Bazy analityczne (hurtownie danych, bazy OLAP)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bazy analityczne (hurtownie danych, bazy OLAP)"

Transkrypt

1 Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi, albo systemami typu OLTP (Online Transactional Processing). Cechą charakterystyczną takich systemów jest to, że zawierają one zawsze aktualne informacje związane z pracą przedsiębiorstwa czy organizacji. Na przykład jeśli baza danych obsługuje działanie sklepu, to w momencie sprzedaży dowolnego towaru informacja o tej sprzedaży jest już zapisana w bazie. W systemach tego typu przetwarzanie danych jest realizowane z wykorzystaniem transakcji. Istnieją również systemy baz danych, które służą głównie do wykonywania analiz. Systemy te zawierają dane historyczne, niekoniecznie aktualne (np. dane mogą być przesyłane do systemu raz w tygodniu lub raz w miesiącu). Specjalny sposób organizowania danych ma zapewnić jak najszybsze wykonywanie analiz, na przykład wyznaczanie trendów sprzedaży, analizę wydajności różnych oddziałów firmy itp. Przetwarzanie danych w takich systemach nie musi być transakcyjne. Część systemów analitycznych jest często określana jako systemy typu OLAP (Online Analytical Processing) lub bazy OLAP. Bazy OLAP umożliwiają wykonywanie analiz drążących (drill-down, drill-up) w specjalnych strukturach, zwanych wielowymiarowymi kostkami (prezentacja na tablicy). Bazy OLAP są inaczej projektowane jak bazy OLTP. Do zbudowania bazy OLAP na ogół potrzebne jest zbudowanie tzw. hurtowni danych. Hurtownie danych to specyficzne bazy danych, które mają specjalną strukturę tabel, gromadzą zagregowane dane pochodzące z wielu źródeł (np. różnych systemów baz danych), dane w hurtowniach są ujednolicone (doprowadzone do pewnej standardowej postaci, z jednakowymi skrótami, nazwami itp.). Hurtownie danych mogą same służyć do wykonywania analiz, mogą być też źródłem danych do baz danych OLAP. Hurtownie danych i bazy OLAP Hurtownia danych i baza OLAP udostępnia dane historyczne, analityczne (w odróżnieniu od danych operacyjnych, stanowiących element dynamiczny, podlegający ciągłym zmianom aktualizacjom). Wykonywanie szybkich analiz danych jest elementem systemów wspomagania decyzji, użytecznym zwłaszcza dla kierowniczych kadr firm, analityków, menedżerów. Analizowane są informacje gospodarcze. Jedną z najważniejszych zalet systemów OLAP jest wyeliminowanie języka SQL do stosowania skomplikowanych analiz. Zatem analizy mogą być wykonywane przez osoby nie znające języka, a na ogół znajomości SQL nie można wymagać od kadry zarządzającej przedsiębiorstwami. Narzędzia (bazy) OLAP umożliwiają szybkie wykonywanie skomplikowanych analiz danych przy pomocy specjalnych tzw. wielowymiarowych struktur danych i przy wykorzystaniu tzw. analiz drążących (drill-down, drill-up) opisanych poniżej. Dane przechowywane są w specjalnych strukturach (na różne sposoby). 1

2 W systemach OLAP analizowane są wielkości, które nazywane są miarami, przy czym analiza miar wykonywana jest dla różnych tzw. wymiarów. Miarą może być ilość sprzedanych towarów, kwota uzyskana ze sprzedaży, a wymiarami czas (w różnych okresach, tworzących hierarchię, np. rok kwartał miesiąc dzień), regiony geograficzne związane z klientem (też mogą tworzyć hierarchię np. państwo region województwo miasto sklep sprzedawca). Wymiary mogą również dotyczyć produktu i tworzyć hierarchię np. nazwa produktu, marka produktu, kategoria produktu, dział produktu. Tabele stanowiące podstawowe dane do analiz mogą tworzyć tzw. schemat gwiaździsty. Tabele powinny zawierać miary są to tzw. tabele faktów oraz wymiary są to tzw. tabele informacyjne. W środku schematu gwiaździstego jest tabela faktów, zawierająca klucze obce z tabel informacyjnych. Będzie to jeszcze objaśnione poniżej. Korzystając z danych w tabelach faktów i tabelach informacyjnych można zbudować struktury danych zwane kostkami. Krawędzie kostki definiowane są przez osie wymiarów, wnętrze kostki wypełniają miary, odpowiednio agregowane. Kostki mogą przechowywać agregacje miar dla różnych poziomów hierarchii każdego wymiaru wiąże się to z dodatkową czasem dużą objętością danych na dysku. Niemniej przechowywanie takich agregacji przyspiesza wykonywanie analiz. Sposoby przechowywania danych w bazach OLAP Nie wszystkie dane w bazach OLAP muszą być przechowywane w wielowymiarowych kostkach. Pierwszym krokiem w celu skonstruowania bazy OLAP jest konstrukcja hurtowni danych, która jest relacyjną bazą o specyficznej strukturze zawiera tzw. tabele faktów i wymiarów. Dopiero po zbudowaniu takiej bazy, budowana jest baza OLAP. Sposoby zapisu danych w bazach OLAP: ROLAP (Relational OLAP) agregacje umieszczane są w tabelach relacyjnych, bez stosowania struktur wielowymiarowych. W tabelach relacyjnych przechowywane są szczegółowe dane (np. szczegóły sprzedaży). Spora część potrzebnych do analiz agregacji nie jest przechowywana w ogóle, tylko jest wyliczana na bieżąco. W przypadku ROLAP istotne przyśpieszenie analiz można uzyskać stosując odpowiednie indeksowanie. MOLAP wszystkie dane umieszczane są w specjalnej strukturze, kostce wielowymiarowej. Można przechowywać wszystkie potrzebne agregacje dla wszystkich poziomów hierarchii wszystkich wymiarów. Realizacja jakichkolwiek zapytań jest wówczas bardzo szybka, jednak wadą tego rozwiązania jest bardzo duża zajętość przestrzeni dyskowej, zatem na ogół przechowywane są tylko wybrane agregacje. HOLAP dane szczegółowe nie są umieszczane w strukturach wielowymiarowych, są tam zapisywane tylko agregacje. W kostkach przechowywane są wybrane agregacje (na ogół nie wszystkie możliwe), natomiast dane szczegółowe przechowywane są w tabelach. Poniższy rysunek prezentuje okno programu Analysis Manager, który służy do zarządzania bazami OLAP w systemie MS SQL Serwer W systemie SQL Server 2008 do tworzenia baz OLAP i do oglądania kostek służy Business Intelligence Development Studio (instaluje się razem z Analysis Services z płyty instalacyjnej SQL Serwera). 2

3 Przykłady wielowymiarowej prezentacji danych 3

4 Po wybraniu Education Level Graduate oraz Gender = F Tabela faktów Tabela, która gromadzi miary oraz zawiera klucze z tzw. tabel wymiarów nazywa się tabelą faktów. Tabela faktów musi zawierać agregacje interesujących nas miar (np. sumy kwot 4

5 sprzedaży, sumy liczby sprzedanych sztuk itp.) na największym interesującym nas poziomie szczegółowości. Np. jeśli interesują nas kwoty, za ile sprzedano każdego towaru w poszczególnych dniach, przy czym osobno jest to liczone dla każdego sprzedawcy, to przykładowa tabela faktów może wyglądać tak: Id_dnia Id_sprzedawcy Id_klienta Id_towaru Suma kwot Zwykle tabela faktów jest bardzo duża, może zawierać miliony i więcej wierszy. Oczywiście jest ona tym większa im większy jest największy interesujący nas poziom szczegółowości. Z tabelą faktów połączone są (poprzez klucze) tabele wymiarów. Tabele wymiarów schemat gwiazdy Są dwa standardowe schematy konstrukcji tabel wymiarów. Pierwszy z nich to schemat gwiazdy, w którym w każdym wymiarze cała hierarchia jest zdefiniowana w jednej tabeli. Np. hierarchia w wymiarze Sprzedawców może być taka: Id sprzed Nazwisko i imię 1 Kowalski Jan 2 Nowak Piotr Nazwa sklepu Id miasta Miasto Region Państwo Kontynent ABC KrPl Kraków Małopolska Polska Europa ABC KrPl Kraków Małopolska Polska Europa 3 Ziaja Marek SSS WwPl Warszawa Mazowsze Polska Europa 4 Brown Peter XYZ WwPl Warsaw Arizona USA Am. Płn. 5 Smith Paul XYZ WwU Warsaw Arizona USA Am. Płn. 6 Wrona Adam BMX KrPl Kraków Małopolska Polska Europa 7 Żaba Pawel XFR PaFr Paris Ille de France Francja Europa 8 Kowal XXX PaFr Paris Ille de Francja Europa 5

6 Adam France Z danych tej tabeli można budować hierarchę w wymiarze Sprzedawców: Kontynent, Państwo, Region, Sklep, Sprzedawca. Proszę zwrócić uwagę, że tabela ta nie jest znormalizowana. Występuje w niej redundancja! Wielokrotnie piszemy, że Polska jest w Europie, Kraków jest w Polsce itd. Nazwa schematu gwiazdy pochodzi stąd, że gdybyśmy narysowali tabelę faktów w środku rysunku a dookoła tabele wymiarów, to przypominałoby to gwiazdę z tyloma ramionami, ile jest tabel wymiarów. Tabele wymiarów schemat płatka śniegu Drugi Schemat konstrukcji tabel wymiarów to schemat płatka śniegu. Tabele wymiarów są tu lepiej znormalizowane jak w przypadku schematu gwiazdy. Można to prześledzić na powyższym przykładzie. Zamiast jednej tabeli wymiary Sprzedawców byłoby kilka tabel. Oto one: Sprzedawcy: Id sprzed Nazwisko i imię Nazwa sklepu 1 Kowalski Jan ABC KrPl 2 Nowak Piotr ABC KrPl Id miasta 3 Ziaja Marek SSS WwPl 4 Brown Peter XYZ WwPl 5 Smith Paul XYZ WwU 6 Wrona Adam BMX KrPl 7 Żaba Pawel XFR PaFr 8 Kowal Adam XXX PaFr Kluczem jest tu Id_sprzedawcy. Tabela ta łączy się z tabelą faktów przez pole Id_sprzedawcy. Miasta: Id miasta Miasto Region KrPl Kraków Małopolska WwPl Warszawa Mazowsze WwPl Warsaw Arizona PaFr Paris Ille de France Kluczem jest tu Id_miasta. Tabela ta łączy się z tabelą Sprzedawcy przez pole Id_miasta. 6

7 Regiony: Region Państwo Małopolska Polska Mazowsze Polska Arizona USA Ille de Francja France Kluczem jest tu pole Region. Tabela ta łączy się z tabelą Miasta przez pole Region. Państwa: Państwo Polska USA Francja Kontynent Europa Am. Płn. Europa Kluczem jest tu pole Państwo. Tabela łączy się z tabelą Regiony przez pole Państwo. Hurtownię danych można zasilić danymi korzystając ze specjalnych narzędzi ETL Extract, Transform and Load. Kolejny krok, to zbudowanie bazy OLAP, która pobiera dane (np. z wykorzystaniem ETL) z hurtowni danych. Podsumowanie: Charakterystyka systemów OLTP Przetwarzają transakcje w czasie rzeczywistym. Zawierają struktury danych zoptymalizowane pod kątem dopisywania aktualizacji danych (znormalizowane tabele). Często nie mają specjalnych wydajnych mechanizmów służących do wykonywania skomplikowanych analiz. Charakterystyka hurtowni danych Dostarczają danych do analiz. Integrują dane z heterogenicznych źródeł. Dane są poprawne dzięki zasilaniu ze źródeł operacyjnych (OLTP). Organizują dane w statyczne (rzadko zmieniające się) grupy tematyczne. Przechowują dane w strukturach zoptymalizowanych do wyszukiwania i pobierania. Często tabele nie są znormalizowane. 7

8 Charakterystyka systemów OLAP Dostarczają narzędzi do analiz drążących (drill-down, drill-up) w kostkach wielowymiarowych. Umożliwiają wykonywanie skomplikowanych zmieniających się zapytań agregujących bez konieczności poznania języka SQL. Przechowują w sposób efektywny agregacje dla zdefiniowanych wymiarów (wielopoziomowych, zhierarchizowanych). 8

Usługi analityczne budowa kostki analitycznej Część pierwsza.

Usługi analityczne budowa kostki analitycznej Część pierwsza. Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.

Bardziej szczegółowo

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1) Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni

Bardziej szczegółowo

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw. Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą

Bardziej szczegółowo

Hurtownie danych a transakcyjne bazy danych

Hurtownie danych a transakcyjne bazy danych Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,

Bardziej szczegółowo

Wielowymiarowy model danych

Wielowymiarowy model danych Plan wykładu Wielowymiarowy model danych 1. Model danych 2. Analiza wielowymiarowa 3. Model wielowymiarowy: koncepcja wymiarów i faktów 4. Operacje modelu wielowymiarowego 5. Implementacje modelu wielowymiarowego:

Bardziej szczegółowo

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje

Bardziej szczegółowo

Wstęp do Business Intelligence

Wstęp do Business Intelligence Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana

Bardziej szczegółowo

Wprowadzenie do hurtowni danych

Wprowadzenie do hurtowni danych Wprowadzenie do hurtowni danych przygotował: Paweł Kasprowski Informacje ogólne ( pawel@kasprowski.pl ) Wykładowca: Paweł Kasprowski Temat: Wprowadzenie do hurtowni danych Umiejętności wymagane: Znajomość

Bardziej szczegółowo

Wprowadzenie do hurtowni danych

Wprowadzenie do hurtowni danych Wprowadzenie do hurtowni danych przygotował: Paweł Kasprowski Kostka Kostka (cube) to podstawowy element hurtowni Kostka jest wielowymiarowa (od 1 do N wymiarów) Kostka składa się z: faktów wektora wartości

Bardziej szczegółowo

BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego

BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne

Bardziej szczegółowo

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...

Bardziej szczegółowo

Część I Istota analizy biznesowej a Analysis Services

Część I Istota analizy biznesowej a Analysis Services Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty

Bardziej szczegółowo

Spis tre±ci. Przedmowa... Cz ± I

Spis tre±ci. Przedmowa... Cz ± I Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja

Bardziej szczegółowo

Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com

Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Media Partners Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Adrian Chodkowski Konsultant Business Intelligence w Jcommerce S.A Certyfikowany

Bardziej szczegółowo

Bazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI

Bazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Bazy danych Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Wszechnica Poranna Trzy tematy: 1. Bazy danych - jak je ugryźć? 2. Język SQL podstawy zapytań. 3. Mechanizmy wewnętrzne baz danych czyli co

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

Migracja Business Intelligence do wersji 2013.3

Migracja Business Intelligence do wersji 2013.3 Migracja Business Intelligence do wersji 2013.3 Copyright 2013 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

Wprowadzenie do technologii Business Intelligence i hurtowni danych

Wprowadzenie do technologii Business Intelligence i hurtowni danych Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence

Bardziej szczegółowo

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla

Bardziej szczegółowo

Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych

Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych 1 Plan wykładu 2 Hurtownie danych Integracja danych za pomocą hurtowni danych Przetwarzanie analityczne OLAP Model wielowymiarowy Implementacje modelu wielowymiarowego ROLAP MOLAP Odświeżanie hurtowni

Bardziej szczegółowo

Co to jest Business Intelligence?

Co to jest Business Intelligence? Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl

Bardziej szczegółowo

Informatyzacja przedsiębiorstw

Informatyzacja przedsiębiorstw Informatyzacja przedsiębiorstw Izabela Szczęch Politechnika Poznańska Plan wykładu Elementy Business Intelligence Model wielowymiarowy Modelowanie hurtowni danych podstawowe schematy logiczne Operacje

Bardziej szczegółowo

Hurtownia danych praktyczne zastosowania

Hurtownia danych praktyczne zastosowania Hurtownia danych praktyczne zastosowania Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia

Bardziej szczegółowo

Usługa archiwizacji danych w systemie Eureca. Marek Jelenik CONTROLLING SYSTEMS sp. z o.o.

Usługa archiwizacji danych w systemie Eureca. Marek Jelenik CONTROLLING SYSTEMS sp. z o.o. Usługa archiwizacji danych w systemie Eureca Marek Jelenik CONTROLLING SYSTEMS sp. z o.o. Na czym polega usługa archiwizacji danych w systemie Eureca? 2012 2013 2014 2015 Przed archiwizacją SQL OLAP BAZA

Bardziej szczegółowo

STROJENIE BAZ DANYCH: INDEKSY. Cezary Ołtuszyk coltuszyk.wordpress.com

STROJENIE BAZ DANYCH: INDEKSY. Cezary Ołtuszyk coltuszyk.wordpress.com STROJENIE BAZ DANYCH: INDEKSY Cezary Ołtuszyk coltuszyk.wordpress.com Plan spotkania I. Wprowadzenie do strojenia baz danych II. III. IV. Mierzenie wydajności Jak SQL Server przechowuje i czyta dane? Budowa

Bardziej szczegółowo

Hurtownie danych w praktyce

Hurtownie danych w praktyce Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence

Bardziej szczegółowo

Migracja Business Intelligence do wersji 11.0

Migracja Business Intelligence do wersji 11.0 Migracja Business Intelligence do wersji 11.0 Copyright 2012 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

Schematy logiczne dla hurtowni danych

Schematy logiczne dla hurtowni danych Schematy logiczne dla hurtowni danych 26 Plan rozdziału 27 Model biznesowy, logiczny i fizyczny hurtowni danych Podstawowe pojęcia w modelu logicznym, logiczny model wielowymiarowy Implementacje ROLAP/MOLAP

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia

Bardziej szczegółowo

HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K.

HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K. HURTOWNIE DANYCH Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl # 1 Część I. Tworzenie hurtowni danych 1. Co to jest hurtownia danych? 2. Model

Bardziej szczegółowo

Usługi analityczne podstawy budowy kostki analitycznej Część druga - zarządzanie

Usługi analityczne podstawy budowy kostki analitycznej Część druga - zarządzanie Usługi analityczne podstawy budowy kostki analitycznej Część druga - zarządzanie Nasz definicja kostki analitycznie nie zawiera jeszcze danych. Aby zbudować kostkę funkcjonalnie działającą musimy, dokonać

Bardziej szczegółowo

Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych

Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Autor: mgr inż.

Bardziej szczegółowo

Proces ETL MS SQL Server Integration Services (SSIS)

Proces ETL MS SQL Server Integration Services (SSIS) Proces ETL MS SQL Server Integration Services (SSIS) 3 kwietnia 2014 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot

Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot Alberto Ferrari i Marco Russo Przekład: Marek Włodarz APN Promise Warszawa 2014 Spis treści Wprowadzenie............................................................

Bardziej szczegółowo

Paweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl

Paweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Paweł Gołębiewski Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Droga na szczyt Narzędzie Business Intelligence. Czyli kiedy podjąć decyzję o wdrożeniu?

Bardziej szczegółowo

Kostki OLAP i język MDX

Kostki OLAP i język MDX Kostki OLAP i język MDX 24 kwietnia 2015 r. Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały różne rodzaje zadań,

Bardziej szczegółowo

Instalacja SQL Server Express. Logowanie na stronie Microsoftu

Instalacja SQL Server Express. Logowanie na stronie Microsoftu Instalacja SQL Server Express Logowanie na stronie Microsoftu Wybór wersji do pobrania Pobieranie startuje, przechodzimy do strony z poradami. Wypakowujemy pobrany plik. Otwiera się okno instalacji. Wybieramy

Bardziej szczegółowo

Funkcje systemu infokadra

Funkcje systemu infokadra System Informacji Zarządczej - infokadra jest rozwiązaniem skierowanym dla kadry zarządzającej w obszarze administracji publicznej. Jest przyjaznym i łatwym w użyciu narzędziem analityczno-raportowym,

Bardziej szczegółowo

Zaawansowane systemy baz danych - ZSBD. Hurtownie danych 1. Problematyka hurtowni danych. Wykład przygotował: Robert Wrembel. ZSBD wykład 12 (1)

Zaawansowane systemy baz danych - ZSBD. Hurtownie danych 1. Problematyka hurtowni danych. Wykład przygotował: Robert Wrembel. ZSBD wykład 12 (1) Hurtownie danych 1 Problematyka hurtowni danych Wykład przygotował: Robert Wrembel ZSBD wykład 12 (1) 1 Plan wykładu Problematyka integracji danych Integracja danych za pomocą hurtowni danych Przetwarzanie

Bardziej szczegółowo

OLAP i hurtownie danych c.d.

OLAP i hurtownie danych c.d. OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji

Bardziej szczegółowo

Podstawowe zagadnienia z zakresu baz danych

Podstawowe zagadnienia z zakresu baz danych Podstawowe zagadnienia z zakresu baz danych Jednym z najważniejszych współczesnych zastosowań komputerów we wszelkich dziedzinach życia jest gromadzenie, wyszukiwanie i udostępnianie informacji. Specjalizowane

Bardziej szczegółowo

Plan. Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP

Plan. Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP WYKŁAD 12: OLAP Plan Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP Motywacja: Zaawansowane metody ekstrakcji danych i techniki przechowywania danych Rozwój wielu dziedzin zastosowań

Bardziej szczegółowo

TOPWEB Microsoft Excel 2013 i PowerBI Przygotowanie danych, analiza i efektowna prezentacja wyników raportów

TOPWEB Microsoft Excel 2013 i PowerBI Przygotowanie danych, analiza i efektowna prezentacja wyników raportów TOPWEB Microsoft Excel 2013 i PowerBI Przygotowanie danych, analiza i efektowna prezentacja wyników raportów Przeznaczenie szkolenia Szkolenie dla osób chcących: Profesjonalnie przygotowywać dane do dalszej

Bardziej szczegółowo

Baza danych. Baza danych to:

Baza danych. Baza danych to: Baza danych Baza danych to: zbiór danych o określonej strukturze, zapisany na zewnętrznym nośniku (najczęściej dysku twardym komputera), mogący zaspokoić potrzeby wielu użytkowników korzystających z niego

Bardziej szczegółowo

Problematyka hurtowni danych

Problematyka hurtowni danych Plan wykładu Problematyka hurtowni 1. Bibliografia 2. Systemy klasy Business Intelligence 3. Podejścia do integracji 4. Definicja hurtowni 5. Architektury hurtowni Hurtownie, wykład Bartosz Bębel E-mail:

Bardziej szczegółowo

Migracja Business Intelligence do wersji 10.2. Aktualizacja dokumentu: 2011-02-04

Migracja Business Intelligence do wersji 10.2. Aktualizacja dokumentu: 2011-02-04 Migracja Business Intelligence do wersji 10.2 Aktualizacja dokumentu: 2011-02-04 Spis treści Wstęp... 3 1 Tabela czynności jakie należy wykonać podczas migracji modułu Business Intelligence... 4 2 Migracja

Bardziej szczegółowo

Grupa kursów: Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30

Grupa kursów: Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30 Zał. nr 4 do ZW 33/01 WYDZIAŁ INFORMATYKI I ZĄRZADZANIA KARTA PRZEDMIOTU Nazwa w języku polskim: Wprowadzenie do SQL Nazwa w języku angielskim: Introduction to SQL Kierunek studiów (jeśli dotyczy): Zarządzanie

Bardziej szczegółowo

Hurtownie danych i systemy wspomagania decyzji. Olaf Morawski Hewlett-Packard Polska Sp. z o.o., ul. Szturmowa 2A, 02-678 Warszawa

Hurtownie danych i systemy wspomagania decyzji. Olaf Morawski Hewlett-Packard Polska Sp. z o.o., ul. Szturmowa 2A, 02-678 Warszawa Hurtownie danych i systemy wspomagania decyzji Olaf Morawski Hewlett-Packard Polska Sp. z o.o., ul. Szturmowa 2A, 02-678 Warszawa Poniższy tekst opisuje architekturę systemów wspomagania decyzji, z uwzględnieniem

Bardziej szczegółowo

Oferta szkoleniowa Yosi.pl 2012/2013

Oferta szkoleniowa Yosi.pl 2012/2013 Oferta szkoleniowa Yosi.pl 2012/2013 "Podróżnik nie posiadający wiedzy, jest jak ptak bez skrzydeł" Sa'Di, Gulistan (1258 rok) Szanowni Państwo, Yosi.pl to dynamicznie rozwijająca się firma z Krakowa.

Bardziej szczegółowo

Bartłomiej Graczyk MCT,MCITP,MCTS

Bartłomiej Graczyk MCT,MCITP,MCTS Praktyczne wykorzystanie elementów raportowania (SSRS, Performance Point Service, Excel Services, Visio Services) w Microsoft Project 2010 Bartłomiej Graczyk 2012-11-05 Bartłomiej Graczyk MCT,MCITP,MCTS

Bardziej szczegółowo

Alicja Marszałek Różne rodzaje baz danych

Alicja Marszałek Różne rodzaje baz danych Alicja Marszałek Różne rodzaje baz danych Rodzaje baz danych Bazy danych można podzielić wg struktur organizacji danych, których używają. Można podzielić je na: Bazy proste Bazy złożone Bazy proste Bazy

Bardziej szczegółowo

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu

Bardziej szczegółowo

Administracja Internetowymi systemami baz danych (niestacjonarne) Laboratorium 7. Analysis Services (Business Intelligence)

Administracja Internetowymi systemami baz danych (niestacjonarne) Laboratorium 7. Analysis Services (Business Intelligence) Administracja Internetowymi systemami baz danych (niestacjonarne) Laboratorium 7 Analysis Services (Business Intelligence) Instrukcja do laboratorium 7: I. Tworzenie kostek OLAP oraz budowa struktury hurtowni

Bardziej szczegółowo

PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX

PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX Architektura i struktura funkcjonalna systemu PROPHIX PROPHIX Corporate Performance Management (Zarządzanie Wydajnością Firmy) System do samodzielnego planowania,

Bardziej szczegółowo

PROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER

PROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER PROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER Katarzyna BŁASZCZYK, Ryszard KNOSALA Streszczenie: Artykuł opisuje podstawową tematykę związaną z systemami

Bardziej szczegółowo

Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g

Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g XI Konferencja PLOUG Kościelisko Październik 2005 Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g Bartosz Bębel, Julusz Jezierski, Robert Wrembel Politechnika Poznańska, Instytut Informatyki

Bardziej szczegółowo

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Systemy baz danych w zarządzaniu przedsiębiorstwem W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Proces zarządzania danymi Zarządzanie danymi obejmuje czynności: gromadzenie

Bardziej szczegółowo

SZKOLENIE: Administrator baz danych. Cel szkolenia

SZKOLENIE: Administrator baz danych. Cel szkolenia SZKOLENIE: Administrator baz danych. Cel szkolenia Kurs Administrator baz danych skierowany jest przede wszystkim do osób zamierzających rozwijać umiejętności w zakresie administrowania bazami danych.

Bardziej szczegółowo

Usługi biznesowe w SQL Server 2008. Omówienie oraz przykład zastosowania w przemyśle

Usługi biznesowe w SQL Server 2008. Omówienie oraz przykład zastosowania w przemyśle Usługi biznesowe w SQL Server 2008. Omówienie oraz przykład zastosowania w przemyśle Artur Gramacki, Jarosław Gramacki Streszczenie: W pracy zaprezentowano składniki systemu bazodanowego SQL Server 2008

Bardziej szczegółowo

BAZY DANYCH LABORATORIUM. Studia niestacjonarne I stopnia

BAZY DANYCH LABORATORIUM. Studia niestacjonarne I stopnia BAZY DANYCH LABORATORIUM Studia niestacjonarne I stopnia Gdańsk, 2011 1. Cel zajęć Celem zajęć laboratoryjnych jest wyrobienie praktycznej umiejętności tworzenia modelu logicznego danych a nastepnie implementacji

Bardziej szczegółowo

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38 Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem zajęcia 1 dr Jakub Boratyński pok. A38 Program zajęć Bazy danych jako podstawowy element systemów informatycznych wykorzystywanych

Bardziej szczegółowo

Maciej Kiewra mkiewra@qbico.pl. Quality Business Intelligence Consulting http://www.qbico.pl

Maciej Kiewra mkiewra@qbico.pl. Quality Business Intelligence Consulting http://www.qbico.pl Maciej Kiewra mkiewra@qbico.pl Quality Business Intelligence Consulting http://www.qbico.pl Wstęp Integration Services narzędzie do integracji danych Pomyślane do implementacji procesów ETL Extract ekstrakcja

Bardziej szczegółowo

Baza danych. Modele danych

Baza danych. Modele danych Rola baz danych Systemy informatyczne stosowane w obsłudze działalności gospodarczej pełnią funkcję polegającą na gromadzeniu i przetwarzaniu danych. Typowe operacje wykonywane na danych w systemach ewidencyjno-sprawozdawczych

Bardziej szczegółowo

Integracja i Eksploracja Danych

Integracja i Eksploracja Danych Integracja i Eksploracja Danych Laboratorium nr 4 Wprowadzenie do języka MDX. Zadania: 1) Analogicznie do przykładu zawartego na poprzednich zajęciach, korzystając z SQL Server Business Intelligence Development

Bardziej szczegółowo

Modelowanie koncepcyjne hurtowni danych

Modelowanie koncepcyjne hurtowni danych Modelowanie koncepcyjne hurtowni danych Izabela Szczę ch Instytut Informatyki, Politechnika Poznań ska Modele przetwarzania danych Dwa podstawowe modele przetwarzania danych: OLTP (On-Line Transaction

Bardziej szczegółowo

ZARZĄDZANIE NIEJEDNORODNYMI, ROZPROSZONYMI ZASOBAMI INFORMACJI

ZARZĄDZANIE NIEJEDNORODNYMI, ROZPROSZONYMI ZASOBAMI INFORMACJI Scientific Bulletin of Chełm Section of Mathematics and Computer Science No. 1/2009 ZARZĄDZANIE NIEJEDNORODNYMI, ROZPROSZONYMI ZASOBAMI INFORMACJI DANIEL SKOWROŃSKI, ZDZISŁAW ŁOJEWSKI Uniwersytet Marii

Bardziej szczegółowo

TABELE PRZESTAWNE W CONTROLLINGU I ANALIZIE SPRZEDAŻY SZKOLENIE OTWARTE KRAKÓW 8 GODZIN DYDAKTYCZNYCH. Controlling Node Próchnicki Wojciech

TABELE PRZESTAWNE W CONTROLLINGU I ANALIZIE SPRZEDAŻY SZKOLENIE OTWARTE KRAKÓW 8 GODZIN DYDAKTYCZNYCH. Controlling Node Próchnicki Wojciech TABELE PRZESTAWNE W CONTROLLINGU I ANALIZIE SPRZEDAŻY SZKOLENIE OTWARTE KRAKÓW 8 GODZIN DYDAKTYCZNYCH Controlling Node Próchnicki Wojciech TABELE PRZESTAWNE W CONTROLLINGU I ANALIZIE SPRZEDAŻY CZAS TRWANIA:

Bardziej szczegółowo

RELACYJNE BAZY DANYCH

RELACYJNE BAZY DANYCH RELACYJNE BAZY DANYCH Aleksander Łuczyk Bielsko-Biała, 15 kwiecień 2015 r. Ludzie używają baz danych każdego dnia. Książka telefoniczna, zbiór wizytówek przypiętych nad biurkiem, encyklopedia czy chociażby

Bardziej szczegółowo

Program szkoleniowy Efektywni50+ Moduł V Raportowanie dla potrzeb analizy danych

Program szkoleniowy Efektywni50+ Moduł V Raportowanie dla potrzeb analizy danych Program szkoleniowy Efektywni50+ Moduł V Raportowanie dla potrzeb analizy danych 1 Wprowadzenie do technologii MS SQL Server 2012 Reporting Services. 2h Podstawowym zadaniem omawianej jednostki lekcyjnej

Bardziej szczegółowo

Politechnika Łódzka, ul. Żeromskiego 116, 90-924 Łódź, tel. (042) 631 28 83. Projekt współfinansowany przez Unię Europejską

Politechnika Łódzka, ul. Żeromskiego 116, 90-924 Łódź, tel. (042) 631 28 83. Projekt współfinansowany przez Unię Europejską Oracle i DB2 zadanie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki Łódzkiej

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: BAZY DANYCH 2. Kod przedmiotu: Bda 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka Stosowana

Bardziej szczegółowo

System informatyczny zdalnego egzaminowania

System informatyczny zdalnego egzaminowania System informatyczny zdalnego egzaminowania - strategia, logika systemu, architektura, ewaluacja (platforma informatyczna e-matura) redakcja Sławomir Wiak Konrad Szumigaj Redakcja: prof. dr hab. inż. Sławomir

Bardziej szczegółowo

Adam Cankudis IFP UAM

Adam Cankudis IFP UAM W s t ę p d o r e l a c y j n y c h b a z d a n y c h Adam Cankudis IFP UAM B i b l i o g r a f i a T. Morzy i in., Bazy danych, [w:] Studia Informatyczne, Pierwszy stopie ń, http://wazniak.mimuw.edu.pl/

Bardziej szczegółowo

Liczba godzin 1,2 Organizacja zajęć Omówienie programu nauczania 2. Tematyka zajęć

Liczba godzin 1,2 Organizacja zajęć Omówienie programu nauczania 2. Tematyka zajęć rzedmiot : Systemy operacyjne Rok szkolny : 015/016 Klasa : 3 INF godz. x 30 tyg.= 60 godz. Zawód : technik informatyk; symbol 35103 rowadzący : Jacek Herbut Henryk Kuczmierczyk Numer lekcji Dział Tematyka

Bardziej szczegółowo

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego.

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego. Tabele przestawne Niekiedy istnieje potrzeba dokonania podsumowania zawartości bazy danych w formie dodatkowej tabeli. Tabelę taką, podsumowującą wybrane pola bazy danych, nazywamy tabelą przestawną. Zasady

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Opis spełnienia wymagań (PSBD)

Opis spełnienia wymagań (PSBD) Numer sprawy: DPZ/4/15 Nr arch. DPZ/087/059-16/15 1. Zakres przedmiotu zamówienia: Opis spełnienia wymagań (PSBD) Załącznik nr 1d do formularza ofertowego Wykonanie dzieła polegającego na dostawie, kompleksowym

Bardziej szczegółowo

Moduł mapowania danych

Moduł mapowania danych Moduł mapowania danych Grudzień 2013 Wszelkie prawa zastrzeżone. Dokument może być reprodukowany lub przechowywany bez ograniczeń tylko w całości. W przeciwnym przypadku, żadna część niniejszego dokumentu,

Bardziej szczegółowo

Część I Tworzenie baz danych SQL Server na potrzeby przechowywania danych

Część I Tworzenie baz danych SQL Server na potrzeby przechowywania danych Spis treści Wprowadzenie... ix Organizacja ksiąŝki... ix Od czego zacząć?... x Konwencje przyjęte w ksiąŝce... x Wymagania systemowe... xi Przykłady kodu... xii Konfiguracja SQL Server 2005 Express Edition...

Bardziej szczegółowo

... Impuls BI Controlling

... Impuls BI Controlling 1 Impuls BI Controlling 3 OLAP 4 Hurtownia danych 4 Korzyści płynące z wdrożenia Impuls BI Controlling 5 Cechy Impuls BI Controlling 6 Główne obszary wspomagania zarządzania 7 2 Impuls BI Controlling Impuls

Bardziej szczegółowo

Nowości w 3.1. Andrzej Solski. CONTROLLING SYSTEMS sp. z o.o.

Nowości w 3.1. Andrzej Solski. CONTROLLING SYSTEMS sp. z o.o. Nowości w 3.1. Andrzej Solski CONTROLLING SYSTEMS sp. z o.o. Nowości w 3.1. KREATOR TWORZENIA WYMIARÓW KREATOR TWORZENIA STRUKTUR WIELOWYMIAROWYCH PREDEFINIOWANE MIARY WYLICZANE LINKED OBJECT kostka w

Bardziej szczegółowo

Hurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL

Hurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL Hurtownie danych Ładowanie, integracja i aktualizacja danych. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH Źródła danych ETL Centralna hurtownia danych Do hurtowni

Bardziej szczegółowo

Bazy danych i ich aplikacje

Bazy danych i ich aplikacje ORAZ ZAPRASZAJĄ DO UDZIAŁU W STUDIACH PODYPLOMOWYCH Celem Studiów jest praktyczne zapoznanie słuchaczy z podstawowymi technikami tworzenia i administrowania bazami oraz systemami informacyjnymi. W trakcie

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA

OPIS PRZEDMIOTU ZAMÓWIENIA Załącznik nr 1 OPIS PRZEDMIOTU ZAMÓWIENIA Licencja Microsoft Windows SQL Server Standard 2012 (nie OEM) lub w pełni równoważny oraz licencja umożliwiająca dostęp do Microsoft Windows SQL Server Standard

Bardziej szczegółowo

Wprowadzenie do baz danych

Wprowadzenie do baz danych Wprowadzenie do baz danych Bazy danych stanowią obecnie jedno z ważniejszych zastosowań komputerów. Podstawowe zalety komputerowej bazy to przede wszystkim szybkość przetwarzania danych, ilość dostępnych

Bardziej szczegółowo

OnLine Analytical Processing (OLAP) Kostki OLAP i zapytania MDX

OnLine Analytical Processing (OLAP) Kostki OLAP i zapytania MDX OnLine Analytical Processing (OLAP) Kostki OLAP i zapytania MDX 24 kwietnia 2014 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE INFORMACJĄ W BAZIE DNYCH. podstawowe pojęcia.

ORGANIZACJA I ZARZĄDZANIE INFORMACJĄ W BAZIE DNYCH. podstawowe pojęcia. ORGANIZACJA I ZARZĄDZANIE INFORMACJĄ W BAZIE DNYCH. podstawowe pojęcia. 1. Definicja bazy danych, Baza danych to uporządkowany zbiór danych z pewnej dziedziny tematycznej, zorganizowany w sposób ułatwiający

Bardziej szczegółowo

Część 1: OLAP. Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych

Część 1: OLAP. Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych Łukasz Przywarty 171018 Wrocław, 05.12.2012 r. Grupa: CZW/N 10:00-13:00 Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych Część 1: OLAP Prowadzący: dr inż. Henryk Maciejewski

Bardziej szczegółowo

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni Akademia Morska w Gdyni Gdynia 2004 1. Podstawowe definicje Baza danych to uporządkowany zbiór danych umożliwiający łatwe przeszukiwanie i aktualizację. System zarządzania bazą danych (DBMS) to oprogramowanie

Bardziej szczegółowo

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Literatura i inne pomoce Silberschatz A., Korth H., S. Sudarshan: Database

Bardziej szczegółowo