Modele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE"

Transkrypt

1 Modele danych - wykład V Paweł Skrobanek, C-3 pok. 321 oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE 1

2 Wprowadzenie PODSTAWOWE MODELE REPREZENTACJI I PRZECHOWYWANIA DANYCH (ang. Relational OLAP) rozszerzony relacyjny model danych, przekształcenie operacji wielowymiarowych na standardowe relacyjne (często wspomagane narzędziami) MOLAP (ang. Multidimensional OLAP) wykorzystanie wielowymiarowych baz danych (MDB) tablice wielowymiarowe zamiast klasycznych, Wprowadzenie AGREGACJA - wstępne wyliczenie pewnych miar (podsumowanie), np.: Dla bazy OLTP Dla bazy OLAP nie przechowujemy miesięcznych operacji z danym kontrahentem, gdyż można je wyliczyć z Faktur VAT wyliczamy raz i przechowujemy sumę operacji z danym kontrahentem (skoro takie dane są używane np. w 80% analiz) Wprowadzenie PODZIAŁ NA PARTYCJE - zapis tabeli w częściach np. na różnych dyskach w celu zmniejszenia ilości danych lub zrównoleglenia operacji 2

3 Wprowadzenie Oracle przykłady: 1) Zrównoleglenie operacji na tabeli: CREATE TABLE SPRZEDAZ ( ) PARALLEL (DEGREE 6); - maksymalnie 6 procesów serwera do obsługi tej tabeli 2) Utworzenie tabeli z podziałem na partycje (części): CREATE Klienci (, Kraj char(2), ) PARTITION BY RANGE (Kraj) (PARTITION p1 VALUES LESS THAN ( C ) TABLESPACE Data01; PARTITION p2 VALUES LESS THAN ( K ) TABLESPACE Data02; PARTITION p6 VALUES LESS THAN MAXVALUE TABLESPACE Data06; Utworzenie indeksu dla tego podziału: CREATE INDEX indeks_kliencji_kraj ON Klienci (kraj) LOCAL; Wprowadzenie Rodzaje danych analitycznych FAKTY (wielkości analizowane) dane ilościowe opisujące zaistniałe zdarzenia (fakty), np. wartość sprzedaży, ilość towaru, zysk WYMIARY (wielkości klasyfikujące) dane cechy, atrybuty faktów, tzw. dane klasyfikujące np. czas, miejsce, pracownik, klient, dane klasyfikujące mogą być układane w hierarchie Wprowadzenie ŚCIEŻKI PODSUMOWAŃ - definiują poziomy ogólności wymiarów (hierarchie) Przykłady: gałąź przemysłu kategoria towar opakowanie kraj region miasto sklep rok kwartał miesiąc dzień tydzień UWAGA: Hierarchie nie muszą być jednoznaczne, np. towar może należeć do dwóch kategorii. 3

4 Wprowadzenie Hurtownie tematyczne (ang. data marts) - zbiory danych (zwykle perspektywy zmaterializowane) w których agregacje i podziały definiujemy pod kątem konkretnej grupy użytkowników podejmujących decyzje (np. pod kątem działu firmy) (ang. Relational OLAP) - modele danych 1. Technika implementacji w postaci tabel. 2. Schemat: a) gwiazda jedna tabela faktów w środku oraz tabele wymiarów po bokach (po jednej dla każdego wymiaru), b) płatek śniegu powstaje po zastosowaniu normalizacji do tabeli wymiarów schematu gwiazdy c) inne odmiany np. z wielokrotną tabelą faktów 4

5 Schemat gwiazdy przykład. Fragment schematu płatka śniegu przykład. Schematu wielogwiaździsty 2 tabele faktów. 5

6 Schemat z dwoma tabelami faktów. Schemat z dwoma tabelami faktów. Schemat z dwoma tabelami faktów. Druga tabela jako tabela asocjacyjna (przypisanie towaru do grupy). 6

7 MOLAP (ang. Multidimensional OLAP) - modele danych MOLAP 1. Fakty jako punkty wielowymiarowej przestrzeni. Przechowywanie w tzw. tablicach wielowymiarowych 2. Schemat w postaci wielowymiarowej kostki. 3. Reprezentacja szczegółowości (hierarchii) - za pomocą podkostek (ang. subcube). Reprezentacja punktu (pojedynczego elementu kostki przy pomocy innej kostki wielowymiarowej). 4. Arkusz (ang. spreadsheet) tworzą dwa wymiary (pozostałe mają ustaloną wartość). 5. Komórka miara z wszystkimi ustalonymi wymiarami. MOLAP Przykład kostki danych (ang. data cube). 7

8 MOLAP Przykład tablicy wielowymiarowej (działanie operatora CUBE). MOLAP 4. Analiza materiałów ksero. PODSUMOWANIE 8

9 PODSUMOWANIE Podsumowanie: schematy /MOLAP dopasowane do sposobu wykorzystania danych (wyraźnie pokazane fakty i wymiary), uproszczony sposób nawigacji po danych (zapytania analityczny), zastosowanie hierarchii umożliwia uzyskanie wyników na różnym poziomie szczegółowości (tzw. drążenie danych, operacje roll-up/ drill-down) PODSUMOWANIE Podsumowanie: wada: nadmiarowość danych, duże rozmiary oraz to co jest związane z brakiem normalizacji problem dołączania, aktualizacji, usuwania, wspomaganie zapytań analitycznych oraz modelowania /MOLAP przez narzędzia hurtowni danych, źle dobrana struktura (schemat) danych może wpływać na znaczne pogorszenie wydajności - analiza materiałów konferencyjnych ZADANIE FAJNE Jakie będą dla danych z laboratorium: - ścieżki podsumowań - model - model MOLAP 9

Modele danych - wykład V

Modele danych - wykład V Modele danych - wykład V Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie

Bardziej szczegółowo

Hurtownie danych wykład 3

Hurtownie danych wykład 3 Hurtownie danych wykład 3 dr Sebastian Zając SGH Warszawa 7 lutego 2017 Architektura relacyjna i wielowymiarowa Ze względu na przechowywanie danych na serwerze możemy zdecydować się na relacyjną bazę danych

Bardziej szczegółowo

Wielowymiarowy model danych

Wielowymiarowy model danych Plan wykładu Wielowymiarowy model danych 1. Model danych 2. Analiza wielowymiarowa 3. Model wielowymiarowy: koncepcja wymiarów i faktów 4. Operacje modelu wielowymiarowego 5. Implementacje modelu wielowymiarowego:

Bardziej szczegółowo

Hurtownie danych a transakcyjne bazy danych

Hurtownie danych a transakcyjne bazy danych Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,

Bardziej szczegółowo

Wstęp do Business Intelligence

Wstęp do Business Intelligence Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie

Bardziej szczegółowo

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw. Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje

Bardziej szczegółowo

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia

Bardziej szczegółowo

Spis tre±ci. Przedmowa... Cz ± I

Spis tre±ci. Przedmowa... Cz ± I Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja

Bardziej szczegółowo

OLAP i hurtownie danych c.d.

OLAP i hurtownie danych c.d. OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji

Bardziej szczegółowo

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1) Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni

Bardziej szczegółowo

BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego

BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

Schematy logiczne dla hurtowni danych

Schematy logiczne dla hurtowni danych Schematy logiczne dla hurtowni danych 26 Plan rozdziału 27 Model biznesowy, logiczny i fizyczny hurtowni danych Podstawowe pojęcia w modelu logicznym, logiczny model wielowymiarowy Implementacje ROLAP/MOLAP

Bardziej szczegółowo

Część I Istota analizy biznesowej a Analysis Services

Część I Istota analizy biznesowej a Analysis Services Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w

Bardziej szczegółowo

Bazy analityczne (hurtownie danych, bazy OLAP)

Bazy analityczne (hurtownie danych, bazy OLAP) Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi,

Bardziej szczegółowo

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...

Bardziej szczegółowo

Pierwsze wdrożenie SAP BW w firmie

Pierwsze wdrożenie SAP BW w firmie Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe

Bardziej szczegółowo

Informatyzacja przedsiębiorstw

Informatyzacja przedsiębiorstw Informatyzacja przedsiębiorstw Izabela Szczęch Politechnika Poznańska Plan wykładu Elementy Business Intelligence Model wielowymiarowy Modelowanie hurtowni danych podstawowe schematy logiczne Operacje

Bardziej szczegółowo

Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych

Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych 1 Plan wykładu 2 Hurtownie danych Integracja danych za pomocą hurtowni danych Przetwarzanie analityczne OLAP Model wielowymiarowy Implementacje modelu wielowymiarowego ROLAP MOLAP Odświeżanie hurtowni

Bardziej szczegółowo

Business Intelligence

Business Intelligence Business Intelligence Paweł Mielczarek Microsoft Certified Trainer (MCT) MCP,MCSA, MCTS, MCTS SQL 2005, MCTS SQL 2008, MCTS DYNAMICS, MBSS, MBSP, MCITP DYNAMICS. Geneza Prowadzenie firmy wymaga podejmowania

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 10. Partycjonowanie tabel i indeksów. 2009/ Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 10. Partycjonowanie tabel i indeksów. 2009/ Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 10. Partycjonowanie tabel i indeksów 1 Partycjonowanie tabel i indeksów w Oracle W celu poprawienia efektywności dostępu do danych oraz ułatwieniu zarządzania bardzo dużymi zbiorami

Bardziej szczegółowo

Modelowanie hurtowni danych

Modelowanie hurtowni danych Modelowanie hurtowni danych Zbyszko Królikowski Instytut Informatyki Dane w hurtowniach danych pojęcia podstawowe Hurtowniadanychjestkolekcją:zintegrowanych, zorientowanych tematycznie, zmiennych w czasie,

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja

Bardziej szczegółowo

Zaawansowane systemy baz danych - ZSBD. Hurtownie danych 1. Problematyka hurtowni danych. Wykład przygotował: Robert Wrembel. ZSBD wykład 12 (1)

Zaawansowane systemy baz danych - ZSBD. Hurtownie danych 1. Problematyka hurtowni danych. Wykład przygotował: Robert Wrembel. ZSBD wykład 12 (1) Hurtownie danych 1 Problematyka hurtowni danych Wykład przygotował: Robert Wrembel ZSBD wykład 12 (1) 1 Plan wykładu Problematyka integracji danych Integracja danych za pomocą hurtowni danych Przetwarzanie

Bardziej szczegółowo

Wprowadzenie do technologii Business Intelligence i hurtowni danych

Wprowadzenie do technologii Business Intelligence i hurtowni danych Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence

Bardziej szczegółowo

Usługi analityczne budowa kostki analitycznej Część pierwsza.

Usługi analityczne budowa kostki analitycznej Część pierwsza. Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.

Bardziej szczegółowo

Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot

Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot Alberto Ferrari i Marco Russo Przekład: Marek Włodarz APN Promise Warszawa 2014 Spis treści Wprowadzenie............................................................

Bardziej szczegółowo

Model logiczny SZBD. Model fizyczny. Systemy klientserwer. Systemy rozproszone BD. No SQL

Model logiczny SZBD. Model fizyczny. Systemy klientserwer. Systemy rozproszone BD. No SQL Podstawy baz danych: Rysunek 1. Tradycyjne systemy danych 1- Obsługa wejścia 2- Przechowywanie danych 3- Funkcje użytkowe 4- Obsługa wyjścia Ewolucja baz danych: Fragment świata rzeczywistego System przetwarzania

Bardziej szczegółowo

Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g

Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g XI Konferencja PLOUG Kościelisko Październik 2005 Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g Bartosz Bębel, Julusz Jezierski, Robert Wrembel Politechnika Poznańska, Instytut Informatyki

Bardziej szczegółowo

OdświeŜanie hurtownie danych - wykład IV. Zagadnienia do omówienia. Wprowadzenie

OdświeŜanie hurtownie danych - wykład IV. Zagadnienia do omówienia. Wprowadzenie OdświeŜanie hurtownie danych - wykład IV Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006/2007 Zagadnienia do omówienia 1. Wprowadzenie 2. Klasyfikacja źródeł danych 3. Wymagania

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Plan. Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP

Plan. Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP WYKŁAD 12: OLAP Plan Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP Motywacja: Zaawansowane metody ekstrakcji danych i techniki przechowywania danych Rozwój wielu dziedzin zastosowań

Bardziej szczegółowo

Projektowanie hurtowni danych i modelowanie wielowymiarowe

Projektowanie hurtowni danych i modelowanie wielowymiarowe Projektowanie hurtowni danych i modelowanie wielowymiarowe Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com

Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Media Partners Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Adrian Chodkowski Konsultant Business Intelligence w Jcommerce S.A Certyfikowany

Bardziej szczegółowo

INTERNETOWE BAZY DANYCH materiały pomocnicze - wykład X

INTERNETOWE BAZY DANYCH materiały pomocnicze - wykład X Wrocław 2006 INTERNETOWE BAZY DANYCH materiały pomocnicze - wykład X Paweł Skrobanek C-3, pok. 323 e-mail: pawel.skrobanek@pwr.wroc.pl INTERNETOWE BAZY DANYCH PLAN NA DZIŚ zajęcia 1: 2. Procedury składowane

Bardziej szczegółowo

Bazy danych i ich aplikacje

Bazy danych i ich aplikacje ORAZ ZAPRASZAJĄ DO UDZIAŁU W STUDIACH PODYPLOMOWYCH Celem Studiów jest praktyczne zapoznanie słuchaczy z podstawowymi technikami tworzenia i administrowania bazami oraz systemami informacyjnymi. W trakcie

Bardziej szczegółowo

Systemy OLAP. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja

Bardziej szczegółowo

PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU. Rozproszone Systemy Baz Danych

PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU. Rozproszone Systemy Baz Danych OPIS PRZEDMIOTU Nazwa przedmiotu Rozproszone Systemy Baz Danych Kod przedmiotu Wydział Instytut/Katedra Kierunek Specjalizacja/specjalność Wydział Matematyki, Fizyki i Techniki Instytut Mechaniki i Informatyki

Bardziej szczegółowo

Modelowanie koncepcyjne hurtowni danych

Modelowanie koncepcyjne hurtowni danych Modelowanie koncepcyjne hurtowni danych Izabela Szczę ch Instytut Informatyki, Politechnika Poznań ska Modele przetwarzania danych Dwa podstawowe modele przetwarzania danych: OLTP (On-Line Transaction

Bardziej szczegółowo

JPivot & Mondrian. 16 maja Krukar, Lewandowska (BiHD) JPivot & Mondrian 16 maja / 42

JPivot & Mondrian. 16 maja Krukar, Lewandowska (BiHD) JPivot & Mondrian 16 maja / 42 JPivot & Mondrian Urszula Krukar Agnieszka Lewandowska 16 maja 2007 Krukar, Lewandowska (BiHD) JPivot & Mondrian 16 maja 2007 1 / 42 1 Wprowadzenie 2 Pentaho BI Suite 3 Mondrian 4 Schemat kostki 5 JPivot

Bardziej szczegółowo

Kostki OLAP i język MDX

Kostki OLAP i język MDX Kostki OLAP i język MDX 24 kwietnia 2015 r. Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały różne rodzaje zadań,

Bardziej szczegółowo

Modelowanie wielowymiarowe hurtowni danych

Modelowanie wielowymiarowe hurtowni danych Modelowanie wielowymiarowe hurtowni danych 6 listopada 2016 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików.pdf, sformatowanych podobnie do tego dokumentu. Zadania

Bardziej szczegółowo

Administracja Internetowymi systemami baz danych (niestacjonarne) Laboratorium 7. Analysis Services (Business Intelligence)

Administracja Internetowymi systemami baz danych (niestacjonarne) Laboratorium 7. Analysis Services (Business Intelligence) Administracja Internetowymi systemami baz danych (niestacjonarne) Laboratorium 7 Analysis Services (Business Intelligence) Instrukcja do laboratorium 7: I. Tworzenie kostek OLAP oraz budowa struktury hurtowni

Bardziej szczegółowo

Hurtownie danych w praktyce

Hurtownie danych w praktyce Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence

Bardziej szczegółowo

Rady i porady użytkowe

Rady i porady użytkowe Rady i porady użytkowe Dział Eksploatacji CONTROLLING SYSTEMS sp. z o.o. Rady i porady - źródło prezentacji: Najczęstsze problemy zgłaszane przez Klientów na etapie eksploatacji systemu Spostrzeżenia konsultantów

Bardziej szczegółowo

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu

Bardziej szczegółowo

JPivot & Mondrian. inż. Urszula Krukar, inż. Agnieszka Lewandowska,

JPivot & Mondrian. inż. Urszula Krukar, inż. Agnieszka Lewandowska, inż. Urszula Krukar, ukrukar@gmail.com inż. Agnieszka Lewandowska, agnieszkalewandowska@gmail.com Bazy i Hurtownie Danych 12 marca 2007 Cel projektu przygotowanie instalacji webowej aplikacji JPivot i

Bardziej szczegółowo

Opis spełnienia wymagań (PSBD)

Opis spełnienia wymagań (PSBD) Numer sprawy: DPZ/4/15 Nr arch. DPZ/087/059-16/15 1. Zakres przedmiotu zamówienia: Opis spełnienia wymagań (PSBD) Załącznik nr 1d do formularza ofertowego Wykonanie dzieła polegającego na dostawie, kompleksowym

Bardziej szczegółowo

Wprowadzenie do hurtowni danych

Wprowadzenie do hurtowni danych Wprowadzenie do hurtowni danych przygotował: Paweł Kasprowski Kostka Kostka (cube) to podstawowy element hurtowni Kostka jest wielowymiarowa (od 1 do N wymiarów) Kostka składa się z: faktów wektora wartości

Bardziej szczegółowo

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38 Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem zajęcia 1 dr Jakub Boratyński pok. A38 Program zajęć Bazy danych jako podstawowy element systemów informatycznych wykorzystywanych

Bardziej szczegółowo

Co ciekawego w EURECE pojawiło się w wersji 2.4, a być może nie zdążyliście tego odkryć?

Co ciekawego w EURECE pojawiło się w wersji 2.4, a być może nie zdążyliście tego odkryć? Co ciekawego w EURECE pojawiło się w wersji 2.4, a być może nie zdążyliście tego odkryć? Zmiana przyporządkowania elementu wymiaru użytego w strukturze budżetowej do grupy nadrzędnej. Zmiana przyporządkowania

Bardziej szczegółowo

Usługi analityczne podstawy budowy kostki analitycznej Część druga - zarządzanie

Usługi analityczne podstawy budowy kostki analitycznej Część druga - zarządzanie Usługi analityczne podstawy budowy kostki analitycznej Część druga - zarządzanie Nasz definicja kostki analitycznie nie zawiera jeszcze danych. Aby zbudować kostkę funkcjonalnie działającą musimy, dokonać

Bardziej szczegółowo

SYSTEMY OPERACYJNE WYKLAD 5 - zarządzanie pamięcią pomocniczą

SYSTEMY OPERACYJNE WYKLAD 5 - zarządzanie pamięcią pomocniczą Wrocław 2007 SYSTEMY OPERACYJNE WYKLAD 5 - zarządzanie pamięcią pomocniczą Paweł Skrobanek C-3, pok. 323 e-mail: pawel.skrobanek@pwr.wroc.pl www.equus.wroc.pl/studia.html 1 PLAN: 3. Struktura katalogowa

Bardziej szczegółowo

Migracja Business Intelligence do wersji 2013.3

Migracja Business Intelligence do wersji 2013.3 Migracja Business Intelligence do wersji 2013.3 Copyright 2013 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

Projektowanie hurtowni danych i modelowanie wielowymiarowe

Projektowanie hurtowni danych i modelowanie wielowymiarowe Projektowanie hurtowni danych i modelowanie wielowymiarowe Izabela Szczęch Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie

Bardziej szczegółowo

Usługa archiwizacji danych w systemie Eureca. Marek Jelenik CONTROLLING SYSTEMS sp. z o.o.

Usługa archiwizacji danych w systemie Eureca. Marek Jelenik CONTROLLING SYSTEMS sp. z o.o. Usługa archiwizacji danych w systemie Eureca Marek Jelenik CONTROLLING SYSTEMS sp. z o.o. Na czym polega usługa archiwizacji danych w systemie Eureca? 2012 2013 2014 2015 Przed archiwizacją SQL OLAP BAZA

Bardziej szczegółowo

Bazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI

Bazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Bazy danych Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Wszechnica Poranna Trzy tematy: 1. Bazy danych - jak je ugryźć? 2. Język SQL podstawy zapytań. 3. Mechanizmy wewnętrzne baz danych czyli co

Bardziej szczegółowo

Procesy ETL - wykład V. Struktura. Wprowadzenie. 1. Wprowadzenie. 2. Ekstrakcja 3. Transformacja 4. Ładowanie 5. Studium przypadków.

Procesy ETL - wykład V. Struktura. Wprowadzenie. 1. Wprowadzenie. 2. Ekstrakcja 3. Transformacja 4. Ładowanie 5. Studium przypadków. Procesy ETL - wykład V Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2012 Struktura 1. Wprowadzenie 2. Ekstrakcja 3. Transformacja 4. Ładowanie 5. Studium przypadków Wprowadzenie

Bardziej szczegółowo

KONCEPTUALNE MODELOWANIE STRUKTUR BAZ MOLAP DLA E-BIZNESU

KONCEPTUALNE MODELOWANIE STRUKTUR BAZ MOLAP DLA E-BIZNESU ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 576 STUDIA INFORMATICA NR 24 2009 ZENON BINIEK Wyższa Szkoła Technologii Informatycznych Warszawa KONCEPTUALNE MODELOWANIE STRUKTUR BAZ MOLAP DLA E-BIZNESU

Bardziej szczegółowo

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Bazy Danych - Projekt. Zasady przygotowania i oceny projektów

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Bazy Danych - Projekt. Zasady przygotowania i oceny projektów Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Bazy Danych - Projekt Zasady przygotowania i oceny projektów 1 Cel projektu Celem niniejszego projektu jest zaprojektowanie i implementacja

Bardziej szczegółowo

ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL

ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL ORACLE System Zarządzania Bazą Danych Oracle Oracle Advanced SQL wersja 1.0 Politechnika Śląska 2008 Raportowanie z wykorzystaniem fraz rollup, cube Frazy cube, rollup, grouping sets umożliwiają rozszerzoną

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Zastosowanie systemu Oracle do budowy systemu Magazynu Danych wspomagaj¹cego przeprowadzanie analiz gie³dowych

Zastosowanie systemu Oracle do budowy systemu Magazynu Danych wspomagaj¹cego przeprowadzanie analiz gie³dowych VIII Konferencja PLOUG Koœcielisko PaŸdziernik 2002 Zastosowanie systemu Oracle do budowy systemu Magazynu Danych wspomagaj¹cego przeprowadzanie analiz gie³dowych Gerard G³owacki Biuro Us³ug Komputerowych

Bardziej szczegółowo

Baza danych. Modele danych

Baza danych. Modele danych Rola baz danych Systemy informatyczne stosowane w obsłudze działalności gospodarczej pełnią funkcję polegającą na gromadzeniu i przetwarzaniu danych. Typowe operacje wykonywane na danych w systemach ewidencyjno-sprawozdawczych

Bardziej szczegółowo

Zadania do wykonania na laboratorium

Zadania do wykonania na laboratorium Lab Oracle Katowice 2013v1 Fizyczna i logiczna struktura bazy danych 1 http://platforma.polsl.pl/rau2/mod/folder/view.php?id=9975 RB_lab2_v04st Przykładowe pomocne strony www: Zadania do wykonania na laboratorium

Bardziej szczegółowo

Systemy GIS Systemy baz danych

Systemy GIS Systemy baz danych Systemy GIS Systemy baz danych Wykład nr 5 System baz danych Skomputeryzowany system przechowywania danych/informacji zorganizowanych w pliki Użytkownik ma do dyspozycji narzędzia do wykonywania różnych

Bardziej szczegółowo

HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K.

HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K. HURTOWNIE DANYCH Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl # 1 Część I. Tworzenie hurtowni danych 1. Co to jest hurtownia danych? 2. Model

Bardziej szczegółowo

Projektowanie bazy danych. Jarosław Kuchta Projektowanie Aplikacji Internetowych

Projektowanie bazy danych. Jarosław Kuchta Projektowanie Aplikacji Internetowych Projektowanie bazy danych Jarosław Kuchta Projektowanie Aplikacji Internetowych Możliwości projektowe Relacyjna baza danych Obiektowa baza danych Relacyjno-obiektowa baza danych Inne rozwiązanie (np. XML)

Bardziej szczegółowo

Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych

Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Autor: mgr inż.

Bardziej szczegółowo

Migracja Business Intelligence do wersji 11.0

Migracja Business Intelligence do wersji 11.0 Migracja Business Intelligence do wersji 11.0 Copyright 2012 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

15. Funkcje i procedury składowane PL/SQL

15. Funkcje i procedury składowane PL/SQL 15. Funkcje i procedury składowane PLSQL 15.1. SQL i PLSQL (Structured Query Language - SQL) Język zapytań strukturalnych SQL jest zbiorem poleceń, za pomocą których programy i uŝytkownicy uzyskują dostęp

Bardziej szczegółowo

PROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER

PROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER PROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER Katarzyna BŁASZCZYK, Ryszard KNOSALA Streszczenie: Artykuł opisuje podstawową tematykę związaną z systemami

Bardziej szczegółowo

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla

Bardziej szczegółowo

Załącznik nr 7.5 - KONCEPCJA HURTOWNI DANYCH SI EKOINFONET

Załącznik nr 7.5 - KONCEPCJA HURTOWNI DANYCH SI EKOINFONET Załącznik nr 7.5 - KONCEPCJA HURTOWNI DANYCH SI EKOINFONET Spis treści 1. Pojęcie hurtownia danych... 4 1.1. Struktury danych... 4 1.2. Sposoby ładowania danych... 9 1.3. Hurtownia danych a pozostałe elementy

Bardziej szczegółowo

Business Intelligence (BI) Hurtownie danych, Eksploracja danych. Business Intelligence (BI) Mnogość pojęć z okolic BI

Business Intelligence (BI) Hurtownie danych, Eksploracja danych. Business Intelligence (BI) Mnogość pojęć z okolic BI Business Intelligence (BI) Hurtownie danych, Eksploracja danych Na początek tłumaczenie inteligencja biznesowa (fatalnie!) analityka biznesowa (lepiej?) usługi biznesowe (lepiej?) przetwarzanie analityczne

Bardziej szczegółowo

Wprowadzenie do hurtowni danych

Wprowadzenie do hurtowni danych Wprowadzenie do hurtowni danych przygotował: Paweł Kasprowski Informacje ogólne ( pawel@kasprowski.pl ) Wykładowca: Paweł Kasprowski Temat: Wprowadzenie do hurtowni danych Umiejętności wymagane: Znajomość

Bardziej szczegółowo

Hurtownie Danych. Dariusz Dymek

Hurtownie Danych. Dariusz Dymek Dariusz Dymek 2013-15 1 Definicja Hurtownia danych to tematyczna baza danych, która trwale przechowuje zintegrowane dane opisane wymiarem czasu [Inmon96] Hurtownie danych są ukierunkowane na realizację

Bardziej szczegółowo

Hurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL

Hurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL Hurtownie danych Ładowanie, integracja i aktualizacja danych. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH Źródła danych ETL Centralna hurtownia danych Do hurtowni

Bardziej szczegółowo

PROGRAM NAUCZANIA DLA ZAWODU TECHNIK INFORMATYK, 351203 O STRUKTURZE PRZEDMIOTOWEJ

PROGRAM NAUCZANIA DLA ZAWODU TECHNIK INFORMATYK, 351203 O STRUKTURZE PRZEDMIOTOWEJ PROGRAM NAUCZANIA DLA ZAWODU TECHNIK INFORMATYK, 351203 O STRUKTURZE PRZEDMIOTOWEJ Systemy baz danych 1. 2 Wstęp do baz danych 2. 2 Relacyjny model baz danych. 3. 2 Normalizacja baz danych. 4. 2 Cechy

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Bazy danych. Plan wykładu. Rozproszona baza danych. Fragmetaryzacja. Cechy bazy rozproszonej. Replikacje (zalety) Wykład 15: Rozproszone bazy danych

Bazy danych. Plan wykładu. Rozproszona baza danych. Fragmetaryzacja. Cechy bazy rozproszonej. Replikacje (zalety) Wykład 15: Rozproszone bazy danych Plan wykładu Bazy danych Cechy rozproszonej bazy danych Implementacja rozproszonej bazy Wykład 15: Rozproszone bazy danych Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy danych (studia

Bardziej szczegółowo

WF-Analizy informacje ogólne

WF-Analizy informacje ogólne WF-Analizy informacje ogólne Pakiet WF Analizy przeznaczony jest dla posiadaczy programu WF-Mag oraz WF FaKir. Umożliwia on tworzenie bardzo wszechstronnych, szybkich, dynamicznych analiz. Program przeznaczony

Bardziej szczegółowo

Wykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.

Wykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J. Bazy Danych Wykład II Encja, atrybuty, klucze Związki encji Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło 1 Encja Byt pojęciowy

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Kierunek studiów: Informatyka Stosowana Forma

Bardziej szczegółowo

RAPORT ZA III KWARTAŁ 2009 MINERAL MIDRANGE SPÓŁKA AKCYJNA. z siedzibą w Warszawie

RAPORT ZA III KWARTAŁ 2009 MINERAL MIDRANGE SPÓŁKA AKCYJNA. z siedzibą w Warszawie RAPORT ZA III KWARTAŁ 2009 MINERAL MIDRANGE SPÓŁKA AKCYJNA z siedzibą w Warszawie za okres 01.07.2009 30.09.2009 Warszawa, 9 listopad 2009 roku Spis treści raportu WYBRANE DANE FINANSOWE ZA OKRES... 3

Bardziej szczegółowo

Multi-wyszukiwarki. Mediacyjne Systemy Zapytań wprowadzenie. Architektury i technologie integracji danych Systemy Mediacyjne

Multi-wyszukiwarki. Mediacyjne Systemy Zapytań wprowadzenie. Architektury i technologie integracji danych Systemy Mediacyjne Architektury i technologie integracji danych Systemy Mediacyjne Multi-wyszukiwarki Wprowadzenie do Mediacyjnych Systemów Zapytań (MQS) Architektura MQS Cechy funkcjonalne MQS Cechy implementacyjne MQS

Bardziej szczegółowo

HARMONOGRAM: DZIEŃ GODZINA MIEJSCE PROWADZĄCY TEMAT OPIS

HARMONOGRAM: DZIEŃ GODZINA MIEJSCE PROWADZĄCY TEMAT OPIS WARSZTATY Grupa warsztatowa nr 1 System bilingowy operator telekomunikacyjny od środka Uczestnikom warsztatów zostanie przedstawiona specyfika działalności operatora telekomunikacyjnego ze szczególnym

Bardziej szczegółowo

Wstęp wprowadzający do laboratorium 2. mgr inż. Rafał Grycuk

Wstęp wprowadzający do laboratorium 2. mgr inż. Rafał Grycuk Wstęp wprowadzający do laboratorium 2 mgr inż. Rafał Grycuk Plan prezentacji 1. Czym jest T-SQL i czym się różni od standardu SQL 2. Typy zapytań 3. Zapytanie typu SELECT 4. Słowo o indeksach T-SQL (1)

Bardziej szczegółowo

Bazy danych i usługi sieciowe

Bazy danych i usługi sieciowe Bazy danych i usługi sieciowe Wstęp do problematyki baz danych Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) BDiUS w. I Jesień 2014 1 / 17 Plan wykładu 1 Bazy danych 1 Motywacja

Bardziej szczegółowo

Hurtownie danych i systemy wspomagania decyzji. Olaf Morawski Hewlett-Packard Polska Sp. z o.o., ul. Szturmowa 2A, 02-678 Warszawa

Hurtownie danych i systemy wspomagania decyzji. Olaf Morawski Hewlett-Packard Polska Sp. z o.o., ul. Szturmowa 2A, 02-678 Warszawa Hurtownie danych i systemy wspomagania decyzji Olaf Morawski Hewlett-Packard Polska Sp. z o.o., ul. Szturmowa 2A, 02-678 Warszawa Poniższy tekst opisuje architekturę systemów wspomagania decyzji, z uwzględnieniem

Bardziej szczegółowo

Przestrzenne bazy danych. Definicja i cechy przestrzennych baz danych

Przestrzenne bazy danych. Definicja i cechy przestrzennych baz danych Przestrzenne bazy danych Definicja i cechy przestrzennych baz danych Zakres wykładów Wstęp do przestrzennych baz danych Typy geometryczne Funkcje geometryczne Modelowanie danych Metody rozwiązywania problemów

Bardziej szczegółowo