Schematy logiczne dla hurtowni danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Schematy logiczne dla hurtowni danych"

Transkrypt

1 Schematy logiczne dla hurtowni danych 26

2 Plan rozdziału 27 Model biznesowy, logiczny i fizyczny hurtowni danych Podstawowe pojęcia w modelu logicznym, logiczny model wielowymiarowy Implementacje ROLAP/MOLAP logicznego modelu wielowymiarowego Schematy logiczne dla relacyjnej hurtowni danych gwiazda, płatek śniegu, konstelacja faktów Modelowanie schematu logicznego hurtowni danych Oracle Warehouse Builder Tworzenie logicznego modelu wielowymiarowego Oracle Enterprise Manager Oracle Warehouse Builder

3 Etapy projektowania hurtowni danych 28 Model biznesowy Efekt analizy strategicznej Identyfikacja miar i wymiarów dla poszczególnych procesów biznesowych Model logiczny (wymiarowy) Model abstrakcyjny, konceptualny Encje i atrybuty (reprezentowane w modelu relacyjnym jako tabele i powiązania między nimi) Model fizyczny Wybór sposobu składowania danych Formaty danych Strategie partycjonowania Wybór indeksów Wybór materializowanych perspektyw

4 Miary i wymiary 29 Miary (ang. measures), inaczej: fakty (ang. facts) Wartości ciągłe, numeryczne Typowe miary: wartość sprzedaży, koszt, zysk, sprzedana ilość Miary mogą być: addytywne (we wszystkich wymiarach) np. liczba sprzedanych sztuk częściowo addytywne (addytywne w niektórych wymiarach) np. stan w magazynie nieaddytywne Wymiary (ang. dimensions) region Wartości dyskretne, niezmienne lub rzadko zmienne Nadają znaczenie danym (miarom, faktom) miejscowość Typowe wymiary: klient, czas, produkt, sklep Hierarchie (ang. hierarchies) umożliwiają organizację danych na różnych poziomach agregacji sklep Poziom (ang. level) reprezentuje pozycję w hierarchii Atrybuty (ang. attributes) dostarczają dodatkowych informacji o danych, np. kolor, smak, dzień tygodnia

5 Wielowymiarowy model danych 30 Dane na potrzeby przetwarzania OLAP są w naturalny sposób przedstawiane w postaci wielowymiarowej (3 lub więcej wymiarów) logiczny model wielowymiarowy Logiczne kostki stanowią sposób organizacji miar mających te same wymiary czas mln 232 4mln 117 3mln sklep 854 8mln 567 7mln 98 1mln Dallas Denver 1mln 2mln 3mln - Seattle produkt Thriller Comedy Drama

6 Implementacje logicznego wielowymiarowego modelu danych 31 Relacyjna implementacja modelu (ROLAP) Powiązane ze sobą tabele relacyjne: tabele faktów i wymiarów Schematy logiczne: Schemat gwiazdy (ang. star schema) Schemat płatka śniegu (ang. snowflake schema) Konstelacja faktów (ang. fact constellation) Materializowane perspektywy dla agregatów Logiczny model wielowymiarowy definiowany poprzez OLAP Catalog lub na poziomie aplikacji analitycznej (!) Wielowymiarowa reprezentacja modelu (MOLAP) Dane fizycznie składowane w postaci wielowymiarowej W Oracle jako analityczne przestrzenie robocze (ang. Analytic Workspaces - AW)

7 OLAP Catalog 32 Definiuje logiczne obiekty wielowymiarowe i mapuje je na fizyczne źródła danych Może być wykorzystany do opisu danych relacyjnych w celu ich załadowania do analitycznej przestrzeni roboczej (AW) Stanowi źródło metadanych dla BI Beans Dane mogą być fizycznie składowane w relacyjnych tabelach lub analitycznych przestrzeniach roboczych (AW) Niezależnie od sposobu składowania danych, metadane w OLAP Catalog są niezbędne, aby dane były dostępne dla BI Beans

8 Schemat gwiazdy 33 Centralna tabela faktów Wymiary zdenormalizowane Tabela faktów połączona z tabelami wymiarów poprzez klucze główne i klucze obce CZAS id_czasu data_transakcji dzien_tygodnia czy_swieto PRODUKTY id_produktu nazwa_produktu typ_produktu kategoria_produktu departament SPRZEDAZ id_czasu id_produktu id_sklepu suma_sprzedazy suma_zysku liczba_klientow liczba_towarow SKLEPY id_sklepu nazwa_sklepu miejscowosc region

9 Charakterystyka schematu gwiazdy 34 Prosta struktura -> schemat łatwy do zrozumienia Duża efektywność zapytań ze względu na niewielką liczbę połączeń tabel Stosunkowo długi czas ładowania danych do tabel wymiarów ze względu na denormalizację Dominująca struktura dla hurtowni danych, wspierana przez wiele narzędzi Schemat zalecany przez Oracle

10 Schemat płatka śniegu 35 Centralna tabela faktów Wymiary znormalizowane TYPY_PRODUKTOW id_typu typ_produktu KATEGORIE id_kategorii kategoria_produktu id_typu PRODUKTY id_produktu nazwa_produktu departament id_kategorii CZAS id_czasu data_transakcji dzien_tygodnia czy_swieto SPRZEDAZ id_czasu id_produktu id_sklepu suma_sprzedazy suma_zysku liczba_klientow liczba_towarow MIEJSCOWOSCI id_miejscowosci miejscowosc id_regionu SKLEPY id_sklepu nazwa_sklepu id_miejscowosci REGIONY id_regionu region

11 Charakterystyka schematu płatka śniegu 36 Spadek wydajności zapytań w porównaniu ze schematem gwiazdy ze względu na większą liczbę połączeń tabel Struktura łatwiejsza do modyfikacji Krótki czas ładowania danych do tabel (normalizacja -> mniejszy rozmiar) Wykorzystywany rzadziej niż schemat gwiazdy, gdyż efektywność zapytań jest ważniejsza niż efektywność ładowania danych do tabel wymiarów

12 Konstelacja faktów 37 Schemat stanowiący kombinację schematów gwiazd współdzielących niektóre wymiary Różne tabele faktów mogą odwoływać się do różnych poziomów danego wymiaru DIM_1 DIM_3 FACT_1 FACT_2 DIM_4 DIM_2

13 38 Charakterystyka tabeli faktów i wymiarów Tabela faktów: Zawiera numeryczne miary Posiada wieloatrybutowy klucz główny złożony z kluczy obcych odwołujących się do wymiarów Największy rozmiar spośród tabel tworzących gwiazdę Typowo zawiera ponad 90% danych Jej rozmiar szybko się powiększa Tabele wymiarów: Zawierają atrybuty opisowe Nadają znaczenie faktom Definiują przestrzeń faktów Zawierają dane stosunkowo statyczne Podlegają zmianom np. pojawianie się nowych klientów, produktów

14 Narzędzia do modelowania schematu logicznego relacyjnej hurtowni danych 39 Kartka i ołówek Oracle Designer Narzędzie ogólnego przeznaczenia Brak szczególnego wsparcia dla hurtowni danych Oracle Warehouse Builder Modelowanie schematu jest jedną z funkcji narzędzia Sensowny wybór gdy wykorzystane będą również inne możliwości OWB: Dokumentacja projektu hurtowni danych (repozytorium metadanych) Obsługa procesu ETL, generacja skryptów

15 OWB: Tworzenie repozytorium 40 Przed rozpoczęciem projektowania za pomocą Oracle Warehouse Builder należy utworzyć repozytorium Do tworzenia repozytorium OWB służy narzędzie OWB Repository Assistant Podstawowe kroki: Wybór lub utworzenie użytkownika właściciela repozytorium Wybór przestrzeni tabel dla repozytorium

16 OWB: Modelowanie relacyjnego schematu 41 hurtowni danych Przykład (1/10) Uruchomienie OWB Client Logowanie jako: Właściciel repozytorium Użytkownik, któremu właściciel repozytorium nadał prawo dostępu call WBSecurityHelper.registerOWBUser('User1')

17 OWB: Modelowanie relacyjnego schematu 42 hurtowni danych Przykład (2/10) Główne okno OWB Client nawigator obiektów projektu OWB składuje definicje dla schematu docelowego w modułach Uruchomienie kreatora nowego modułu:

18 OWB: Modelowanie relacyjnego schematu 43 hurtowni danych Przykład (3/10) Tworzenie modułu Moduł schematu docelowego hurtowni danych Możliwość importu metadanych przez DB Link

19 OWB: Modelowanie relacyjnego schematu 44 hurtowni danych Przykład (4/10) Tworzenie modułu -> wybór lokalizacji Na tym etapie lokalizacja jest abstrakcyjna (nie podaje się parametrów połączenia)

20 OWB: Modelowanie relacyjnego schematu 45 hurtowni danych Przykład (5/10) Utworzony moduł drzewko modułu w nawigatorze obiektów

21 OWB: Modelowanie relacyjnego schematu 46 hurtowni danych Przykład (6/10) Tworzenie definicji tabeli w modelu schematu docelowego

22 OWB: Modelowanie relacyjnego schematu 47 hurtowni danych Przykład (7/10) Tworzenie definicji tabeli cd. (więzy integralnościowe)

23 OWB: Modelowanie relacyjnego schematu 48 hurtowni danych Przykład (8/10) Edycja definicji tabeli edytor graficzny

24 OWB: Modelowanie relacyjnego schematu 49 hurtowni danych Przykład (9/10) Edytor graficzny: wizualizacja powiązanych tabel

25 OWB: Modelowanie relacyjnego schematu 50 hurtowni danych Przykład (10/10) Generacja skryptów SQL Uwaga: Istnieje możliwość bezpośredniego utworzenia obiektów w docelowej bazie danych narzędziem OWB Deployment Manager

26 OWB: Tworzenie repozytorium Runtime Repository 51 Tworzenie obiektów hurtowni danych w docelowej bazie danych musi być poprzedzone utworzeniem w niej: Repozytorium Runtime Repository Schematu docelowego (ang. target schema) Do realizacji powyższych zadań służy OWB Runtime Assistant Jednym z kroków jest tworzenie użytkownika, który będzie służył do pracy z repozytoriów (oprócz właściciela) Standardowe pytania: nazwa schematu, nazwy przestrzeni tabel itp.

27 OWB: Tworzenie obiektów hurtowni danych Przykład (1/4) 52 Utworzenie połączenia z Runtime Repository Uruchomienie narzędzia Deployment Manager z menu OWB Client

28 OWB: Tworzenie obiektów hurtowni danych Przykład (2/4) 53 Wybór obiektów, które maja zostać utworzone i start procesu

29 OWB: Tworzenie obiektów hurtowni danych Przykład (3/4) 54 Rejestracja abstrakcyjnej dotąd lokalizacji

30 OWB: Tworzenie obiektów hurtowni danych Przykład (4/4) 55 Zakończenie procesu tworzenia obiektów Po wybraniu opcji Deploy obiekty zostaną utworzone w bazie danych

31 Kroki tworzenia metadanych dla logicznego modelu wielowymiarowego w OLAP Catalog Utworzenie logicznych wymiarów Specyfikacja poziomów, atrybutów i hierarchii Logiczne wymiary zostaną oparte o obiekty DIMENSION w bazie danych 2. Utworzenie logicznych kostek i specyfikacja ich krawędzi (wymiarów) Logiczne kostki są definiowane tylko w postaci metadanych, nie odpowiadają im żadne obiekty w bazie danych 3. Utworzenie logicznych miar reprezentujących fakty. Powiązanie miar z kostkami 4. Mapowanie logicznych struktur na źródła danych

32 Narzędzia do definiowania logicznego modelu wielowymiarowego Oracle Enterprise Manager (OEM) uwaga: tabele tworzące schemat relacyjny muszą istnieć i powinny mieć klucze główne i obce 57 CWM2 API zbiór pakietów PL/SQL np. poprzez SQL*Plus Oracle Warehouse Bulder (OWB) bez wcześniejszego definiowania tabel! z możliwością utworzenia Analytic Workspace i wypełnienia go danymi ze schematu relacyjnego

33 OEM: Tworzenie metadanych OLAP Przykład (1/15) 58 Logowanie do EM 10g Dostęp przez http Domyślny port: 5500 Użytkownik musi posiadać: - przywilej SELECT ANY DICTIONARY - rolę OLAP_DBA

34 OEM: Tworzenie metadanych OLAP Przykład (2/15) 59 Utworzenie wymiarów

35 OEM: Tworzenie metadanych OLAP Przykład (3/15) 60 Tworzenie wymiaru -> utworzenie poziomów

36 OEM: Tworzenie metadanych OLAP Przykład (4/15) 61 Tworzenie wymiaru -> utworzenie hierarchii

37 OEM: Tworzenie metadanych OLAP Przykład (5/15) 62 Tworzenie wymiaru -> utworzenie atrybutów

38 OEM: Tworzenie metadanych OLAP Przykład (6/15) 63 Tworzenie wymiaru -> opcje OLAP

39 OEM: Tworzenie metadanych OLAP Przykład (7/15) 64 Tworzenie wymiarów: efekt końcowy Oprócz metadanych w OLAP Catalog powstaje obiekt DIMENSION w bazie danych CREATE DIMENSION SCOTT.SKLEPY LEVEL SKLEP IS SKLEPY.ID_SKLEPU LEVEL MIEJSCOWOSC IS SKLEPY.MIEJSCOWOSC LEVEL REGION IS SKLEPY.REGION HIERARCHY H_SKLEPY (SKLEP CHILD OF MIEJSCOWOSC CHILD OF REGION) ATTRIBUTE SKLEP DETERMINES (SKLEPY.ID_SKLEPU, SKLEPY.NAZWA_SKLEPU) ATTRIBUTE MIEJSCOWOSC DETERMINES SKLEPY.MIEJSCOWOSC ATTRIBUTE REGION DETERMINES SKLEPY.REGION

40 OEM: Tworzenie metadanych OLAP Przykład (8/15) 65 Tworzenie kostki Tabela lub perspektywa

41 OEM: Tworzenie metadanych OLAP Przykład (9/15) 66 Tworzenie kostki -> wskazanie wymiarów dla krawędzi

42 OEM: Tworzenie metadanych OLAP Przykład (10/15) 67 Tworzenie kostki -> dodanie miar

43 OEM: Tworzenie metadanych OLAP Przykład (11/15) Tworzenie kostki -> specyfikacja operatorów do agregacji miar w poszczególnych wymiarach Domyślnie sumowanie (SUM) 68

44 OEM: Tworzenie metadanych OLAP Przykład (12/15) 69 Tworzenie kostki -> efekt końcowy Wynikiem tworzenia kostki są jedynie metadane w OLAP Catalog - nie są tworzone żadne obiekty w bazie danych! Uwaga: Jeżeli metadane w OLAP Catalog są tworzone w celu umożliwienia BI Beans pracy na relacyjnym schemacie (bez AW), należy z poziomu SQL*Plus wykonać: exec cwm2_olap_metadata_refresh.mr_refresh;

45 OEM: Tworzenie metadanych OLAP Przykład (13/15) Tworzenie folderu miar (ang. measure folder) Składnica danych dla aplikacji OLAP składa się z miar pogrupowanych w foldery miar W celu udostępnienia zawartości kostek (miar) aplikacjom OLAP (np. BI Beans), konieczne jest umieszczenie potrzebnych miar w folderach miar 70 Możliwość tworzenia hierarchii folderów

46 OEM: Tworzenie metadanych OLAP Przykład (14/15) 71 Tworzenie folderu miar -> wybór miar

47 OEM: Tworzenie metadanych OLAP Przykład (15/15) 72 Tworzenie folderu miar -> efekt końcowy

48 OWB: Tworzenie metadanych OLAP Przykład (1/7) 73 Tworzenie wymiarów

49 OWB: Tworzenie metadanych OLAP Przykład (2/7) 74 Tworzenie wymiarów -> Poziomy i ich atrybuty

50 OWB: Tworzenie metadanych OLAP Przykład (3/7) 75 Tworzenie wymiarów -> hierarchie

51 OWB: Tworzenie metadanych OLAP Przykład (4/7) 76 Edytor graficzny dla utworzonego wymiaru

52 OWB: Tworzenie metadanych OLAP Przykład (5/7) 77 Tworzenie kostki Tworzenie kostki -> klucze obce do wymiarów

53 OWB: Tworzenie metadanych OLAP Przykład (6/7) 78 Tworzenie kostki -> definiowanie miar

54 OWB: Tworzenie metadanych OLAP Przykład (7/7) 79 Edytor kostki wizualna prezentacja utworzonej kostki

55 80 OWB: Tworzenie obiektów bazodanowych modelu wielowymiarowego w b.d. Uruchomienie narzędzia Deployment Manager W bazie danych tworzone są tabele i obiekty dimension Nie powstają wpisy w OLAP Catalog!

56 OWB: Transfer metadanych OLAP do bazy danych Przykład (1/5) W celu eksportu metadanych OLAP o kostkach i wymiarach do bazy danych (OLAP Catalog) należy utworzyć kolekcję (obiekt Collection) Kolekcja stanowi zbiornik metadanych na potrzeby ich eksportu do innych narzędzi Miary zgromadzone w jednej kolekcji po eksporcie do bazy danych znajdą się w jednym folderze miar (measure folder) 81

57 OWB: Transfer metadanych OLAP do bazy danych Przykład (2/5) 82 Tworzenie kolekcji -> specyfikacja zawartości

58 OWB: Transfer metadanych OLAP do bazy danych Przykład (3/5) 83 Eksport metadanych Opcja Oracle9i OLAP działa też dla Oracle10g

59 OWB: Transfer metadanych OLAP do bazy danych Przykład (4/5) 84 Parametry transferu metadanych Możliwość utworzenia Analytic Workspace i wypełnienia go danymi Alternatywą jest ograniczenie się do transferu metadanych (OLAP Catalog, logiczna kostka na schemacie relacyjnym) Tworzenie AW Wypełnienie AW danymi

60 OWB: Transfer metadanych OLAP do bazy danych Przykład (5/5) 85 Transfer metadanych do OLAP Catalog efekt końcowy Możliwość generacji skryptów bez lub z uruchomieniem ich w b.d. Skrypt kończy się wywołaniem olapsys.cwm2_olap_metadata_refresh.mr_refresh Kostki mogą być wykorzystywane w BI Beans Utworzone logiczne obiekty wielowymiarowe (wymiary logiczne, kostki, foldery miar) są widoczne w Oracle Enterprise Manager

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1) Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni

Bardziej szczegółowo

Wprowadzenie do technologii Business Intelligence i hurtowni danych

Wprowadzenie do technologii Business Intelligence i hurtowni danych Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence

Bardziej szczegółowo

Wielowymiarowy model danych

Wielowymiarowy model danych Plan wykładu Wielowymiarowy model danych 1. Model danych 2. Analiza wielowymiarowa 3. Model wielowymiarowy: koncepcja wymiarów i faktów 4. Operacje modelu wielowymiarowego 5. Implementacje modelu wielowymiarowego:

Bardziej szczegółowo

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw. Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą

Bardziej szczegółowo

Wprowadzenie do hurtowni danych

Wprowadzenie do hurtowni danych Wprowadzenie do hurtowni danych przygotował: Paweł Kasprowski Kostka Kostka (cube) to podstawowy element hurtowni Kostka jest wielowymiarowa (od 1 do N wymiarów) Kostka składa się z: faktów wektora wartości

Bardziej szczegółowo

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Problematyka zasilania hurtowni danych - Oracle Data Integrator Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel

Bardziej szczegółowo

Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych

Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych 1 Plan wykładu 2 Hurtownie danych Integracja danych za pomocą hurtowni danych Przetwarzanie analityczne OLAP Model wielowymiarowy Implementacje modelu wielowymiarowego ROLAP MOLAP Odświeżanie hurtowni

Bardziej szczegółowo

Usługi analityczne budowa kostki analitycznej Część pierwsza.

Usługi analityczne budowa kostki analitycznej Część pierwsza. Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.

Bardziej szczegółowo

Część I Istota analizy biznesowej a Analysis Services

Część I Istota analizy biznesowej a Analysis Services Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w

Bardziej szczegółowo

Hurtownie danych a transakcyjne bazy danych

Hurtownie danych a transakcyjne bazy danych Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,

Bardziej szczegółowo

Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g

Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g XI Konferencja PLOUG Kościelisko Październik 2005 Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g Bartosz Bębel, Julusz Jezierski, Robert Wrembel Politechnika Poznańska, Instytut Informatyki

Bardziej szczegółowo

Informatyzacja przedsiębiorstw

Informatyzacja przedsiębiorstw Informatyzacja przedsiębiorstw Izabela Szczęch Politechnika Poznańska Plan wykładu Elementy Business Intelligence Model wielowymiarowy Modelowanie hurtowni danych podstawowe schematy logiczne Operacje

Bardziej szczegółowo

BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego

BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne

Bardziej szczegółowo

Oracle Designer. Oracle Designer jest jednym z głównych komponentów pakietu Oracle Developer Suite. Oracle Designer wspiera :

Oracle Designer. Oracle Designer jest jednym z głównych komponentów pakietu Oracle Developer Suite. Oracle Designer wspiera : Oracle Designer Oracle Designer jest jednym z głównych komponentów pakietu Oracle Developer Suite. Oracle Designer wspiera : - modelowanie procesów biznesowych - analizę systemu informatycznego - projektowanie

Bardziej szczegółowo

Business Intelligence Beans + Oracle JDeveloper

Business Intelligence Beans + Oracle JDeveloper Business Intelligence Beans + Oracle JDeveloper 360 Plan rozdziału 361 Wprowadzenie do Java OLAP API Architektura BI Beans Instalacja katalogu BI Beans Tworzenie aplikacji BI Beans Zapisywanie obiektów

Bardziej szczegółowo

Plan. Wprowadzenie. Co to jest APEX? Wprowadzenie. Administracja obszarem roboczym

Plan. Wprowadzenie. Co to jest APEX? Wprowadzenie. Administracja obszarem roboczym 1 Wprowadzenie do środowiska Oracle APEX, obszary robocze, użytkownicy Wprowadzenie Plan Administracja obszarem roboczym 2 Wprowadzenie Co to jest APEX? Co to jest APEX? Architektura Środowisko Oracle

Bardziej szczegółowo

Zaawansowane systemy baz danych - ZSBD. Hurtownie danych 1. Problematyka hurtowni danych. Wykład przygotował: Robert Wrembel. ZSBD wykład 12 (1)

Zaawansowane systemy baz danych - ZSBD. Hurtownie danych 1. Problematyka hurtowni danych. Wykład przygotował: Robert Wrembel. ZSBD wykład 12 (1) Hurtownie danych 1 Problematyka hurtowni danych Wykład przygotował: Robert Wrembel ZSBD wykład 12 (1) 1 Plan wykładu Problematyka integracji danych Integracja danych za pomocą hurtowni danych Przetwarzanie

Bardziej szczegółowo

Wstęp do Business Intelligence

Wstęp do Business Intelligence Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja

Bardziej szczegółowo

Spis tre±ci. Przedmowa... Cz ± I

Spis tre±ci. Przedmowa... Cz ± I Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja

Bardziej szczegółowo

Kostki OLAP i język MDX

Kostki OLAP i język MDX Kostki OLAP i język MDX 24 kwietnia 2015 r. Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały różne rodzaje zadań,

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia

Bardziej szczegółowo

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje

Bardziej szczegółowo

Usługi analityczne podstawy budowy kostki analitycznej Część druga - zarządzanie

Usługi analityczne podstawy budowy kostki analitycznej Część druga - zarządzanie Usługi analityczne podstawy budowy kostki analitycznej Część druga - zarządzanie Nasz definicja kostki analitycznie nie zawiera jeszcze danych. Aby zbudować kostkę funkcjonalnie działającą musimy, dokonać

Bardziej szczegółowo

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/

Bardziej szczegółowo

Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot

Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot Alberto Ferrari i Marco Russo Przekład: Marek Włodarz APN Promise Warszawa 2014 Spis treści Wprowadzenie............................................................

Bardziej szczegółowo

OLAP i hurtownie danych c.d.

OLAP i hurtownie danych c.d. OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty

Bardziej szczegółowo

Migracja Business Intelligence do wersji 2013.3

Migracja Business Intelligence do wersji 2013.3 Migracja Business Intelligence do wersji 2013.3 Copyright 2013 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

Bazy analityczne (hurtownie danych, bazy OLAP)

Bazy analityczne (hurtownie danych, bazy OLAP) Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi,

Bardziej szczegółowo

Relacyjny model baz danych, model związków encji, normalizacje

Relacyjny model baz danych, model związków encji, normalizacje Relacyjny model baz danych, model związków encji, normalizacje Wyklad 3 mgr inż. Maciej Lasota mgr inż. Karol Wieczorek Politechnika Świętokrzyska Katedra Informatyki Kielce, 2009 Definicje Operacje na

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Modelowanie hurtowni danych Model wielowymiarowy

Bardziej szczegółowo

Oracle Application Express -

Oracle Application Express - Oracle Application Express - Wprowadzenie Wprowadzenie Oracle Application Express (dawniej: HTML DB) to narzędzie do szybkiego tworzenia aplikacji Web owych korzystających z bazy danych Oracle. Od użytkownika

Bardziej szczegółowo

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Oracle Hyperion Essbase

Oracle Hyperion Essbase XVI Konferencja PLOUG Kościelisko Październik 2010 Oracle Hyperion Essbase Paweł Chomicz Dyrektor Centrum Kompetencyjnego Oracle w BizTech S.A. pawel.chomicz@biztech.pl; pch64@o2.pl Abstrakt. Wraz z Hyperionem

Bardziej szczegółowo

Hurtownie danych w praktyce

Hurtownie danych w praktyce Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence

Bardziej szczegółowo

1 Wprowadzenie do koncepcji Microsoft Office BI 1 Zakres ksiąŝki 2 Cel ksiąŝki 3 Wprowadzenie do tematu 3 Zawartość rozdziałów 4

1 Wprowadzenie do koncepcji Microsoft Office BI 1 Zakres ksiąŝki 2 Cel ksiąŝki 3 Wprowadzenie do tematu 3 Zawartość rozdziałów 4 1 Wprowadzenie do koncepcji Microsoft Office BI 1 Zakres ksiąŝki 2 Cel ksiąŝki 3 Wprowadzenie do tematu 3 Zawartość rozdziałów 4 2 Tabele przestawne, wykresy przestawne i formatowanie warunkowe 11 Co to

Bardziej szczegółowo

BAZY DANYCH LABORATORIUM. Studia niestacjonarne I stopnia

BAZY DANYCH LABORATORIUM. Studia niestacjonarne I stopnia BAZY DANYCH LABORATORIUM Studia niestacjonarne I stopnia Gdańsk, 2011 1. Cel zajęć Celem zajęć laboratoryjnych jest wyrobienie praktycznej umiejętności tworzenia modelu logicznego danych a nastepnie implementacji

Bardziej szczegółowo

Bazy danych 2. Wykład 1

Bazy danych 2. Wykład 1 Bazy danych 2 Wykład 1 Sprawy organizacyjne Materiały i listy zadań zamieszczane będą na stronie www.math.uni.opole.pl/~ajasi E-mail: standardowy ajasi@math.uni.opole.pl Sprawy organizacyjne Program wykładu

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Designing DW System (R.

Bardziej szczegółowo

nr sprawy: BZP.243.24.2013.ML Wrocław, dn. 29 stycznia 2014 r. INFORMACJA DLA WYKONAWCÓW NR 6

nr sprawy: BZP.243.24.2013.ML Wrocław, dn. 29 stycznia 2014 r. INFORMACJA DLA WYKONAWCÓW NR 6 nr sprawy: BZP.243.24.2013.ML Wrocław, dn. 29 stycznia 2014 r. INFORMACJA DLA WYKONAWCÓW NR 6 dotyczy: postępowania nr BZP.243.24.2013.ML prowadzonego w trybie przetargu nieograniczonego na realizację

Bardziej szczegółowo

Projektowanie bazy danych przykład

Projektowanie bazy danych przykład Projektowanie bazy danych przykład Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeń wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

Co to jest Business Intelligence?

Co to jest Business Intelligence? Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl

Bardziej szczegółowo

HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K.

HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K. HURTOWNIE DANYCH Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl # 1 Część I. Tworzenie hurtowni danych 1. Co to jest hurtownia danych? 2. Model

Bardziej szczegółowo

Instalacja SQL Server Express. Logowanie na stronie Microsoftu

Instalacja SQL Server Express. Logowanie na stronie Microsoftu Instalacja SQL Server Express Logowanie na stronie Microsoftu Wybór wersji do pobrania Pobieranie startuje, przechodzimy do strony z poradami. Wypakowujemy pobrany plik. Otwiera się okno instalacji. Wybieramy

Bardziej szczegółowo

Plan. Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP

Plan. Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP WYKŁAD 12: OLAP Plan Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP Motywacja: Zaawansowane metody ekstrakcji danych i techniki przechowywania danych Rozwój wielu dziedzin zastosowań

Bardziej szczegółowo

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko Podstawowe pojęcia dotyczące relacyjnych baz danych mgr inż. Krzysztof Szałajko Czym jest baza danych? Co rozumiemy przez dane? Czym jest system zarządzania bazą danych? 2 / 25 Baza danych Baza danych

Bardziej szczegółowo

Administracja i programowanie pod Microsoft SQL Server 2000

Administracja i programowanie pod Microsoft SQL Server 2000 Administracja i programowanie pod Paweł Rajba pawel@ii.uni.wroc.pl http://www.kursy24.eu/ Zawartość modułu 1 Przegląd zawartości SQL Servera Podstawowe usługi SQL Servera Programy narzędziowe Bazy danych

Bardziej szczegółowo

Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com

Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Media Partners Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Adrian Chodkowski Konsultant Business Intelligence w Jcommerce S.A Certyfikowany

Bardziej szczegółowo

Wykład I. Wprowadzenie do baz danych

Wykład I. Wprowadzenie do baz danych Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles

Bardziej szczegółowo

Transformacja modelu ER do modelu relacyjnego

Transformacja modelu ER do modelu relacyjnego Transformacja modelu ER do modelu relacyjnego Wykład przygotował: Robert Wrembel BD wykład 4 (1) 1 Plan wykładu Transformacja encji Transformacja związków Transformacja hierarchii encji BD wykład 4 (2)

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA

OPIS PRZEDMIOTU ZAMÓWIENIA Załącznik nr 1 OPIS PRZEDMIOTU ZAMÓWIENIA Licencja Microsoft Windows SQL Server Standard 2012 (nie OEM) lub w pełni równoważny oraz licencja umożliwiająca dostęp do Microsoft Windows SQL Server Standard

Bardziej szczegółowo

Wprowadzenie do baz danych

Wprowadzenie do baz danych Wprowadzenie do baz danych Bazy danych stanowią obecnie jedno z ważniejszych zastosowań komputerów. Podstawowe zalety komputerowej bazy to przede wszystkim szybkość przetwarzania danych, ilość dostępnych

Bardziej szczegółowo

LK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika

LK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika LK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika Prowadzący: Dr inż. Jacek Habel Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów

Bardziej szczegółowo

Koncepcja systemu informatycznego realizującego w środowisku Oracle Spatial proces generalizacji modelu BDOT10 do postaci BDOT50

Koncepcja systemu informatycznego realizującego w środowisku Oracle Spatial proces generalizacji modelu BDOT10 do postaci BDOT50 Koncepcja systemu informatycznego realizującego w środowisku Oracle Spatial proces generalizacji modelu BDOT10 do postaci BDOT50 Architektura systemu Architektura systemu System udostępnia dwa kanały dostępu,

Bardziej szczegółowo

Oracle OLAP. Przygotowanie danych

Oracle OLAP. Przygotowanie danych Oracle OLAP Tutorial przedstawia narzędzie firmy Oracle o nazwie Analytic Workspace Manager. Narzędzie służy do modelowania kostki MOLAP, dla której źródłem danych mogą być dane relacyjne. Przygotowanie

Bardziej szczegółowo

Wprowadzenie do hurtowni danych

Wprowadzenie do hurtowni danych Wprowadzenie do hurtowni danych przygotował: Paweł Kasprowski Informacje ogólne ( pawel@kasprowski.pl ) Wykładowca: Paweł Kasprowski Temat: Wprowadzenie do hurtowni danych Umiejętności wymagane: Znajomość

Bardziej szczegółowo

Tworzenie aplikacji bazodanowych

Tworzenie aplikacji bazodanowych Wydział Informatyki Politechnika Białostocka Studia stacjonarne Tworzenie aplikacji bazodanowych Prowadzący: pokój: E-mail: WWW: Małgorzata Krętowska, Agnieszka Oniśko 206 (Małgorzata Krętowska), 207 (Agnieszka

Bardziej szczegółowo

Hurtownie danych. Metadane i czynniki jakości. http://zajecia.jakubw.pl/hur BAZA METADANYCH. Centralna hurtownia danych. Metadane

Hurtownie danych. Metadane i czynniki jakości. http://zajecia.jakubw.pl/hur BAZA METADANYCH. Centralna hurtownia danych. Metadane Hurtownie danych Metadane i czynniki jakości. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur Magazyny danych operacyjnych, źródła ładowanie, czyszczenie, transformacja BAZA METADANYCH

Bardziej szczegółowo

Bazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000

Bazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 Bazy Danych LITERATURA C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 J. D. Ullman, Systemy baz danych, WNT - W-wa, 1998 J. D. Ullman, J. Widom, Podstawowy

Bardziej szczegółowo

PROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER

PROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER PROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER Katarzyna BŁASZCZYK, Ryszard KNOSALA Streszczenie: Artykuł opisuje podstawową tematykę związaną z systemami

Bardziej szczegółowo

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy

Bardziej szczegółowo

Opis spełnienia wymagań (PSBD)

Opis spełnienia wymagań (PSBD) Numer sprawy: DPZ/4/15 Nr arch. DPZ/087/059-16/15 1. Zakres przedmiotu zamówienia: Opis spełnienia wymagań (PSBD) Załącznik nr 1d do formularza ofertowego Wykonanie dzieła polegającego na dostawie, kompleksowym

Bardziej szczegółowo

Organizacja zajęć BAZY DANYCH II WYKŁAD 1. Plan wykładu. SZBD Oracle 2010-10-21

Organizacja zajęć BAZY DANYCH II WYKŁAD 1. Plan wykładu. SZBD Oracle 2010-10-21 Organizacja zajęć BAZY DANYCH II WYKŁAD 1 Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.pl Liczba godzin i forma zajęć: 15 godzin wykładu oraz 30 godzin laboratorium Konsultacje:

Bardziej szczegółowo

OnLine Analytical Processing (OLAP) Kostki OLAP i zapytania MDX

OnLine Analytical Processing (OLAP) Kostki OLAP i zapytania MDX OnLine Analytical Processing (OLAP) Kostki OLAP i zapytania MDX 24 kwietnia 2014 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą

Bardziej szczegółowo

Bartłomiej Graczyk MCT,MCITP,MCTS

Bartłomiej Graczyk MCT,MCITP,MCTS Praktyczne wykorzystanie elementów raportowania (SSRS, Performance Point Service, Excel Services, Visio Services) w Microsoft Project 2010 Bartłomiej Graczyk 2012-11-05 Bartłomiej Graczyk MCT,MCITP,MCTS

Bardziej szczegółowo

Administracja Internetowymi systemami baz danych (niestacjonarne) Laboratorium 7. Analysis Services (Business Intelligence)

Administracja Internetowymi systemami baz danych (niestacjonarne) Laboratorium 7. Analysis Services (Business Intelligence) Administracja Internetowymi systemami baz danych (niestacjonarne) Laboratorium 7 Analysis Services (Business Intelligence) Instrukcja do laboratorium 7: I. Tworzenie kostek OLAP oraz budowa struktury hurtowni

Bardziej szczegółowo

LABORATORIUM 8,9: BAZA DANYCH MS-ACCESS

LABORATORIUM 8,9: BAZA DANYCH MS-ACCESS UNIWERSYTET ZIELONOGÓRSKI INSTYTUT INFORMATYKI I ELEKTROTECHNIKI ZAKŁAD INŻYNIERII KOMPUTEROWEJ Przygotowali: mgr inż. Arkadiusz Bukowiec mgr inż. Remigiusz Wiśniewski LABORATORIUM 8,9: BAZA DANYCH MS-ACCESS

Bardziej szczegółowo

ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL

ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL ORACLE System Zarządzania Bazą Danych Oracle Oracle Advanced SQL wersja 1.0 Politechnika Śląska 2008 Raportowanie z wykorzystaniem fraz rollup, cube Frazy cube, rollup, grouping sets umożliwiają rozszerzoną

Bardziej szczegółowo

Bazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI

Bazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Bazy danych Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Wszechnica Poranna Trzy tematy: 1. Bazy danych - jak je ugryźć? 2. Język SQL podstawy zapytań. 3. Mechanizmy wewnętrzne baz danych czyli co

Bardziej szczegółowo

Tworzenie raportów XML Publisher przy użyciu Data Templates

Tworzenie raportów XML Publisher przy użyciu Data Templates Tworzenie raportów XML Publisher przy użyciu Data Templates Wykorzystanie Szablonów Danych (ang. Data templates) jest to jedna z metod tworzenia raportów w technologii XML Publisher bez użycia narzędzia

Bardziej szczegółowo

Hurtownia danych. Załącznik Nr 1 do SIWZ. Opis przedmiotu zamówienia. Lp. FUNKCJONALNOŚĆ/PARAMETRY WYMAGANE

Hurtownia danych. Załącznik Nr 1 do SIWZ. Opis przedmiotu zamówienia. Lp. FUNKCJONALNOŚĆ/PARAMETRY WYMAGANE Załącznik Nr 1 do SIWZ Opis przedmiotu zamówienia Lp. FUNKCJONALNOŚĆ/PARAMETRY WYMAGANE Hurtownia danych 1. Wielowymiarowa hurtownia danych oparta o model konstelacji faktów. 2. Brak ograniczenia na liczbę

Bardziej szczegółowo

Tomasz Grześ. Systemy zarządzania treścią

Tomasz Grześ. Systemy zarządzania treścią Tomasz Grześ Systemy zarządzania treścią Co to jest CMS? CMS (ang. Content Management System System Zarządzania Treścią) CMS definicje TREŚĆ Dowolny rodzaj informacji cyfrowej. Może to być np. tekst, obraz,

Bardziej szczegółowo

Modelowanie hierarchicznych struktur w relacyjnych bazach danych

Modelowanie hierarchicznych struktur w relacyjnych bazach danych Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny

Bardziej szczegółowo

Migracja Business Intelligence do wersji 11.0

Migracja Business Intelligence do wersji 11.0 Migracja Business Intelligence do wersji 11.0 Copyright 2012 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

Zarządzanie kontami użytkowników w i uprawnieniami

Zarządzanie kontami użytkowników w i uprawnieniami 106 Plan prezentacji 107 Zarządzanie kontami użytkowników w i uprawnieniami Schematy a użytkownicy Tworzenie użytkowników, uwierzytelnianie Przywileje systemowe i obiektowe, role Profile kontrola wykorzystania

Bardziej szczegółowo

Co ciekawego w EURECE pojawiło się w wersji 2.4, a być może nie zdążyliście tego odkryć?

Co ciekawego w EURECE pojawiło się w wersji 2.4, a być może nie zdążyliście tego odkryć? Co ciekawego w EURECE pojawiło się w wersji 2.4, a być może nie zdążyliście tego odkryć? Zmiana przyporządkowania elementu wymiaru użytego w strukturze budżetowej do grupy nadrzędnej. Zmiana przyporządkowania

Bardziej szczegółowo

Tabele przestawne jako narzędzie analizy biznesowej

Tabele przestawne jako narzędzie analizy biznesowej Firma szkoleniowa 2014 roku. TOP 3 w rankingu firm szkoleniowych zaprasza na szkolenie: Tabele przestawne jako narzędzie analizy biznesowej warsztaty komputerowe 24-25 września 2015 r. Warszawa Ekspert:

Bardziej szczegółowo

Część I Rozpoczęcie pracy z usługami Reporting Services

Część I Rozpoczęcie pracy z usługami Reporting Services Spis treści Podziękowania... xi Wprowadzenie... xiii Część I Rozpoczęcie pracy z usługami Reporting Services 1 Wprowadzenie do usług Reporting Services... 3 Platforma raportowania... 3 Cykl życia raportu...

Bardziej szczegółowo

PROGRAM NAUCZANIA DLA ZAWODU TECHNIK INFORMATYK, 351203 O STRUKTURZE PRZEDMIOTOWEJ

PROGRAM NAUCZANIA DLA ZAWODU TECHNIK INFORMATYK, 351203 O STRUKTURZE PRZEDMIOTOWEJ PROGRAM NAUCZANIA DLA ZAWODU TECHNIK INFORMATYK, 351203 O STRUKTURZE PRZEDMIOTOWEJ Systemy baz danych 1. 2 Wstęp do baz danych 2. 2 Relacyjny model baz danych. 3. 2 Normalizacja baz danych. 4. 2 Cechy

Bardziej szczegółowo

Business Intelligence (BI) Hurtownie danych, Eksploracja danych. Business Intelligence (BI) Mnogość pojęć z okolic BI

Business Intelligence (BI) Hurtownie danych, Eksploracja danych. Business Intelligence (BI) Mnogość pojęć z okolic BI Business Intelligence (BI) Hurtownie danych, Eksploracja danych Na początek tłumaczenie inteligencja biznesowa (fatalnie!) analityka biznesowa (lepiej?) usługi biznesowe (lepiej?) przetwarzanie analityczne

Bardziej szczegółowo

Nowości w wersji 10.2 Comarch CDN XL Business Intelligence

Nowości w wersji 10.2 Comarch CDN XL Business Intelligence Nowości w wersji 10.2 Comarch CDN XL Business Intelligence Wersja 2.1 Spis treści Spis treści... 2 1 Business Intelligence... 3 1.1 Rozwój obszarów analitycznych... 3 1.1.1 Atrybuty analityczne oraz kody

Bardziej szczegółowo

Nowości w 3.1. Andrzej Solski. CONTROLLING SYSTEMS sp. z o.o.

Nowości w 3.1. Andrzej Solski. CONTROLLING SYSTEMS sp. z o.o. Nowości w 3.1. Andrzej Solski CONTROLLING SYSTEMS sp. z o.o. Nowości w 3.1. KREATOR TWORZENIA WYMIARÓW KREATOR TWORZENIA STRUKTUR WIELOWYMIAROWYCH PREDEFINIOWANE MIARY WYLICZANE LINKED OBJECT kostka w

Bardziej szczegółowo

Tematy projektów Edycja 2014

Tematy projektów Edycja 2014 Tematy projektów Edycja 2014 Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Reguły Projekty zespołowe max. 4

Bardziej szczegółowo

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym konceptualnym modelem danych jest tzw. model związków encji (ERM

Bardziej szczegółowo

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla

Bardziej szczegółowo

Instrukcja obsługi programu

Instrukcja obsługi programu Instrukcja obsługi programu directintegrator ST5 wersja dla WF-Mag (SOTE 5) Spis treści 1. Wstęp...3 2. Instalacja...3 2.1. Przebieg Instalacji...3 2.1.1. Generowanie klucza aplikacji...8 2.1.2. Zakładka

Bardziej szczegółowo

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38 Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem zajęcia 1 dr Jakub Boratyński pok. A38 Program zajęć Bazy danych jako podstawowy element systemów informatycznych wykorzystywanych

Bardziej szczegółowo

PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU. Rozproszone Systemy Baz Danych

PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU. Rozproszone Systemy Baz Danych OPIS PRZEDMIOTU Nazwa przedmiotu Rozproszone Systemy Baz Danych Kod przedmiotu Wydział Instytut/Katedra Kierunek Specjalizacja/specjalność Wydział Matematyki, Fizyki i Techniki Instytut Mechaniki i Informatyki

Bardziej szczegółowo

Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych

Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych dr inż. Adam Iwaniak Infrastruktura Danych Przestrzennych w Polsce i Europie Seminarium, AR Wrocław

Bardziej szczegółowo

Podyplomowe Studium Informatyki w Bizniesie Wydział Matematyki i Informatyki, Uniwersytet Łódzki specjalność: Tworzenie aplikacji w środowisku Oracle

Podyplomowe Studium Informatyki w Bizniesie Wydział Matematyki i Informatyki, Uniwersytet Łódzki specjalność: Tworzenie aplikacji w środowisku Oracle Podyplomowe Studium Informatyki w Bizniesie Wydział Matematyki i Informatyki, Uniwersytet Łódzki specjalność: Tworzenie aplikacji w środowisku Oracle EFEKTY KSZTAŁCENIA Wiedza Absolwent tej specjalności

Bardziej szczegółowo