126

31 W zale»no±ci od wyboru momentu czasu w którym chcemy ustali warto± pieni dza rozwa»ane s dwa odmienne zagadnienia ustalenie przyszªej warto±ci pieni dza (ang. future value), któr b dziemy oznacza jako F V ustalenie obecnej, tera¹niejszej, zaktualizowanej, bie» cej warto±ci pieni dza (ang. present value), któr b dziemy oznacza jako P V Ró»nic mi dzy warto±ci przyszª danej kwoty pieni dzy, a jej warto±ci aktualn nazywa si procentem (odsetkami) (ang. interest) i jest oznaczana przez I. Czas, w ci gu którego odsetki s generowane, nazywa si czasem oprocentowania. 31 / 126

32 W zale»no±ci od wyboru momentu czasu w którym chcemy ustali warto± pieni dza rozwa»ane s dwa odmienne zagadnienia ustalenie przyszªej warto±ci pieni dza (ang. future value), któr b dziemy oznacza jako F V ustalenie obecnej, tera¹niejszej, zaktualizowanej, bie» cej warto±ci pieni dza (ang. present value), któr b dziemy oznacza jako P V Ró»nic mi dzy warto±ci przyszª danej kwoty pieni dzy, a jej warto±ci aktualn nazywa si procentem (odsetkami) (ang. interest) i jest oznaczana przez I. Czas, w ci gu którego odsetki s generowane, nazywa si czasem oprocentowania. 32 / 126

33 W zale»no±ci od wyboru momentu czasu w którym chcemy ustali warto± pieni dza rozwa»ane s dwa odmienne zagadnienia ustalenie przyszªej warto±ci pieni dza (ang. future value), któr b dziemy oznacza jako F V ustalenie obecnej, tera¹niejszej, zaktualizowanej, bie» cej warto±ci pieni dza (ang. present value), któr b dziemy oznacza jako P V Ró»nic mi dzy warto±ci przyszª danej kwoty pieni dzy, a jej warto±ci aktualn nazywa si procentem (odsetkami) (ang. interest) i jest oznaczana przez I. Czas, w ci gu którego odsetki s generowane, nazywa si czasem oprocentowania. 33 / 126

34 Stop procentow (ang. interest rate) nazywamy stosunek odsetek do warto±ci pocz tkowej kwoty, która je wygenerowaªa w okre±lonym okresie czasu r = F V P V P V Pan Kowalski po»yczyª z banku 2000zª na rok czasu i po jego upªywie ma odda 2360zª. Wtedy stopa procentowa tej operacji wynosi r = czyli stopa procentowa jest równa 18%. = / 126

35 Stop procentow (ang. interest rate) nazywamy stosunek odsetek do warto±ci pocz tkowej kwoty, która je wygenerowaªa w okre±lonym okresie czasu r = F V P V P V Pan Kowalski po»yczyª z banku 2000zª na rok czasu i po jego upªywie ma odda 2360zª. Wtedy stopa procentowa tej operacji wynosi r = czyli stopa procentowa jest równa 18%. = / 126

36 Nominalna stopa procentowa Stopa nominalna r n, to stopa podawana przez banki lub inne instytucje nansowe, bez uwzgl dnienia takich czynników jak inacja, deacja, ryzyko, niepewno± itp. 36 / 126

37 Realna stopa procentowa Realna stopa procentowa r real, to stopa uwzgl dniaj ca inacj (i) r real = rn i 1 + i Wyznacz realn stop procentow, je»eli wiadomo,»e stopa nominalna banku centralnego wynosi 5%, a roczna stopa inacji jest równa 3.5%. r real = Realna stopa procentowa wynosi 1.45%. 5% 3.5% % = = 1.45% 37 / 126

38 Realna stopa procentowa Realna stopa procentowa r real, to stopa uwzgl dniaj ca inacj (i) r real = rn i 1 + i Wyznacz realn stop procentow, je»eli wiadomo,»e stopa nominalna banku centralnego wynosi 5%, a roczna stopa inacji jest równa 3.5%. r real = Realna stopa procentowa wynosi 1.45%. 5% 3.5% % = = 1.45% 38 / 126

39 Realna stopa procentowa Realna stopa procentowa r real, to stopa uwzgl dniaj ca inacj (i) r real = rn i 1 + i Wyznacz realn stop procentow, je»eli wiadomo,»e stopa nominalna banku centralnego wynosi 5%, a roczna stopa inacji jest równa 3.5%. r real = Realna stopa procentowa wynosi 1.45%. 5% 3.5% % = = 1.45% 39 / 126

40 Zasada Fischera Hipoteza Fishera - wy»sza inacja prowadzi do odpowiednio wy»szych nominalnych stóp procentowych st d r real = rn i 1 + i r n = r real (1 + i) + i Irving Fisher 40 / 126

41 Faktyczna stopa procentowa Faktyczna stopa procentowa r f, to stopa uwzgl dniaj ca podatek dochodowy o zysków z inwestycji kapitaªowych T - stopa podatku r f = r n(1 T ) Oblicz faktyczne oprocentowanie lokaty bankowej o nominalnym oprocentowaniu 3.4%. r f = 3.4%(1 19%) = = 2.754% 41 / 126

42 Faktyczna stopa procentowa Faktyczna stopa procentowa r f, to stopa uwzgl dniaj ca podatek dochodowy o zysków z inwestycji kapitaªowych T - stopa podatku r f = r n(1 T ) Oblicz faktyczne oprocentowanie lokaty bankowej o nominalnym oprocentowaniu 3.4%. r f = 3.4%(1 19%) = = 2.754% 42 / 126

43 Stopa procentowa Procent w matematyce nansowej, to dochód, który wierzyciel otrzymuje od dªu»nika za wypo»yczenie kapitaªu. procent odsetki kapitalizacja - to powi kszanie kapitaªu o odsetki kapitaª pocz tkowy - kapitaª, który wygenerowaª okre±lone odsetki kapitaª ko«cowy - kapitaª powi kszony o odsetki czas oprocentowania - czas, w ci gu którego odsetki s generowane okresowa stopa procentowa - stosunek odsetek do kapitaªu, który je wygenerowaª 43 / 126

44 Stopa procentowa Procent w matematyce nansowej, to dochód, który wierzyciel otrzymuje od dªu»nika za wypo»yczenie kapitaªu. procent odsetki kapitalizacja - to powi kszanie kapitaªu o odsetki kapitaª pocz tkowy - kapitaª, który wygenerowaª okre±lone odsetki kapitaª ko«cowy - kapitaª powi kszony o odsetki czas oprocentowania - czas, w ci gu którego odsetki s generowane okresowa stopa procentowa - stosunek odsetek do kapitaªu, który je wygenerowaª 44 / 126

45 Stopa procentowa Procent w matematyce nansowej, to dochód, który wierzyciel otrzymuje od dªu»nika za wypo»yczenie kapitaªu. procent odsetki kapitalizacja - to powi kszanie kapitaªu o odsetki kapitaª pocz tkowy - kapitaª, który wygenerowaª okre±lone odsetki kapitaª ko«cowy - kapitaª powi kszony o odsetki czas oprocentowania - czas, w ci gu którego odsetki s generowane okresowa stopa procentowa - stosunek odsetek do kapitaªu, który je wygenerowaª 45 / 126

46 Stopa procentowa Procent w matematyce nansowej, to dochód, który wierzyciel otrzymuje od dªu»nika za wypo»yczenie kapitaªu. procent odsetki kapitalizacja - to powi kszanie kapitaªu o odsetki kapitaª pocz tkowy - kapitaª, który wygenerowaª okre±lone odsetki kapitaª ko«cowy - kapitaª powi kszony o odsetki czas oprocentowania - czas, w ci gu którego odsetki s generowane okresowa stopa procentowa - stosunek odsetek do kapitaªu, który je wygenerowaª 46 / 126

47 Stopa procentowa Procent w matematyce nansowej, to dochód, który wierzyciel otrzymuje od dªu»nika za wypo»yczenie kapitaªu. procent odsetki kapitalizacja - to powi kszanie kapitaªu o odsetki kapitaª pocz tkowy - kapitaª, który wygenerowaª okre±lone odsetki kapitaª ko«cowy - kapitaª powi kszony o odsetki czas oprocentowania - czas, w ci gu którego odsetki s generowane okresowa stopa procentowa - stosunek odsetek do kapitaªu, który je wygenerowaª 47 / 126

48 Stopa procentowa Procent w matematyce nansowej, to dochód, który wierzyciel otrzymuje od dªu»nika za wypo»yczenie kapitaªu. procent odsetki kapitalizacja - to powi kszanie kapitaªu o odsetki kapitaª pocz tkowy - kapitaª, który wygenerowaª okre±lone odsetki kapitaª ko«cowy - kapitaª powi kszony o odsetki czas oprocentowania - czas, w ci gu którego odsetki s generowane okresowa stopa procentowa - stosunek odsetek do kapitaªu, który je wygenerowaª 48 / 126

49 Zasada oprocentowania prostego Odsetki(procent) oblicza si od kapitaªu pocz tkowego proporcjonalnie do dªugo±ci czasu oprocentowania. Cechy procentu prostego Je±li procent obliczmy za czas skªadaj cy si z kilku okresów, to procent nale»ny za ka»dy okres jest obliczany od kapitaªu pocz tkowego proporcjonalnie do dªugo±ci tego okresu (procent naliczamy zawsze od takiego samego kapitaªu). Procent obliczony za ka»dy z tych okresów dodajemy do kapitaªu pocz tkowego dopiero po zako«czeniu ustalonego czasu oprocentowania (procent prosty nie podlega kapitalizacji) Je»eli ulokowano w banku na rok kwot 1000 zª, to naliczane odsetki w kolejnych miesi cach nie b d sukcesywnie powi kszaªy pierwotnej kwoty lokaty, lecz mog by sukcesywnie wypªacane posiadaczowi. Odsetki uzyskane w ka»dym miesi cu b d takie same, pod warunkiem,»e nie zmieni si stopa oprocentowania. 49 / 126

50 Zasada oprocentowania prostego Odsetki(procent) oblicza si od kapitaªu pocz tkowego proporcjonalnie do dªugo±ci czasu oprocentowania. Cechy procentu prostego Je±li procent obliczmy za czas skªadaj cy si z kilku okresów, to procent nale»ny za ka»dy okres jest obliczany od kapitaªu pocz tkowego proporcjonalnie do dªugo±ci tego okresu (procent naliczamy zawsze od takiego samego kapitaªu). Procent obliczony za ka»dy z tych okresów dodajemy do kapitaªu pocz tkowego dopiero po zako«czeniu ustalonego czasu oprocentowania (procent prosty nie podlega kapitalizacji) Je»eli ulokowano w banku na rok kwot 1000 zª, to naliczane odsetki w kolejnych miesi cach nie b d sukcesywnie powi kszaªy pierwotnej kwoty lokaty, lecz mog by sukcesywnie wypªacane posiadaczowi. Odsetki uzyskane w ka»dym miesi cu b d takie same, pod warunkiem,»e nie zmieni si stopa oprocentowania. 50 / 126

51 Zasada oprocentowania prostego Odsetki(procent) oblicza si od kapitaªu pocz tkowego proporcjonalnie do dªugo±ci czasu oprocentowania. Cechy procentu prostego Je±li procent obliczmy za czas skªadaj cy si z kilku okresów, to procent nale»ny za ka»dy okres jest obliczany od kapitaªu pocz tkowego proporcjonalnie do dªugo±ci tego okresu (procent naliczamy zawsze od takiego samego kapitaªu). Procent obliczony za ka»dy z tych okresów dodajemy do kapitaªu pocz tkowego dopiero po zako«czeniu ustalonego czasu oprocentowania (procent prosty nie podlega kapitalizacji) Je»eli ulokowano w banku na rok kwot 1000 zª, to naliczane odsetki w kolejnych miesi cach nie b d sukcesywnie powi kszaªy pierwotnej kwoty lokaty, lecz mog by sukcesywnie wypªacane posiadaczowi. Odsetki uzyskane w ka»dym miesi cu b d takie same, pod warunkiem,»e nie zmieni si stopa oprocentowania. 51 / 126

52 Zasada oprocentowania prostego Odsetki(procent) oblicza si od kapitaªu pocz tkowego proporcjonalnie do dªugo±ci czasu oprocentowania. Cechy procentu prostego Je±li procent obliczmy za czas skªadaj cy si z kilku okresów, to procent nale»ny za ka»dy okres jest obliczany od kapitaªu pocz tkowego proporcjonalnie do dªugo±ci tego okresu (procent naliczamy zawsze od takiego samego kapitaªu). Procent obliczony za ka»dy z tych okresów dodajemy do kapitaªu pocz tkowego dopiero po zako«czeniu ustalonego czasu oprocentowania (procent prosty nie podlega kapitalizacji) Je»eli ulokowano w banku na rok kwot 1000 zª, to naliczane odsetki w kolejnych miesi cach nie b d sukcesywnie powi kszaªy pierwotnej kwoty lokaty, lecz mog by sukcesywnie wypªacane posiadaczowi. Odsetki uzyskane w ka»dym miesi cu b d takie same, pod warunkiem,»e nie zmieni si stopa oprocentowania. 52 / 126

53 Zasada oprocentowania prostego Odsetki(procent) oblicza si od kapitaªu pocz tkowego proporcjonalnie do dªugo±ci czasu oprocentowania. Cechy procentu prostego Je±li procent obliczmy za czas skªadaj cy si z kilku okresów, to procent nale»ny za ka»dy okres jest obliczany od kapitaªu pocz tkowego proporcjonalnie do dªugo±ci tego okresu (procent naliczamy zawsze od takiego samego kapitaªu). Procent obliczony za ka»dy z tych okresów dodajemy do kapitaªu pocz tkowego dopiero po zako«czeniu ustalonego czasu oprocentowania (procent prosty nie podlega kapitalizacji) Je»eli ulokowano w banku na rok kwot 1000 zª, to naliczane odsetki w kolejnych miesi cach nie b d sukcesywnie powi kszaªy pierwotnej kwoty lokaty, lecz mog by sukcesywnie wypªacane posiadaczowi. Odsetki uzyskane w ka»dym miesi cu b d takie same, pod warunkiem,»e nie zmieni si stopa oprocentowania. 53 / 126

54 Oznaczenia P v - kapitaª pocz tkowy (present value) F v - kapitaª ko«cowy (future value) I - wielko± uzyskanych odsetek (interest) t - okres czasu trwania lokaty lub umowy kredytu, wyra»ony w latach r - roczna stopa procentowa(annual interest rate) zale»no± pomi dzy kapitaªem pocz tkowym, kapitaªem ko«cowym i odsetkami F v = P v + I roczna stopa, to stosunek odsetek i kapitaªu pocz tkowego wielko± odsetek po czasie t r = I P v I = P v rt ko«cowa warto± kapitaªu po czasie t jest sum kapitaªu pocz tkowego i odsetek F v = P v + P v rt = P v (1 + rt) 54 / 126

55 Oznaczenia P v - kapitaª pocz tkowy (present value) F v - kapitaª ko«cowy (future value) I - wielko± uzyskanych odsetek (interest) t - okres czasu trwania lokaty lub umowy kredytu, wyra»ony w latach r - roczna stopa procentowa(annual interest rate) zale»no± pomi dzy kapitaªem pocz tkowym, kapitaªem ko«cowym i odsetkami F v = P v + I roczna stopa, to stosunek odsetek i kapitaªu pocz tkowego wielko± odsetek po czasie t r = I P v I = P v rt ko«cowa warto± kapitaªu po czasie t jest sum kapitaªu pocz tkowego i odsetek F v = P v + P v rt = P v (1 + rt) 55 / 126

56 Oznaczenia P v - kapitaª pocz tkowy (present value) F v - kapitaª ko«cowy (future value) I - wielko± uzyskanych odsetek (interest) t - okres czasu trwania lokaty lub umowy kredytu, wyra»ony w latach r - roczna stopa procentowa(annual interest rate) zale»no± pomi dzy kapitaªem pocz tkowym, kapitaªem ko«cowym i odsetkami F v = P v + I roczna stopa, to stosunek odsetek i kapitaªu pocz tkowego wielko± odsetek po czasie t r = I P v I = P v rt ko«cowa warto± kapitaªu po czasie t jest sum kapitaªu pocz tkowego i odsetek F v = P v + P v rt = P v (1 + rt) 56 / 126

57 Oznaczenia P v - kapitaª pocz tkowy (present value) F v - kapitaª ko«cowy (future value) I - wielko± uzyskanych odsetek (interest) t - okres czasu trwania lokaty lub umowy kredytu, wyra»ony w latach r - roczna stopa procentowa(annual interest rate) zale»no± pomi dzy kapitaªem pocz tkowym, kapitaªem ko«cowym i odsetkami F v = P v + I roczna stopa, to stosunek odsetek i kapitaªu pocz tkowego wielko± odsetek po czasie t r = I P v I = P v rt ko«cowa warto± kapitaªu po czasie t jest sum kapitaªu pocz tkowego i odsetek F v = P v + P v rt = P v (1 + rt) 57 / 126

58 Oznaczenia P v - kapitaª pocz tkowy (present value) F v - kapitaª ko«cowy (future value) I - wielko± uzyskanych odsetek (interest) t - okres czasu trwania lokaty lub umowy kredytu, wyra»ony w latach r - roczna stopa procentowa(annual interest rate) zale»no± pomi dzy kapitaªem pocz tkowym, kapitaªem ko«cowym i odsetkami F v = P v + I roczna stopa, to stosunek odsetek i kapitaªu pocz tkowego wielko± odsetek po czasie t r = I P v I = P v rt ko«cowa warto± kapitaªu po czasie t jest sum kapitaªu pocz tkowego i odsetek F v = P v + P v rt = P v (1 + rt) 58 / 126

59 Oznaczenia P v - kapitaª pocz tkowy (present value) F v - kapitaª ko«cowy (future value) I - wielko± uzyskanych odsetek (interest) t - okres czasu trwania lokaty lub umowy kredytu, wyra»ony w latach r - roczna stopa procentowa(annual interest rate) zale»no± pomi dzy kapitaªem pocz tkowym, kapitaªem ko«cowym i odsetkami F v = P v + I roczna stopa, to stosunek odsetek i kapitaªu pocz tkowego wielko± odsetek po czasie t r = I P v I = P v rt ko«cowa warto± kapitaªu po czasie t jest sum kapitaªu pocz tkowego i odsetek F v = P v + P v rt = P v (1 + rt) 59 / 126

60 Oznaczenia P v - kapitaª pocz tkowy (present value) F v - kapitaª ko«cowy (future value) I - wielko± uzyskanych odsetek (interest) t - okres czasu trwania lokaty lub umowy kredytu, wyra»ony w latach r - roczna stopa procentowa(annual interest rate) zale»no± pomi dzy kapitaªem pocz tkowym, kapitaªem ko«cowym i odsetkami F v = P v + I roczna stopa, to stosunek odsetek i kapitaªu pocz tkowego wielko± odsetek po czasie t r = I P v I = P v rt ko«cowa warto± kapitaªu po czasie t jest sum kapitaªu pocz tkowego i odsetek F v = P v + P v rt = P v (1 + rt) 60 / 126

61 Oznaczenia P v - kapitaª pocz tkowy (present value) F v - kapitaª ko«cowy (future value) I - wielko± uzyskanych odsetek (interest) t - okres czasu trwania lokaty lub umowy kredytu, wyra»ony w latach r - roczna stopa procentowa(annual interest rate) zale»no± pomi dzy kapitaªem pocz tkowym, kapitaªem ko«cowym i odsetkami F v = P v + I roczna stopa, to stosunek odsetek i kapitaªu pocz tkowego wielko± odsetek po czasie t r = I P v I = P v rt ko«cowa warto± kapitaªu po czasie t jest sum kapitaªu pocz tkowego i odsetek F v = P v + P v rt = P v (1 + rt) 61 / 126

62 Oznaczenia P v - kapitaª pocz tkowy (present value) F v - kapitaª ko«cowy (future value) I - wielko± uzyskanych odsetek (interest) t - okres czasu trwania lokaty lub umowy kredytu, wyra»ony w latach r - roczna stopa procentowa(annual interest rate) zale»no± pomi dzy kapitaªem pocz tkowym, kapitaªem ko«cowym i odsetkami F v = P v + I roczna stopa, to stosunek odsetek i kapitaªu pocz tkowego wielko± odsetek po czasie t r = I P v I = P v rt ko«cowa warto± kapitaªu po czasie t jest sum kapitaªu pocz tkowego i odsetek F v = P v + P v rt = P v (1 + rt) 62 / 126

63 Przykªad 1 Jak warto± osi gnie kapitaª pocz tkowy 500zª, przy rocznej stopie 12% po 4 latach? P v = 500zª, r = 12%, t = 4 F v = P v (1 + rt) = 500( ) = 740 po 198 dniach? t = = 0.55 F v = P v (1 + rt) = 500( ) = 533 po 10 miesi cach? t = = 0.83 F v = P v (1 + rt) = 500( ) = / 126

64 Przykªad 1 Jak warto± osi gnie kapitaª pocz tkowy 500zª, przy rocznej stopie 12% po 4 latach? P v = 500zª, r = 12%, t = 4 F v = P v (1 + rt) = 500( ) = 740 po 198 dniach? t = = 0.55 F v = P v (1 + rt) = 500( ) = 533 po 10 miesi cach? t = = 0.83 F v = P v (1 + rt) = 500( ) = / 126

65 Przykªad 1 Jak warto± osi gnie kapitaª pocz tkowy 500zª, przy rocznej stopie 12% po 4 latach? P v = 500zª, r = 12%, t = 4 F v = P v (1 + rt) = 500( ) = 740 po 198 dniach? t = = 0.55 F v = P v (1 + rt) = 500( ) = 533 po 10 miesi cach? t = = 0.83 F v = P v (1 + rt) = 500( ) = / 126

66 Przykªad 1 Jak warto± osi gnie kapitaª pocz tkowy 500zª, przy rocznej stopie 12% po 4 latach? P v = 500zª, r = 12%, t = 4 F v = P v (1 + rt) = 500( ) = 740 po 198 dniach? t = = 0.55 F v = P v (1 + rt) = 500( ) = 533 po 10 miesi cach? t = = 0.83 F v = P v (1 + rt) = 500( ) = / 126

67 Wiele oblicze«nansowych wymaga znajomo±ci dwóch faktów 1 jaka jest liczba dni pomi dzy dwoma datami 2 jak zamieni liczb dni na liczb lat 67 / 126

68 Wiele oblicze«nansowych wymaga znajomo±ci dwóch faktów 1 jaka jest liczba dni pomi dzy dwoma datami 2 jak zamieni liczb dni na liczb lat 68 / 126

69 Wiele oblicze«nansowych wymaga znajomo±ci dwóch faktów 1 jaka jest liczba dni pomi dzy dwoma datami 2 jak zamieni liczb dni na liczb lat 69 / 126

70 Obliczanie liczby dni pomi dzy dwoma datami W praktyce wyró»niamy dwa poj cia czas bankowy rok bankowy o dªugo±ci 360 dni miesi c bankowy o dªugo±ci 30 dni czas kalendarzowy rok kalendarzowy o dªugo±ci 365 lub 366 dni miesi c kalendarzowy o dªugo±ci 31,30,28 lub 29 dni 70 / 126

71 Obliczanie liczby dni pomi dzy dwoma datami W praktyce wyró»niamy dwa poj cia czas bankowy rok bankowy o dªugo±ci 360 dni miesi c bankowy o dªugo±ci 30 dni czas kalendarzowy rok kalendarzowy o dªugo±ci 365 lub 366 dni miesi c kalendarzowy o dªugo±ci 31,30,28 lub 29 dni 71 / 126

72 Obliczanie liczby dni pomi dzy dwoma datami W praktyce wyró»niamy dwa poj cia czas bankowy rok bankowy o dªugo±ci 360 dni miesi c bankowy o dªugo±ci 30 dni czas kalendarzowy rok kalendarzowy o dªugo±ci 365 lub 366 dni miesi c kalendarzowy o dªugo±ci 31,30,28 lub 29 dni 72 / 126

73 Obliczanie liczby dni pomi dzy dwoma datami W praktyce wyró»niamy dwa poj cia czas bankowy rok bankowy o dªugo±ci 360 dni miesi c bankowy o dªugo±ci 30 dni czas kalendarzowy rok kalendarzowy o dªugo±ci 365 lub 366 dni miesi c kalendarzowy o dªugo±ci 31,30,28 lub 29 dni 73 / 126

74 Obliczanie liczby dni pomi dzy dwoma datami W praktyce wyró»niamy dwa poj cia czas bankowy rok bankowy o dªugo±ci 360 dni miesi c bankowy o dªugo±ci 30 dni czas kalendarzowy rok kalendarzowy o dªugo±ci 365 lub 366 dni miesi c kalendarzowy o dªugo±ci 31,30,28 lub 29 dni 74 / 126

75 Obliczanie liczby dni pomi dzy dwoma datami W praktyce wyró»niamy dwa poj cia czas bankowy rok bankowy o dªugo±ci 360 dni miesi c bankowy o dªugo±ci 30 dni czas kalendarzowy rok kalendarzowy o dªugo±ci 365 lub 366 dni miesi c kalendarzowy o dªugo±ci 31,30,28 lub 29 dni 75 / 126

76 Obliczanie liczby dni pomi dzy dwoma datami W praktyce wyró»niamy dwa poj cia czas bankowy rok bankowy o dªugo±ci 360 dni miesi c bankowy o dªugo±ci 30 dni czas kalendarzowy rok kalendarzowy o dªugo±ci 365 lub 366 dni miesi c kalendarzowy o dªugo±ci 31,30,28 lub 29 dni 76 / 126

77 Obliczanie liczby dni pomi dzy dwoma datami rok kalendarzowy Ka»da data ma przyporz dkowan liczb od 1 do 365 (366). Ró»nic dat obliczamy jako ró»nic odpowiednich liczb. np. liczba dni pomi dzy a wynosi 11, poniewa» to 150 a to 161, wi c liczba dni to =11. rok bankowy Dla roku bankowego utworzona jest równie» tabela dni. Liczb dni pomi dzy dwoma datami oblicza si jako ró»nic odpowiednich liczb. Daty, które nie s uwzgl dnione nie s "liczone". np. liczba dni pomi dzy a wynosi 10, poniewa» to 150 a to 160, wi c liczba dni to =10. Dla wierzyciela na ogóª korzystniejsze jest obliczanie dokªadnej liczby dni, a dla dªu»nika - bankowej liczby dni. 77 / 126

78 Obliczanie liczby dni pomi dzy dwoma datami rok kalendarzowy Ka»da data ma przyporz dkowan liczb od 1 do 365 (366). Ró»nic dat obliczamy jako ró»nic odpowiednich liczb. np. liczba dni pomi dzy a wynosi 11, poniewa» to 150 a to 161, wi c liczba dni to =11. rok bankowy Dla roku bankowego utworzona jest równie» tabela dni. Liczb dni pomi dzy dwoma datami oblicza si jako ró»nic odpowiednich liczb. Daty, które nie s uwzgl dnione nie s "liczone". np. liczba dni pomi dzy a wynosi 10, poniewa» to 150 a to 160, wi c liczba dni to =10. Dla wierzyciela na ogóª korzystniejsze jest obliczanie dokªadnej liczby dni, a dla dªu»nika - bankowej liczby dni. 78 / 126

79 Obliczanie liczby dni pomi dzy dwoma datami rok kalendarzowy Ka»da data ma przyporz dkowan liczb od 1 do 365 (366). Ró»nic dat obliczamy jako ró»nic odpowiednich liczb. np. liczba dni pomi dzy a wynosi 11, poniewa» to 150 a to 161, wi c liczba dni to =11. rok bankowy Dla roku bankowego utworzona jest równie» tabela dni. Liczb dni pomi dzy dwoma datami oblicza si jako ró»nic odpowiednich liczb. Daty, które nie s uwzgl dnione nie s "liczone". np. liczba dni pomi dzy a wynosi 10, poniewa» to 150 a to 160, wi c liczba dni to =10. Dla wierzyciela na ogóª korzystniejsze jest obliczanie dokªadnej liczby dni, a dla dªu»nika - bankowej liczby dni. 79 / 126

80 Zamiana liczby dni na liczb lat rok kalendarzowy rok bankowy t k = t b = liczba dni 365 liczba dni 360 Dla wierzyciela na ogóª korzystniejsza jest zamiana na lata bankowe, a dla dªu»nika - na lata kalendarzowe. 80 / 126

81 Zamiana liczby dni na liczb lat rok kalendarzowy rok bankowy t k = t b = liczba dni 365 liczba dni 360 Dla wierzyciela na ogóª korzystniejsza jest zamiana na lata bankowe, a dla dªu»nika - na lata kalendarzowe. 81 / 126

82 Zamiana liczby dni na liczb lat rok kalendarzowy rok bankowy t k = t b = liczba dni 365 liczba dni 360 Dla wierzyciela na ogóª korzystniejsza jest zamiana na lata bankowe, a dla dªu»nika - na lata kalendarzowe. 82 / 126

83 W rezultacie rozró»niania czasu bankowego i czasu kalendarzowego dochodzi do czterech ró»nych wariantów obliczania czasu oprocentowania w latach. Obliczanie czasu oprocentowania w latach bankowych na podstawie kalendarzowej liczby dni nazywamy reguª bankow. Liczba dni pomi dzy a wynosi w roku kalendarzowym 11 w roku bankowym 10 liczba dni - rok kalendarzowy liczba dni - rok bankowy liczba lat t k t k = = t k = = liczba lat t b t b = = t b = = Dla wierzyciela najkorzystniejszy jest rachunek wedªug reguªy bankowej. 83 / 126

84 W rezultacie rozró»niania czasu bankowego i czasu kalendarzowego dochodzi do czterech ró»nych wariantów obliczania czasu oprocentowania w latach. Obliczanie czasu oprocentowania w latach bankowych na podstawie kalendarzowej liczby dni nazywamy reguª bankow. Liczba dni pomi dzy a wynosi w roku kalendarzowym 11 w roku bankowym 10 liczba dni - rok kalendarzowy liczba dni - rok bankowy liczba lat t k t k = = t k = = liczba lat t b t b = = t b = = Dla wierzyciela najkorzystniejszy jest rachunek wedªug reguªy bankowej. 84 / 126

85 W rezultacie rozró»niania czasu bankowego i czasu kalendarzowego dochodzi do czterech ró»nych wariantów obliczania czasu oprocentowania w latach. Obliczanie czasu oprocentowania w latach bankowych na podstawie kalendarzowej liczby dni nazywamy reguª bankow. Liczba dni pomi dzy a wynosi w roku kalendarzowym 11 w roku bankowym 10 liczba dni - rok kalendarzowy liczba dni - rok bankowy liczba lat t k t k = = t k = = liczba lat t b t b = = t b = = Dla wierzyciela najkorzystniejszy jest rachunek wedªug reguªy bankowej. 85 / 126

86 Przykªad Obliczmy odsetki proste od po»yczki 15 tys zª, udzielonej na okres od 5 marca do 18 sierpnia przy rocznej stopie 11.5%. I = P v rt = % t = t = 1725 t Liczba dni pomi dzy 5.03 a wynosi w roku kalendarzowym 166 w roku bankowym 163 liczba dni - rok kalendarzowy liczba dni - rok bankowy liczba lat t k = zª = zª liczba lat t b = zª = zª 86 / 126

87 Stopa podokresowa Podokresem oprocentowania nazywamy dowolny okres b d cy ustalon cz ±ci roku, stop podokresow nazywamy stop procentow ustalon dla tego podokresu. Oznaczmy k - liczba podokresów, których ª czna dªugo± jest równa dªugo±ci roku r k - stopa podokresowa m k - czas oprocentowania wyra»ony w podokresach Odsetki w podokresie obliczmy ze wzoru I = P v r k m k Warto± kapitaªu ko«cowego liczymy ze wzoru F v = P v (1 + r k m k ) Najcz stsze podokresy póªrocze k = 2 kwartaª k = 4 miesi c k = 12 tydzie«k = 52 dzie«k = / 126

88 Przykªad Odsetki za kredyt w wysoko±ci zª, wynosz 18454zª kwartalnie. Oblicz stop kwartaln tego kredytu. k = 4, I = 1845zª, P v = 90000zª, m 4 = 1, I = P v r 4m 4 r 4 = I = 1845 = = 2.05% P v m / 126

89 Zasada równowa»no±ci stóp procentowych Stopy procentowe s równowa»ne, je±li przy ka»dej z nich kapitaª pocz tkowy P v generuje w czasie t odsetki I o identycznej warto±ci. Mno» c podokresow stop r k przez odpowiadaj cy jej parametr k, otrzymamy równowa»n roczn stop r. Dziel c roczn stop r przez k, otrzymamy podokresow stop równowa»n dla podokresu, którego dªugo± jest równa 1/k roku. 89 / 126

90 Przykªad 2 Pewien klient ulokowaª w banku kwot 2600zª. Po jakim czasie otrzyma on odsetki w wysoko±ci 390zª, je»eli stopa procentowa wynosi 1.25% kwartalnie? roczna stopa procentowa wynosi obliczamy czas trwania lokaty t t = r = 1.25% 4 = 5% I P v r = % = = = 3 90 / 126

91 Zmienne stopy procentowe Warto± przyszªa kapitaªu, je»eli stopy procentowe s zmienne F v = P v (1 + r 1t 1 + r 2t r nt n) stopy procentowe r i oraz czas t i musz by zawsze wyra»one dla takich samych okresów obliczaj c ko«cow kwot lokaty bankowej lub wielko± uzyskanych odsetek nie uwzgl dniamy faktycznej stopy procentowej, czy podatku dochodowego itp. 91 / 126

92 Zmienne stopy procentowe Warto± przyszªa kapitaªu, je»eli stopy procentowe s zmienne F v = P v (1 + r 1t 1 + r 2t r nt n) stopy procentowe r i oraz czas t i musz by zawsze wyra»one dla takich samych okresów obliczaj c ko«cow kwot lokaty bankowej lub wielko± uzyskanych odsetek nie uwzgl dniamy faktycznej stopy procentowej, czy podatku dochodowego itp. 92 / 126

93 Zmienne stopy procentowe Warto± przyszªa kapitaªu, je»eli stopy procentowe s zmienne F v = P v (1 + r 1t 1 + r 2t r nt n) stopy procentowe r i oraz czas t i musz by zawsze wyra»one dla takich samych okresów obliczaj c ko«cow kwot lokaty bankowej lub wielko± uzyskanych odsetek nie uwzgl dniamy faktycznej stopy procentowej, czy podatku dochodowego itp. 93 / 126

94 Dyskonto Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v. Kwot o któr nale»y pomniejszy F v aby otrzyma P v nazywamy dyskontem. Znaczenia dyskonta dyskonto proste dyskonto skªadane powy»sze s przykªadem dyskonta rzeczywistego(matematycznego) dyskonto handlowe dyskonto obliczane przy u»yciu stopy dyskontowej, a nie stopy procentowej.(odsetki s obliczane z góry a nie z doªu) 94 / 126

95 Dyskonto Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v. Kwot o któr nale»y pomniejszy F v aby otrzyma P v nazywamy dyskontem. Znaczenia dyskonta dyskonto proste dyskonto skªadane powy»sze s przykªadem dyskonta rzeczywistego(matematycznego) dyskonto handlowe dyskonto obliczane przy u»yciu stopy dyskontowej, a nie stopy procentowej.(odsetki s obliczane z góry a nie z doªu) 95 / 126

96 Dyskonto Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v. Kwot o któr nale»y pomniejszy F v aby otrzyma P v nazywamy dyskontem. Znaczenia dyskonta dyskonto proste dyskonto skªadane powy»sze s przykªadem dyskonta rzeczywistego(matematycznego) dyskonto handlowe dyskonto obliczane przy u»yciu stopy dyskontowej, a nie stopy procentowej.(odsetki s obliczane z góry a nie z doªu) 96 / 126

97 Dyskonto Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v. Kwot o któr nale»y pomniejszy F v aby otrzyma P v nazywamy dyskontem. Znaczenia dyskonta dyskonto proste dyskonto skªadane powy»sze s przykªadem dyskonta rzeczywistego(matematycznego) dyskonto handlowe dyskonto obliczane przy u»yciu stopy dyskontowej, a nie stopy procentowej.(odsetki s obliczane z góry a nie z doªu) 97 / 126

98 Dyskonto Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v. Kwot o któr nale»y pomniejszy F v aby otrzyma P v nazywamy dyskontem. Znaczenia dyskonta dyskonto proste dyskonto skªadane powy»sze s przykªadem dyskonta rzeczywistego(matematycznego) dyskonto handlowe dyskonto obliczane przy u»yciu stopy dyskontowej, a nie stopy procentowej.(odsetki s obliczane z góry a nie z doªu) 98 / 126

99 Dyskonto Kwota ta reprezentuje zmian warto±ci pieni dza w czasie. Dyskonto oznaczamy symbolem D D = F v P v je»eli zachowamy dotychczasowe oznaczenia, to P v = st d D = F v P v = D = F v Fv 1 + rt Fv Fv (1 + rt) Fv = 1 + rt 1 + rt jest to model dyskontowania rzeczywistego prostego dyskontowanie wycofuje efekt oprocentowania - jest dziaªaniem odwrotnym do oprocentowania prostego = Fv rt 1 + rt 99 / 126

100 Dyskonto Kwota ta reprezentuje zmian warto±ci pieni dza w czasie. Dyskonto oznaczamy symbolem D D = F v P v je»eli zachowamy dotychczasowe oznaczenia, to P v = st d D = F v P v = D = F v Fv 1 + rt Fv Fv (1 + rt) Fv = 1 + rt 1 + rt jest to model dyskontowania rzeczywistego prostego dyskontowanie wycofuje efekt oprocentowania - jest dziaªaniem odwrotnym do oprocentowania prostego = Fv rt 1 + rt 100 / 126

101 Dyskonto Kwota ta reprezentuje zmian warto±ci pieni dza w czasie. Dyskonto oznaczamy symbolem D D = F v P v je»eli zachowamy dotychczasowe oznaczenia, to P v = st d D = F v P v = D = F v Fv 1 + rt Fv Fv (1 + rt) Fv = 1 + rt 1 + rt jest to model dyskontowania rzeczywistego prostego dyskontowanie wycofuje efekt oprocentowania - jest dziaªaniem odwrotnym do oprocentowania prostego = Fv rt 1 + rt 101 / 126

102 Dyskonto Kwota ta reprezentuje zmian warto±ci pieni dza w czasie. Dyskonto oznaczamy symbolem D D = F v P v je»eli zachowamy dotychczasowe oznaczenia, to P v = st d D = F v P v = D = F v Fv 1 + rt Fv Fv (1 + rt) Fv = 1 + rt 1 + rt jest to model dyskontowania rzeczywistego prostego dyskontowanie wycofuje efekt oprocentowania - jest dziaªaniem odwrotnym do oprocentowania prostego = Fv rt 1 + rt 102 / 126

103 Dyskonto Kwota ta reprezentuje zmian warto±ci pieni dza w czasie. Dyskonto oznaczamy symbolem D D = F v P v je»eli zachowamy dotychczasowe oznaczenia, to P v = st d D = F v P v = D = F v Fv 1 + rt Fv Fv (1 + rt) Fv = 1 + rt 1 + rt jest to model dyskontowania rzeczywistego prostego dyskontowanie wycofuje efekt oprocentowania - jest dziaªaniem odwrotnym do oprocentowania prostego = Fv rt 1 + rt 103 / 126

104 Dyskonto Kwota ta reprezentuje zmian warto±ci pieni dza w czasie. Dyskonto oznaczamy symbolem D D = F v P v je»eli zachowamy dotychczasowe oznaczenia, to P v = st d D = F v P v = D = F v Fv 1 + rt Fv Fv (1 + rt) Fv = 1 + rt 1 + rt jest to model dyskontowania rzeczywistego prostego dyskontowanie wycofuje efekt oprocentowania - jest dziaªaniem odwrotnym do oprocentowania prostego = Fv rt 1 + rt 104 / 126

105 Dyskonto Kwota ta reprezentuje zmian warto±ci pieni dza w czasie. Dyskonto oznaczamy symbolem D D = F v P v je»eli zachowamy dotychczasowe oznaczenia, to P v = st d D = F v P v = D = F v Fv 1 + rt Fv Fv (1 + rt) Fv = 1 + rt 1 + rt jest to model dyskontowania rzeczywistego prostego dyskontowanie wycofuje efekt oprocentowania - jest dziaªaniem odwrotnym do oprocentowania prostego = Fv rt 1 + rt 105 / 126

106 Przykªad Oprocentowanie rachunku bankowego wynosi 16% w skali roku. Przy jakiej wpªacie 1 stycznia lub 1 kwietnia saldo rachunku na dzie«1 stycznia osi gnie poziom 1000zª? P v = Nale»y zdyskontowa kwot 1000zª o rok P v = Fv 1 + rt = przed rokiem nale»aªo wpªaci zª. o trzy kwartaªy P v = przed rokiem nale»aªo wpªaci zª. = / 126

107 Przykªad Oprocentowanie rachunku bankowego wynosi 16% w skali roku. Przy jakiej wpªacie 1 stycznia lub 1 kwietnia saldo rachunku na dzie«1 stycznia osi gnie poziom 1000zª? P v = Nale»y zdyskontowa kwot 1000zª o rok P v = Fv 1 + rt = przed rokiem nale»aªo wpªaci zª. o trzy kwartaªy P v = przed rokiem nale»aªo wpªaci zª. = / 126

108 Przykªad Oprocentowanie rachunku bankowego wynosi 16% w skali roku. Przy jakiej wpªacie 1 stycznia lub 1 kwietnia saldo rachunku na dzie«1 stycznia osi gnie poziom 1000zª? P v = Nale»y zdyskontowa kwot 1000zª o rok P v = Fv 1 + rt = przed rokiem nale»aªo wpªaci zª. o trzy kwartaªy P v = przed rokiem nale»aªo wpªaci zª. = / 126

109 Przykªad W dniu 1 stycznia 2010 kapitaª ma warto± 1000zª, przy oprocentowaniu prostym ze stop r = 25% po upªywie roku 1 stycznia 2011kapitaª osi gnie warto± 1000( ) = 1250 rok wcze±niej, czyli 1 stycznia 2009, kapitaª miaª warto± 1000( ) 1 = 800 obliczaj c dwuletnie odsetki od kapitaªu 800zª mamy 800( ) = 1200 dwuletnie zdyskontowanie kapitaªu 1250zª z 1 stycznia 2011 otrzymamy 1250( ) 1 = / 126

110 Przykªad W dniu 1 stycznia 2010 kapitaª ma warto± 1000zª, przy oprocentowaniu prostym ze stop r = 25% po upªywie roku 1 stycznia 2011kapitaª osi gnie warto± 1000( ) = 1250 rok wcze±niej, czyli 1 stycznia 2009, kapitaª miaª warto± 1000( ) 1 = 800 obliczaj c dwuletnie odsetki od kapitaªu 800zª mamy 800( ) = 1200 dwuletnie zdyskontowanie kapitaªu 1250zª z 1 stycznia 2011 otrzymamy 1250( ) 1 = / 126

111 Przykªad W dniu 1 stycznia 2010 kapitaª ma warto± 1000zª, przy oprocentowaniu prostym ze stop r = 25% po upªywie roku 1 stycznia 2011kapitaª osi gnie warto± 1000( ) = 1250 rok wcze±niej, czyli 1 stycznia 2009, kapitaª miaª warto± 1000( ) 1 = 800 obliczaj c dwuletnie odsetki od kapitaªu 800zª mamy 800( ) = 1200 dwuletnie zdyskontowanie kapitaªu 1250zª z 1 stycznia 2011 otrzymamy 1250( ) 1 = / 126

112 Przykªad W dniu 1 stycznia 2010 kapitaª ma warto± 1000zª, przy oprocentowaniu prostym ze stop r = 25% po upªywie roku 1 stycznia 2011kapitaª osi gnie warto± 1000( ) = 1250 rok wcze±niej, czyli 1 stycznia 2009, kapitaª miaª warto± 1000( ) 1 = 800 obliczaj c dwuletnie odsetki od kapitaªu 800zª mamy 800( ) = 1200 dwuletnie zdyskontowanie kapitaªu 1250zª z 1 stycznia 2011 otrzymamy 1250( ) 1 = / 126

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 143 Dyskonto-przypomnienie Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v.

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana

Bardziej szczegółowo

Podstawy Ekonomii Matematycznej. Aktualizacja: 9 czerwca 2011

Podstawy Ekonomii Matematycznej. Aktualizacja: 9 czerwca 2011 Podstawy Ekonomii Matematycznej Aktualizacja: 9 czerwca 2011 Spis tre±ci I Elementy matematyki nansowej. 5 1 Procent, stopa procentowa, kapitalizacja. 6 2 Procent prosty. 8 2.1 Zasada oprocentowania prostego,

Bardziej szczegółowo

W zadaniach na procenty wyró»niamy trzy typy czynno±ci: obliczanie, jakim procentem jednej liczby jest druga liczba,

W zadaniach na procenty wyró»niamy trzy typy czynno±ci: obliczanie, jakim procentem jednej liczby jest druga liczba, 2 Procenty W tej lekcji przypomnimy sobie poj cie procentu i zwi zane z nim podstawowe typy zada«. Prosimy o zapoznanie si z regulaminem na ostatniej stronie. 2.1 Poj cie procentu Procent jest to jedna

Bardziej szczegółowo

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

Wst p do matematyki nansów i ubezpiecze«

Wst p do matematyki nansów i ubezpiecze« Jarosªaw Mederski i Sªawomir Plaskacz Wst p do matematyki nansów i ubezpiecze«materiaªy dydaktyczne dla studentów II-go roku matematyki specjalno± : matematyka w ekonomii i nansach. Wydziaª Matematyki

Bardziej szczegółowo

Zajęcia 8 - Równoważność warunków oprocentowania

Zajęcia 8 - Równoważność warunków oprocentowania Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

Zadania ćwiczeniowe do przedmiotu Makroekonomia I

Zadania ćwiczeniowe do przedmiotu Makroekonomia I Dr. Michał Gradzewicz Zadania ćwiczeniowe do przedmiotu Makroekonomia I Ćwiczenia 3 i 4 Wzrost gospodarczy w długim okresie. Oszczędności, inwestycje i wybrane zagadnienia finansów. Wzrost gospodarczy

Bardziej szczegółowo

Wartość przyszła pieniądza: Future Value FV

Wartość przyszła pieniądza: Future Value FV Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

Tabela oprocentowania kredytów Rybnickiego Banku Spółdzielczego (obowiązuje dla kredytów udzielonych od dnia 05.03.2015 1 )

Tabela oprocentowania kredytów Rybnickiego Banku Spółdzielczego (obowiązuje dla kredytów udzielonych od dnia 05.03.2015 1 ) Załącznik do uchwały zarządu nr 204 /2015 z dnia 30.12.2015 r. wchodzi w życie z dniem 01.01.2016. r. Tabela kredytów Rybnickiego Banku Spółdzielczego (obowiązuje dla kredytów udzielonych od dnia 05.03.2015

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Zadanie 1 Procent składany

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Zadanie 1 Procent składany Zadanie 1 Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą

Bardziej szczegółowo

I = F P. P = F t a(t) 1

I = F P. P = F t a(t) 1 6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia

Bardziej szczegółowo

STOPA PROCENTOWA I STOPA ZWROTU

STOPA PROCENTOWA I STOPA ZWROTU Piotr Cegielski, MAI, MRICS, CCIM STOPA PROCENTOWA I STOPA ZWROTU (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 9 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty,

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty, VII Wojewódzki Konkurs Matematyczny "W ±wiecie Matematyki" im. Prof. Wªodzimierza Krysickiego Etap drugi - 17 lutego 2015 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu skªada si

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Załącznik do uchwały Zarzadu z dnia 29-01-2016 roku TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Dąbrowa Tarnowska 2016 1 Spis treści:

Bardziej szczegółowo

Kontrakty terminowe na WIBOR

Kontrakty terminowe na WIBOR Kontrakty terminowe na WIBOR W Polsce podstawowym wskaźnikiem odzwierciedlającym koszt pieniądza na rynku międzybankowym jest WIBOR (ang. Warsaw Interbank Offered Rate). Jest to średnia stopa procentowa

Bardziej szczegółowo

Eugeniusz Gostomski. Ryzyko stopy procentowej

Eugeniusz Gostomski. Ryzyko stopy procentowej Eugeniusz Gostomski Ryzyko stopy procentowej 1 Stopa procentowa Stopa procentowa jest ceną pieniądza i wyznacznikiem wartości pieniądza w czasie. Wpływa ona z jednej strony na koszt pozyskiwania przez

Bardziej szczegółowo

2 Model neo-keynsistowski (ze sztywnymi cenami).

2 Model neo-keynsistowski (ze sztywnymi cenami). 1 Dane empiryczne wiczenia 5 i 6 Krzysztof Makarski Szoki popytowe i poda»owe jako ¹ródªa uktuacji. Wspóªczynnik korelacji Odchylenie standardowe (w stosunku do PKB) Cykliczno± Konsumpcja 0,76 75,6% procykliczna

Bardziej szczegółowo

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3 Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty

Bardziej szczegółowo

Licz i zarabiaj matematyka na usługach rynku finansowego

Licz i zarabiaj matematyka na usługach rynku finansowego Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania

Bardziej szczegółowo

10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" t "1%/4( " +. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82

10. / 42! 1 A$!! )$$$% 0  + 42 + 1 +! ! 1! !1!!!!42 %  t 1%/4(  +. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82 Matematyka finansowa 09.12.2000 r. 10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" * t "1%/4( " + i 10%. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82 10 Matematyka finansowa 24.03.2001

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy.

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy. Obligacje De nicja Obligacj nazywamy papier warto sciowy maj acy, charakter wierzycielski. Obligacj jest zaci agni, eciem, po_zyczki przez instytucj e, sprzedaj ac, obligacj e, u jej nabywcy. Sprzedaj

Bardziej szczegółowo

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200

Bardziej szczegółowo

Analiza opłacalności inwestycji v.

Analiza opłacalności inwestycji v. Analiza opłacalności inwestycji v. 2.0 Michał Strzeszewski, 1997 1998 Spis treści 1. Cel artykułu...1 2. Wstęp...1 3. Prosty okres zwrotu...2 4. Inflacja...2 5. Wartość pieniądza w czasie...2 6. Dyskontowanie...3

Bardziej szczegółowo

Oprocentowanie konta 0,10%

Oprocentowanie konta 0,10% KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

Elementy matematyki finansowej w programie Maxima

Elementy matematyki finansowej w programie Maxima Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s

Bardziej szczegółowo

RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie

RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie RZECZPOSPOLITA POLSKA Warszawa, dnia 11 lutego 2011 r. MINISTER FINANSÓW ST4-4820/109/2011 Prezydent Miasta na Prawach Powiatu Zarząd Powiatu wszystkie Zgodnie z art. 33 ust. 1 pkt 2 ustawy z dnia 13 listopada

Bardziej szczegółowo

Matematyka bankowa 1 1 wykład

Matematyka bankowa 1 1 wykład Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Santander Consumer Bank S.A.

Santander Consumer Bank S.A. Santander Consumer Bank S.A. Stosowane stawki oprocentowania środków na rachunkach bankowych - depozyty; terminy kapitalizacji odsetek Aktualna oferta depozytowa Banku LOKATA DIRECT+ Oprocentowanie, wg

Bardziej szczegółowo

REGULAMIN ZAWIERANIA I WYKONYWANIA TERMINOWYCH TRANSAKCJI WALUTOWYCH

REGULAMIN ZAWIERANIA I WYKONYWANIA TERMINOWYCH TRANSAKCJI WALUTOWYCH Tekst jednolity -Załącznik do Zarządzenia Członka Zarządu nr 53/2002 z dnia 04.03.2002 B a n k Z a c h o d n i W B K S A REGULAMIN ZAWIERANIA I WYKONYWANIA TERMINOWYCH TRANSAKCJI WALUTOWYCH Poznań, 22

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

6. " 8& #% " L przedstawiono dwa. Wariant 1. % R k 5 & 6!! stopie oprocentowania i =,.%!*! Wariant 2. % V k 5 & 6!! stopie oprocentowania j = -.%!*!

6.  8& #%  L przedstawiono dwa. Wariant 1. % R k 5 & 6!! stopie oprocentowania i =,.%!*! Wariant 2. % V k 5 & 6!! stopie oprocentowania j = -.%!*! Matematyka finansowa 2.06.2001 r. 6. " 8& #% " L przedstawiono dwa "%% Wariant 1 9%")% - *% % R k 5 & 6!! stopie oprocentowania i =,.%!*! R R 1 k P R k 1 Q1 dla k {2, 3,..., 20} Wariant 2 9%")% - *% %

Bardziej szczegółowo

OPŁACALNOŚĆ INWESTYCJI

OPŁACALNOŚĆ INWESTYCJI 3/27/2011 Ewa Kusideł ekusidel@uni.lodz.pl 1 OPŁACALNOŚĆ INWESTYCJI www.kep.uni.lodz.pl\ewakusidel 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 2 Inwestycja Inwestycja Nakład na zwiększenie lub

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego

Bardziej szczegółowo

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014 Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem

Bardziej szczegółowo

Zagregowany popyt i wielkość produktu

Zagregowany popyt i wielkość produktu Zagregowany popyt i wielkość produktu Realny PKB Burda & Wyplosz MACROECONOMICS 4/e Fluktuacje cykliczne Rys.4.01 (+) odchylenie Trend długookresowy Faktyczny PKB (-) odchylenie 0 Czas Oxford University

Bardziej szczegółowo

1. Oprocentowanie LOKATY TERMINOWE L.P. Nazwa Lokaty Okres umowny Oprocentowanie w skali roku. 9 miesięcy 2,30%

1. Oprocentowanie LOKATY TERMINOWE L.P. Nazwa Lokaty Okres umowny Oprocentowanie w skali roku. 9 miesięcy 2,30% Duma Przedsiębiorcy 1/5 TABELA OPROCENTOWANIA AKTUALNIE OFEROWANYCH LOKAT BANKOWYCH W PLN DLA OSÓB FICZYCZNYCH PROWADZĄCYCH DZIAŁALNOŚĆ GOSPODARCZĄ (Zaktualizowana w dniu 27 kwietnia 2015 r.) 1. Oprocentowanie

Bardziej szczegółowo

BANK SPÓŁDZIELCZY W NOWYM SĄCZU TABELA. OPROCENTOWANIA PRODUKTÓW BANKOWYCH dla klientów indywidualnych w Banku Spółdzielczym w Nowym Sączu

BANK SPÓŁDZIELCZY W NOWYM SĄCZU TABELA. OPROCENTOWANIA PRODUKTÓW BANKOWYCH dla klientów indywidualnych w Banku Spółdzielczym w Nowym Sączu Załącznik do Uchwały Nr 13 z dnia 05.03.2015 r. Zarządu Banku Spółdzielczego w Nowym Sączu BANK SPÓŁDZIELCZY W NOWYM SĄCZU TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH dla klientów indywidualnych w Banku

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 20 października 2014 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1 i 2

Zadania do wykładu Matematyka bankowa 1 i 2 Zadania do wykładu Matematyka bankowa 1 i 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address:

Bardziej szczegółowo

Statystyka finansowa

Statystyka finansowa Statystyka finansowa Rynki finansowe Rynek finansowy rynek na którym zawierane są transakcje finansowe polegające na zakupie i sprzedaży instrumentów finansowych Instrument finansowy kontrakt pomiędzy

Bardziej szczegółowo

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia

Bardziej szczegółowo

EDUKARIS - O±rodek Ksztaªcenia

EDUKARIS - O±rodek Ksztaªcenia - O±rodek Ksztaªcenia Zabrania si kopiowania i rozpowszechniania niniejszego regulaminu przez inne podmioty oraz wykorzystywania go w dziaªalno±ci innych podmiotów. Autor regulaminu zastrzega do niego

Bardziej szczegółowo

Kasy oszczędnościowo-budowlane filarem Narodowego Programu Budowy Mieszkań

Kasy oszczędnościowo-budowlane filarem Narodowego Programu Budowy Mieszkań Kasy oszczędnościowo-budowlane filarem Narodowego Programu Budowy Mieszkań Jak zachęcić polskie rodziny do oszczędzania? dr Jacek Furga Przewodniczący Komitetu ds. Finansowania Nieruchomości Związku Banków

Bardziej szczegółowo

Programowanie i struktury danych 1 / 44

Programowanie i struktury danych 1 / 44 Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Załącznik nr 1 do uchwały Zarzadu nr 24/Bs/2012 z dnia 27-11-2012 roku TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Dąbrowa Tarnowska

Bardziej szczegółowo

Tabela Oprocentowania Alior Banku S.A. dla Klientów Indywidualnych

Tabela Oprocentowania Alior Banku S.A. dla Klientów Indywidualnych Tabela Oprocentowania Alior Banku S.A. dla Klientów Indywidualnych (obowiązuje od 1 stycznia 2014 r.) 1/6 Rozdział I. Oprocentowanie Rachunku Oszczędnościowo-Rozliczeniowego RACHUNEK OSZCZĘDNOŚCIOWO- ROZLICZENIOWY

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Załącznik nr 1 do uchwały Zarzadu z dnia 05-03-2015 roku TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Dąbrowa Tarnowska 2015 1 Spis

Bardziej szczegółowo

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej wiczenia 13 Metoda ±cie»ki krytycznej Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Plan wicze«1 Przykªad: ubieranie choinki 2 3 Programowanie liniowe w analizie czasowej i czasowo-kosztowej projektu

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Załącznik nr 1 do uchwały Zarzadu nr 26/BS/2014 z dnia 14-10-2014 roku TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Dąbrowa Tarnowska

Bardziej szczegółowo

ZESTAWIENIE INFORMACJI O WARUNKACH SPŁATY KREDYTÓW HIPOTECZNYCH WYRAŻONYCH W CHF (02.11.2015-06.11.2015)

ZESTAWIENIE INFORMACJI O WARUNKACH SPŁATY KREDYTÓW HIPOTECZNYCH WYRAŻONYCH W CHF (02.11.2015-06.11.2015) ZESTAWIE INFORMACJI O WARUNKACH SPŁATY KREDYTÓW HIPOTECZNYCH WYRAŻONYCH W CHF (02.11.2015-06.11.2015) Informacje prezentowane w zestawieniu dotyczą wyłącznie okresu 02.11.2015-06.11.2015. Nie obejmują

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

Skrypt 4. Liczby rzeczywiste: Opracowanie L5

Skrypt 4. Liczby rzeczywiste: Opracowanie L5 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 4 Liczby rzeczywiste: 26.

Bardziej szczegółowo

Inflacja zjada wartość pieniądza.

Inflacja zjada wartość pieniądza. Inflacja, deflacja Inflacja oznacza wzrost cen. Inflacja jest wysoka, gdy ceny kupowanych dóbr i towarów rosną szybko; gdy ceny rosną powoli, wówczas inflacja jest niska. Inflacja jest to trwały wzrost

Bardziej szczegółowo

Zastosowanie matematyki w finansach i bankowości

Zastosowanie matematyki w finansach i bankowości Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi.

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Krzysztof Makarski 22 Krzywe kosztów Wst p Celem jest wyprowadzenie funkcji poda»y i jej wªasno±ci. Funkcj poda»y wyprowadzamy z decyzji maksymalizuj

Bardziej szczegółowo

Leasing jako forma finansowania. W aspekcie bilansowym i podatkowym

Leasing jako forma finansowania. W aspekcie bilansowym i podatkowym Leasing jako forma finansowania W aspekcie bilansowym i podatkowym Definicje kodeks cywilny (art. 709.(1)) Przez umowę leasingu finansujący zobowiązuje się, w zakresie działalności swego przedsiębiorstwa,

Bardziej szczegółowo

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 21 pa¹dziernika 2010 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych

Bardziej szczegółowo

Inwestowanie w obligacje

Inwestowanie w obligacje Inwestowanie w obligacje Ile zapłacić za obligację aby uzyskać oczekiwaną stopę zwrotu? Jaką stopę zwrotu uzyskamy kupując obligację po danej cenie? Jak zmienią się ceny obligacji, kiedy Rada olityki ieniężnej

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Tabela obowiązuje od 19-03-2013 TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH

Tabela obowiązuje od 19-03-2013 TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Tabela obowiązuje od 19-03-2013 TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Dąbrowa Tarnowska 2012 1 Spis treści: I. Konta Tab. 1 KONTA

Bardziej szczegółowo

3. Gdyby w gospodarce kraju X funkcja inwestycji (4) miała postać I = f (R)

3. Gdyby w gospodarce kraju X funkcja inwestycji (4) miała postać I = f (R) 1. W ostatnich latach w Polsce dochody podatkowe (bez cła) stanowiły A. Około 60% dochodów budżetu B. Około 30% dochodów budżetu C. Około 90% dochodów budżetu D. Około 99% dochodów budżetu E. Żadne z powyższych

Bardziej szczegółowo

ZASADY I TERMINY KAPITALIZACJI ODSETEK

ZASADY I TERMINY KAPITALIZACJI ODSETEK OPROCENTOWANIE ŚRODKÓW PIENIĘŻNYCH W WALUTACH WYMIENIALNYCH GROMADZONYCH NA RACHUNKACH BANKOWYCH I KREDYTÓW W WALUTACH WYMIENIALNYCH UDZIELANYCH PRZEZ PKO BANK POLSKI S.A. KLIENTOM RYNKU DETALICZNEGO:

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Załącznik nr 1 do uchwały Zarzadu nr 21/BS/2013 z dnia 06-06-2013 roku TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH BANKU SPÓŁDZIELCZEGO W DĄBROWIE TARNOWSKIEJ DLA KLIENTÓW INDYWIDUALNYCH Dąbrowa Tarnowska

Bardziej szczegółowo

Dynamiczne metody oceny opłacalności inwestycji tonażowych

Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne formuły oceny opłacalności inwestycji tonażowych są oparte na założeniu zmiennej (malejącej z upływem czasu) wartości pieniądza. Im

Bardziej szczegółowo

1. Oprocentowanie LOKATY TERMINOWE L.P. Nazwa Lokaty Okres umowny Oprocentowanie w skali roku. 4. Lokata CLOUD-BIZNES 4 miesiące 3,00%/2,00% 1

1. Oprocentowanie LOKATY TERMINOWE L.P. Nazwa Lokaty Okres umowny Oprocentowanie w skali roku. 4. Lokata CLOUD-BIZNES 4 miesiące 3,00%/2,00% 1 Duma Przedsiębiorcy 1/6 TABELA OPROCENTOWANIA AKTUALNIE OFEROWANYCH LOKAT BANKOWYCH W PLN DLA OSÓB FICZYCZNYCH PROWADZĄCYCH DZIAŁALNOŚĆ GOSPODARCZĄ (Zaktualizowana w dniu 24 kwietnia 2015 r.) 1. Oprocentowanie

Bardziej szczegółowo

I. Postanowienia ogólne. 1 Regulamin określa zasady otwierania i prowadzenia rachunków lokat terminowych, zwanych dalej rachunkiem lub,,lokatą.

I. Postanowienia ogólne. 1 Regulamin określa zasady otwierania i prowadzenia rachunków lokat terminowych, zwanych dalej rachunkiem lub,,lokatą. REGULAMIN RACHUNKÓW LOKAT TERMINOWYCH SPÓŁDZIELCZEJ KASY OSZCZĘDNOŚCIOWO - KREDYTOWEJ ARKA I. Postanowienia ogólne 1 Regulamin określa zasady otwierania i prowadzenia rachunków lokat terminowych, zwanych

Bardziej szczegółowo

V. Analiza strategiczna

V. Analiza strategiczna V. Analiza strategiczna 5.1. Mocne i słabe strony nieruchomości Tabela V.1. Mocne i słabe strony nieruchomości 5.2. Określenie wariantów postępowania Na podstawie przeprowadzonej analizy nieruchomości

Bardziej szczegółowo

Podstawy statystycznego modelowania danych Analiza prze»ycia

Podstawy statystycznego modelowania danych Analiza prze»ycia Podstawy statystycznego modelowania danych Analiza prze»ycia Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1. Wprowadzenie 2. Hazard rate

Bardziej szczegółowo

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1. Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty

Bardziej szczegółowo

Wskaźniki efektywności inwestycji

Wskaźniki efektywności inwestycji Wskaźniki efektywności inwestycji Efektywność inwestycji Realizacja przedsięwzięć usprawniających użytkowanie energii najczęściej wymaga poniesienia nakładów finansowych na zakup materiałów, urządzeń,

Bardziej szczegółowo

PRÓG RENTOWNOŚCI i PRÓG

PRÓG RENTOWNOŚCI i PRÓG PRÓG RENTOWNOŚCI i PRÓG WYPŁACALNOŚCI (MB) Próg rentowności (BP) i margines bezpieczeństwa Przychody Przychody Koszty Koszty całkowite Koszty stałe Koszty zmienne BP Q MB Produkcja gdzie: BP próg rentowności

Bardziej szczegółowo

Informacja dotycząca adekwatności kapitałowej HSBC Bank Polska S.A. na 31 grudnia 2010 r.

Informacja dotycząca adekwatności kapitałowej HSBC Bank Polska S.A. na 31 grudnia 2010 r. Informacja dotycząca adekwatności kapitałowej HSBC Bank Polska S.A. na 31 grudnia 2010 r. Spis treści: 1. Wstęp... 3 2. Fundusze własne... 4 2.1 Informacje podstawowe... 4 2.2 Struktura funduszy własnych....5

Bardziej szczegółowo

ZASADY REKLAMOWANIA USŁUG BANKOWYCH

ZASADY REKLAMOWANIA USŁUG BANKOWYCH Załącznik do uchwały KNF z dnia 2 października 2008 r. ZASADY REKLAMOWANIA USŁUG BANKOWYCH Reklama i informacja reklamowa jest istotnym instrumentem komunikowania się z obecnymi jak i potencjalnymi klientami

Bardziej szczegółowo

TABELA OPROCENTOWANIA DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W NOWYM DWORZE MAZOWIECKIM

TABELA OPROCENTOWANIA DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W NOWYM DWORZE MAZOWIECKIM Załącznik nr 1 do Uchwały Nr 40/2016 Zarządu Banku Spółdzielczego w Nowym Dworze Maz. z dnia 06.04.2016 r. TABELA OPROCENTOWANIA DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W NOWYM DWORZE MAZOWIECKIM Tabela 1. Rachunki

Bardziej szczegółowo

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1

Zadania do wykładu Matematyka bankowa 1 Zadania do wykładu Matematyka bankowa 1 Dorota Klim Instytut Matematyki i Informatyki, Państwowej Wyższej Szkoły Zawodowej w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW DEPOZYTOWYCH DLA KLIENTÓW INDYWIDUALNYCH BANKU SPÓŁDZIELCZEGO W LUBAWIE obowiązuje od 01.06.2016r.

TABELA OPROCENTOWANIA PRODUKTÓW DEPOZYTOWYCH DLA KLIENTÓW INDYWIDUALNYCH BANKU SPÓŁDZIELCZEGO W LUBAWIE obowiązuje od 01.06.2016r. ZRZESZENIE BANKU POLSKIEJ SPÓŁDZIELCZOŚCI BANK SPÓŁDZIELCZY W LUBAWIE Rok założenia 1870 Załącznik do Uchwały nr 58/2016 Zarządu Banku Spółdzielczego w Lubawie z dnia 31 maja 2016r. TABELA OPROCENTOWANIA

Bardziej szczegółowo

Reforma emerytalna w ±wietle modelu z nakªadaj cymi si pokoleniami (OLG)

Reforma emerytalna w ±wietle modelu z nakªadaj cymi si pokoleniami (OLG) Reforma emerytalna w ±wietle modelu z nakªadaj cymi si pokoleniami (OLG) Jan Hagemejer, Krzysztof Makarski, Joanna Tyrowicz wsparcie: Marcin Bielecki, Agnieszka Borowska, Karolina Goraus GRAPE@WNE UW/SGH/NBP

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

Grzegorz Grochowina, menedżer w zespole ds. PIT w KPMG w Polsce

Grzegorz Grochowina, menedżer w zespole ds. PIT w KPMG w Polsce Jak rozliczyć dywidendy, a jak dochód ze zbycia udziałów w spółkach Grzegorz Grochowina, menedżer w zespole ds. PIT w KPMG w Polsce PIT Od części przychodów z kapitałów pieniężnych podatek pobiera płatnik,

Bardziej szczegółowo