ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL"

Transkrypt

1 ORACLE System Zarządzania Bazą Danych Oracle Oracle Advanced SQL wersja 1.0 Politechnika Śląska 2008

2 Raportowanie z wykorzystaniem fraz rollup, cube Frazy cube, rollup, grouping sets umożliwiają rozszerzoną specyfikację poziomów grupowania frazy group by standardu SQL. Zapytania wykorzystujące frazy cube, rollup, grouping sets dostarczają pojedynczego zbioru odpowiedzi, który odpowiada połączeniu (UNION ALL) danych pogrupowanych w różny sposób. Fraza rollup wylicza wartości podanych funkcji agregujących na różnych poziomach grupowania od najniższego do najwyższego. Fraza cube rozszerza działanie frazy rollup na wszystkie możliwe kombinacje poziomów agregacji. Funkcja grouping pozwala odróżnić informacje zwracane dzięki zastosowaniu fraz cube i rollup (dodatkowe podsumowania, grouping zwraca 1) od danych zwracanych dzięki zastosowaniu frazy group by (dane zwracane przez zapytanie standardu SQL, grouping zwraca 0). Dzięki zastosowaniu funkcji grouping możliwe jest również rozróżnienie wartości NULL zwracanych przez frazy cube i rollup (co wskazuje, że mamy do czynienia z określonym poziomem grupowania) od wartości NULL, które charakteryzują grupy danych. Funkcja grouping może być także wykorzystana w celu filtrowania otrzymanych rezultatów. W celu uniknięcia konieczności specyfikowania użycia funkcji grouping dla każdej z kolumn grupowania można wykorzystać funkcję grouping_id(<lista_kolumn_grupowania>) zwracającą pojedynczą wartość (liczbę) której reprezentacja bitowa określa jednoznacznie poziom grupowania. Wyrażenie grouping sets umożliwia jawną specyfikację żądanych poziomów agregacji, eliminując przetwarzanie pozostałych, zbędnych poziomów (co może mieć miejsce przy zastosowaniu frazy cube). Składnia SELECT [GROUPING( <kolumna_grupowania> ) ] GROUP BY ROLLUP( <lista_kolumn_grupowania> ) SELECT [GROUPING( <kolumna_grupowania> ) ] GROUP BY CUBE( <lista_kolumn_grupowania> ) np., SELECT GROUPING(channel_desc) AS Ch, GROUPING(calendar_month_desc) AS Mo, GROUPING(country_iso_code) AS Co GROUP BY ROLLUP(channels.channel_desc, calendar_month_desc, countries.country_iso_code) SELECT GROUPING(channel_desc) AS Ch, GROUPING(calendar_month_desc) AS Mo, GROUPING(country_iso_code) AS Co GROUP BY CUBE(channels.channel_desc, calendar_month_desc, countries.country_iso_code) Fraza: CUBE(a, b, c) odpowiada wyrażeniu: GROUPING SETS ((a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), ()) 2

3 Raportowanie z wykorzystaniem funkcji analitycznych SQL Funkcje analityczne umożliwiają wyznaczenie m.in. pozycji (rankingów), kwantyli, udziałów procentowych wartości (średnich, sum) kroczących analizy szeregów czasowych znajdowanie pierwszych i ostatnich wartości w uporządkowanych grupach statystyk regresji liniowej Przykład. RANK i DENSE_RANK umożliwiają wyznaczenie pozycji elementu w grupie. Wskazanie frazy zapytania partycjonującego dane powoduje wyznaczenie rankingu dla każdego zdefiniowanego podzbioru danych. RANK ( ) OVER ( [<fraza zapytania partycjonującego dane>] order by ) DENSE_RANK ( ) OVER ( [<fraza zapytania partycjonującego dane>] order by ) np., RANK() OVER (ORDER BY SUM(amount_sold)) RANK() OVER (PARTITION BY calendar_month_desc ORDER BY SUM(amount_sold) Funkcje kroczącego okna pozwalają na m.in. na wyznaczenie wartości skumulowanych i średnich kroczących. gdzie np., {SUM AVG MAX MIN COUNT STDDEV VARIANCE FIRST_VALUE LAST_VALUE} ({<wyraŝenie_1> *}) OVER ([PARTITION BY wyraŝenie_2[,...]) ORDER BY wyraŝenie_3 [<fraza_sortowania>] [ASC DESC] [NULLS FIRST NULLS LAST] [,...] {ROWS RANGE} {BETWEEN {UNBOUNDED PRECEDING CURRENT ROW wyraŝenie {PRECEDING FOLLOWING}} AND { UNBOUNDED FOLLOWING CURRENT ROW wyraŝenie { PRECEDING FOLLOWING } } { UNBOUNDED PRECEDING CURRENT ROW wyraŝenie PRECEDING}} <wyrażenie_1> argumenty funkcji analitycznej (wartości numeryczne), <wyrażenie_2> określa sposób partycjonowania danych, <wyrażenie_3> określa sposób sortowania danych SUM(SUM(amount_sold)) OVER (PARTITION BY c.cust_id ORDER BY c.cust_id, t.calendar_quarter_desc ROWS UNBOUNDED PRECEDING) Jako argument funkcji analitycznej okna kroczącego należy podać funkcję agregującą (tak jak w podanym przykładzie). ROWS i RANGE definiują okno (zbiór danych) dla każdego z rekordów, dla którego liczona jest funkcja analityczna: ROWS określa okno poprzez podanie fizycznej liczby rekordów RANGE określa okno poprzez podanie logicznego zakresu Dla wyrażenie długości okna można użyć nst. konstrukcji: RANGE 10 PRECEDING ROWS 2 PRECEDING RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW (forma skrócona RANGE UNBOUNDED PRECEDING) 3

4 RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING (forma skrócona RANGE UNBOUNDED FOLLOWING) RANGE BETWEEN INTERVAL '1' DAY PRECEDING AND INTERVAL '1' DAY FOLLOWING 4

5 Raportowanie z wykorzystaniem modeli SQL Fraza model wzbogaca SQL o właściwości charakterystyczne dla arkuszy kalkulacyjnych. Fraza ta, na podstawie wyników zapytania, umożliwia tworzenie wielowymiarowych tabel, do których możliwe jest zastosowanie formuł (zwanych regułami) wyznaczających żądane wartości. Wielowymiarowa tabela definiowana we frazie model powstaje w wyniku przypisania elementów wyniku zapytania do jednej z 3 grup: partycji, wymiarów lub miar. Partycja definiuje logiczne podzbiory danych (podobnie jak w zapytaniach wykorzystujących funkcje analityczne). Reguły frazy model są stosowane do każdej z partycji niezależnie. Wymiary definiują wielowymiarową tabelę i służą do identyfikacji komórek w ramach partycji. Domyślnie, kombinacja wszystkich wymiarów powinna wskazywać pojedynczą komórkę partycji. Miary przechowują wartości podlegające przetwarzaniu. Fraza model umożliwia specyfikację reguł przetwarzania (modyfikowania, tworzenia nowych) wartości miar określonych poprzez kolumny partycji i wymiarów. Schemat przetwarzania Zapytanie: select country, product, year, sum(sales) as sales,.. Definicja modelu specyfikacja grup modelu dla elementów wyniku country partycja product, year wymiary sales miara Definicja modelu specyfikacja reguł: sales[prod1, 2006] = sales[prod1, 2004] + sales[prod1, 2005] sales[prod2, 2006] = sales[prod2, 2004] + sales[prod2, 2005] Końcowy wynik zapytania, przy zastosowaniu reguł modelu: Country Product Year Sales Partycja Wymiar Wymiar Miara Poland Prod Poland Prod Poland Prod Poland Prod Canada Prod Canada Prod Canada Prod Canada Prod Poland Prod Poland Prod Canada Prod Canada Prod Podstawowe wyniki zapytania Wynik zastosowania reguł Fraza model umożliwia: adresowanie komórek z użyciem wartości wymiarów, np.: sales[product='prod1', year=2004] (można również użyć sales['prod1', 2004]), 5

6 specyfikację reguł operujących na danych, np.: sales[product='prod1', year=2006] = MAX(sales) [product='prod1', year between 2003 and 2005] modyfikację i/lub tworzenie nowych wartości miar (opcja może być specyfikowana dla każdej z reguł) o UPSERT opcja domyślna, tworzy wartości komórek, które nie istnieją w danych wejściowych a modyfikuje wartości komórek istniejących, o UPSERT ALL opcja UPSERT dla szerszego zakresu reguł o UPDATE tylko modyfikacja komórek istniejących stosowanie znaków wieloznacznych w odwoływaniu się do wymiarów: o ANY, IS ANY oznacza dowolną wartość wymiaru, np.: sales[any, 2006] = sales['prod1', 2005] dostęp do wartości wymiaru z użyciem funkcji CV() funkcję można użyć po prawej stronie reguły w celu uzyskania dostępu do wartości wymiaru komórki opisywanej po lewej stronie reguły; funkcja umożliwia tworzenie reguł o wyższym stopniu ogólności, np. 3 reguły sales[product='prod1', year=2006] = 1.2 * sales['prod1', 2005] sales[product='prod2', year=2006] = 1.2 * sales['prod2', 2005] sales[product='prod3', year=2006] = 1.2 * sales['prod3', 2005] można zastąpić regułą: sales[product in ('Prod1','Prod3','Prod3'), year=2006] = 1.2 * sales[cv(product), 2005] określenie kolejności przetwarzania danych w przypadku modyfikacji wartości może okazać się konieczne wymuszenie szczególnego porządku przetwarzania wartości wymiaru należy użyć opcji ORDER BY, np. sales[product IS ANY, year BETWEEN 2000 AND 2003] ORDER BY year = 1.05 * sales[cv(product), CV(year)-1] co zapewnia dostęp do wartości lat w porządku chronologicznym określenie automatycznego uporządkowania reguł od siebie zależnych (RULES AUTOMATIC ORDER) w przypadku następujących reguł, dwie ostatnie reguły będą przetworzone przed pierwszą: {sales[product='prod1', year=2001] = sales[product='prod1', year=2000] + sales[product='prod1', year=1999] sales[product='prod1', year=2000] = 50000, sales[product='prod1', year=1999] = 40000} iteracyjne przetwarzanie reguł do czasu osiągnięcia warunku końcowego, np.: MODEL DIMENSION BY ( ) MEASURES ( ) RULES ITERATE (<liczba_iteracji>) (<reguła>) oprócz ITERATE możliwe jest użycie frazy UNTIL, odwołanie się (tylko do odczytu) do innych modeli referencyjnych. Składnia MODEL [<globalne opcje referencji>] [<modele referencyjne>] [MAIN <nazwa-główna>] [PARTITION BY (<kolumny>)] DIMENSION BY (<kolumny >) MEASURES (<kolumny >) [<opcje referencji>] [RULES] <opcje reguł> (<reguła>, <reguła>,.., <reguła>) <globalne opcje referencji> ::= <opcje referencji> <ret-opt> <ret-opt> ::= RETURN {ALL UPDATED} ROWS <opcje referencji> ::= [IGNORE NAV [KEEP NAV] 6

7 [UNIQUE DIMENSION UNIQUE SINGLE REFERENCE] <opcje reguł> ::= [UPDATE UPSERT UPSERT ALL] [AUTOMATIC ORDER SEQUENTIAL ORDER] [ITERATE (<liczba>) [UNTIL <warunek]] <modele referencyjne> ::= REFERENCE ON <ref-name> ON (<zapytanie>) DIMENSION BY (<kolumny>) MEASURES (<kolumny >) <opcje referencji> np. gdzie: SELECT SUBSTR(country,1,20) country, SUBSTR(product,1,15) product, year, sales FROM sales_view WHERE country in ('Italy', 'Japan') MODEL RETURN UPDATED ROWS MAIN simple_model PARTITION BY (country) DIMENSION BY (product, year) MEASURES (sales) RULES (sales['bounce', 2001] = 1000, sales['bounce', 2002] = sales['bounce', 2001] + sales['bounce', 2000], sales['y Box', 2002] = sales['y Box', 2001]) ORDER BY country, product, year; CREATE VIEW sales_view AS SELECT country_name country, prod_name product, calendar_year year, SUM(amount_sold) sales, COUNT(amount_sold) cnt, MAX(calendar_year) KEEP (DENSE_RANK FIRST ORDER BY SUM(amount_sold) DESC) OVER (PARTITION BY country_name, prod_name) best_year, MAX(calendar_year) KEEP (DENSE_RANK LAST ORDER BY SUM(amount_sold) DESC) OVER (PARTITION BY country_name, prod_name) worst_year FROM sales, times, customers, countries, products WHERE sales.time_id = times.time_id AND sales.prod_id = products.prod_id AND sales.cust_id =customers.cust_id AND customers.country_id=countries.country_id GROUP BY country_name, prod_name, calendar_year; 7

ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL

ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL ORACLE System Zarządzania Bazą Danych Oracle Oracle Advanced SQL wersja 1.0 Politechnika Śląska 2008 Plan laboratorium Frazy SQL: group by, rollup, cube, grouping sets funkcje analityczne, budowa modeli

Bardziej szczegółowo

188 Funkcje analityczne

188 Funkcje analityczne Funkcje analityczne 188 Plan rozdziału 189 Wprowadzenie do funkcji analitycznych Funkcje rankingu Funkcje okna Funkcje raportujące Funkcje LAG/LEAD Funkcje FIRST/LAST Odwrotne funkcje percentyli Funkcje

Bardziej szczegółowo

SQL do zaawansowanych analiz danych część 2.

SQL do zaawansowanych analiz danych część 2. SQL do zaawansowanych analiz danych część 2. Funkcje analityczne Materiały wykładowe Bartosz Bębel Politechnika Poznańska, Instytut Informatyki Plan wykładu 1. Podstawowe definicje. 2. Sposób działania

Bardziej szczegółowo

SQL do zaawansowanych analiz danych część 1.

SQL do zaawansowanych analiz danych część 1. SQL do zaawansowanych analiz danych część 1. Mechanizmy języka SQL dla agregacji danych Rozszerzenia PIVOT i UNPIVOT Materiały wykładowe Bartosz Bębel Politechnika Poznańska, Instytut Informatyki Plan

Bardziej szczegółowo

Funkcje analityczne SQL CUBE (1)

Funkcje analityczne SQL CUBE (1) Funkcje analityczne SQL CUBE (1) JOB DEPTNO SUM(SAL) --------- ---------- ---------- 29025 10 8750 20 10875 30 9400 CLERK 4150 CLERK 10 1300 CLERK 20 1900 CLERK 30 950 ANALYST 6000 ANALYST 20 6000 MANAGER

Bardziej szczegółowo

Klasyczna Analiza Danych

Klasyczna Analiza Danych Klasyczna Analiza Danych Mechanizmy języka SQL dla agregacji danych Rozszerzenia PIVOT i UNPIVOT Wyszukiwanie danych wg zadanego wzorca Materiały wykładowe Bartosz Bębel Politechnika Poznańska, Instytut

Bardziej szczegółowo

Rozdział 14 Funkcje analityczne

Rozdział 14 Funkcje analityczne Rozdział 14 Funkcje analityczne Operatory ROLLUP i CUBE, funkcja GROUPING, funkcje porządkujące (ranking), okienkowe, raportujące, statystyczne, funkcje LAG/LAD (c) Instytut Informatyki Politechniki Poznańskiej

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Funkcje analityczne SQL CUBE (1) Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel JOB DEPTNO SUM(SAL) 8750

Bardziej szczegółowo

Relacyjne bazy danych. Podstawy SQL

Relacyjne bazy danych. Podstawy SQL Relacyjne bazy danych Podstawy SQL Język SQL SQL (Structured Query Language) język umożliwiający dostęp i przetwarzanie danych w bazie danych na poziomie obiektów modelu relacyjnego tj. tabel i perspektyw.

Bardziej szczegółowo

Relacyjne bazy danych. Podstawy SQL

Relacyjne bazy danych. Podstawy SQL Relacyjne bazy danych Podstawy SQL Język SQL SQL (Structured Query Language) język umoŝliwiający dostęp i przetwarzanie danych w bazie danych na poziomie obiektów modelu relacyjnego tj. tabel i perspektyw.

Bardziej szczegółowo

Systemy GIS Tworzenie zapytań w bazach danych

Systemy GIS Tworzenie zapytań w bazach danych Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE

Bardziej szczegółowo

Przestrzenne bazy danych Podstawy języka SQL

Przestrzenne bazy danych Podstawy języka SQL Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured

Bardziej szczegółowo

select zam_id, cena_euro,(rank() over (partition by zam_id order by cena_euro)) from pozycjezamowien order by zam_id

select zam_id, cena_euro,(rank() over (partition by zam_id order by cena_euro)) from pozycjezamowien order by zam_id See also: OLAP.mth Suma narastająco... 1 Min max w poszczególnych grupach... 1 Numeracja elementów w grupach... 1 KLAUZULE GROUP BY, GROUP BY CUBE, GROUP BY ROLLUP... 1 MATERIAŁ ROBOCZY... 5 First VALUE

Bardziej szczegółowo

Bazy danych wykład trzeci. Konrad Zdanowski

Bazy danych wykład trzeci. Konrad Zdanowski SQL - przypomnienie Podstawowa forma kwerendy SQL: select A1,..., Ak from R1,..., Rn where ; Odpowiada jej w algebrze relacji operacja π A1,...,Ak (σ (R1 Rn)) SQL semantyka select R.

Bardziej szczegółowo

Nauczycielem wszystkiego jest praktyka Juliusz Cezar. Nauka to wiara w ignorancję ekspertów Richard Feynman

Nauczycielem wszystkiego jest praktyka Juliusz Cezar. Nauka to wiara w ignorancję ekspertów Richard Feynman Oracle i DB2 zadanie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki Łódzkiej

Bardziej szczegółowo

Szkolenie Oracle SQL podstawy. Terminy. 15 17 lutego 2010 First Minute! 1100zł!

Szkolenie Oracle SQL podstawy. Terminy. 15 17 lutego 2010 First Minute! 1100zł! Szkolenie Oracle SQL podstawy Terminy 15 17 lutego 2010 First Minute! 1100zł! Opis szkolenia Baza danych Oracle od dawna cieszy się zasłużona sławą wśród informatyków. Jej wydajność, szybkość działania

Bardziej szczegółowo

Program szkoleniowy Efektywni50+ Moduł IV Podstawy relacyjnych baz danych i język SQL

Program szkoleniowy Efektywni50+ Moduł IV Podstawy relacyjnych baz danych i język SQL Program szkoleniowy Efektywni50+ Moduł IV Podstawy relacyjnych baz danych i język SQL 1 Podstawy relacyjnego modelu danych. 3h UWAGA: Temat zajęć jest typowo teoretyczny i stanowi wprowadzenie do zagadnień

Bardziej szczegółowo

- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji

- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji 6. Język SQL Język SQL (Structured Query Language): - język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji - stworzony w IBM w latach 70-tych DML (Data Manipulation

Bardziej szczegółowo

Microsoft SQL Server Podstawy T-SQL

Microsoft SQL Server Podstawy T-SQL Itzik Ben-Gan Microsoft SQL Server Podstawy T-SQL 2012 przełożył Leszek Biolik APN Promise, Warszawa 2012 Spis treści Przedmowa.... xiii Wprowadzenie... xv Podziękowania... xix 1 Podstawy zapytań i programowania

Bardziej szczegółowo

Język SQL. Rozdział 4. Funkcje grupowe Funkcje grupowe, podział relacji na grupy, klauzule GROUP BY i HAVING.

Język SQL. Rozdział 4. Funkcje grupowe Funkcje grupowe, podział relacji na grupy, klauzule GROUP BY i HAVING. Język SQL. Rozdział 4. Funkcje grupowe Funkcje grupowe, podział relacji na grupy, klauzule GROUP BY i HAVING. 1 Funkcje grupowe (agregujące) (1) Działają na zbiorach rekordów, nazywanych grupami. Rekordy

Bardziej szczegółowo

Język SQL. instrukcja laboratoryjna. Politechnika Śląska Instytut Informatyki. laboratorium Bazy Danych

Język SQL. instrukcja laboratoryjna. Politechnika Śląska Instytut Informatyki. laboratorium Bazy Danych Politechnika Śląska Instytut Informatyki instrukcja laboratoryjna laboratorium Bazy Danych przygotowali: mgr inż. Paweł Kasprowski (Kasprowski@zti.iinf.polsl.gliwice.pl) mgr inż. Bożena Małysiak (bozena@ivp.iinf.polsl.gliwice.pl)

Bardziej szczegółowo

Podstawy języka T-SQL : Microsoft SQL Server 2016 i Azure SQL Database / Itzik Ben-Gan. Warszawa, Spis treści

Podstawy języka T-SQL : Microsoft SQL Server 2016 i Azure SQL Database / Itzik Ben-Gan. Warszawa, Spis treści Podstawy języka T-SQL : Microsoft SQL Server 2016 i Azure SQL Database / Itzik Ben-Gan. Warszawa, 2016 Spis treści Wprowadzenie Podziękowania xiii xvii 1 Podstawy zapytań i programowania T-SQL 1 Podstawy

Bardziej szczegółowo

OLAP i hurtownie danych c.d.

OLAP i hurtownie danych c.d. OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji

Bardziej szczegółowo

www.comarch.pl/szkolenia Klauzula MODEL w języku SQL w środowisku Oracle 15.05.2012

www.comarch.pl/szkolenia Klauzula MODEL w języku SQL w środowisku Oracle 15.05.2012 Klauzula MODEL w języku SQL w środowisku Oracle 15.05.2012 Zakres Wprowadzenie do klauzuli MODEL Zastosowanie Zalety Lokalizacja klauzuli w poleceniu SELECT Podstawowe pojęcia Partycje Wymiary Miary Składnia

Bardziej szczegółowo

Wprowadzenie do hurtowni danych

Wprowadzenie do hurtowni danych Wprowadzenie do hurtowni danych przygotował: Paweł Kasprowski Kostka Kostka (cube) to podstawowy element hurtowni Kostka jest wielowymiarowa (od 1 do N wymiarów) Kostka składa się z: faktów wektora wartości

Bardziej szczegółowo

Autor: Joanna Karwowska

Autor: Joanna Karwowska Autor: Joanna Karwowska SELECT [DISTINCT] FROM [WHERE ] [GROUP BY ] [HAVING ] [ORDER BY ] [ ] instrukcja może

Bardziej szczegółowo

Agregacja i Grupowanie Danych. Funkcje Agregacji. Opcje GROUP BY oraz HAVING

Agregacja i Grupowanie Danych. Funkcje Agregacji. Opcje GROUP BY oraz HAVING Agregacja w SQL 1 Bazy Danych Wykład p.t. Agregacja i Grupowanie Danych Funkcje Agregacji. Opcje GROUP BY oraz HAVING Antoni Ligęza ligeza@agh.edu.pl http://galaxy.uci.agh.edu.pl/~ligeza Wykorzystano materiały:

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Wstęp Wprowadzenie do BD Podstawy SQL. Bazy Danych i Systemy informacyjne Wykład 1. Piotr Syga

Wstęp Wprowadzenie do BD Podstawy SQL. Bazy Danych i Systemy informacyjne Wykład 1. Piotr Syga Bazy Danych i Systemy informacyjne Wykład 1 Piotr Syga 09.10.2017 Ogólny zarys wykładu Podstawowe zapytania SQL Tworzenie i modyfikacja baz danych Elementy dynamiczne, backup, replikacja, transakcje Algebra

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL.

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Plan wykładu Bazy danych Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Deficja zależności funkcyjnych Klucze relacji Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...

Bardziej szczegółowo

Ćwiczenie 3 funkcje agregujące

Ćwiczenie 3 funkcje agregujące Ćwiczenie 3 funkcje agregujące Funkcje agregujące, klauzule GROUP BY, HAVING Ćwiczenie 3 funkcje agregujące Celem ćwiczenia jest zaprezentowanie zagadnień dotyczących stosowania w zapytaniach języka SQL

Bardziej szczegółowo

Laboratorium nr 5. Temat: Funkcje agregujące, klauzule GROUP BY, HAVING

Laboratorium nr 5. Temat: Funkcje agregujące, klauzule GROUP BY, HAVING Laboratorium nr 5 Temat: Funkcje agregujące, klauzule GROUP BY, HAVING Celem ćwiczenia jest zaprezentowanie zagadnień dotyczących stosowania w zapytaniach języka SQL predefiniowanych funkcji agregujących.

Bardziej szczegółowo

SQL (ang. Structured Query Language)

SQL (ang. Structured Query Language) SQL (ang. Structured Query Language) SELECT pobranie danych z bazy, INSERT umieszczenie danych w bazie, UPDATE zmiana danych, DELETE usunięcie danych z bazy. Rozkaz INSERT Rozkaz insert dodaje nowe wiersze

Bardziej szczegółowo

OnLine Analytical Processing (OLAP) Zapytania SQL

OnLine Analytical Processing (OLAP) Zapytania SQL OnLine Analytical Processing (OLAP) Zapytania SQL 17 kwietnia 2014 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały

Bardziej szczegółowo

Ćwiczenie 3. Funkcje analityczne

Ćwiczenie 3. Funkcje analityczne Ćwiczenie 3. Funkcje analityczne 1. Uruchomienie i skonfigurowanie środowiska do ćwiczeń Czas trwania: 15 minut Zadaniem niniejszych ćwiczeń jest przedstawienie podstawowych zagadnień dotyczących wykorzystywania

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie

Bardziej szczegółowo

Podstawy języka SQL. SQL Structured Query Languagestrukturalny

Podstawy języka SQL. SQL Structured Query Languagestrukturalny Podstawy języka SQL SQL Structured Query Languagestrukturalny język zapytań DDL Język definicji danych (np. tworzenie tabel) DML Język manipulacji danych (np. tworzenie zapytań) DCL Język kontroli danych

Bardziej szczegółowo

Paweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/

Paweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/ Paweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/ Wprowadzenie Historia i standardy Podstawy relacyjności Typy danych DDL tabele, widoki, sekwencje zmiana struktury DML DQL Podstawy, złączenia,

Bardziej szczegółowo

Plan. Wyświetlanie n początkowych wartości (TOP n) Użycie funkcji agregujących. Grupowanie danych - klauzula GROUP BY

Plan. Wyświetlanie n początkowych wartości (TOP n) Użycie funkcji agregujących. Grupowanie danych - klauzula GROUP BY Plan Wyświetlanie n początkowych wartości (TOP n) Użycie funkcji agregujących Grupowanie danych - klauzula GROUP BY Generowanie wartości zagregowanych Użycie klauzul COMPUTE i COMPUTE BY Wyświetlanie początkowych

Bardziej szczegółowo

Modele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE

Modele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE Modele danych - wykład V Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. modele danych 4. Podsumowanie 5. Zadanie fajne

Bardziej szczegółowo

Przykłady najlepiej wykonywać od razu na bazie i eksperymentować z nimi.

Przykłady najlepiej wykonywać od razu na bazie i eksperymentować z nimi. Marek Robak Wprowadzenie do języka SQL na przykładzie baz SQLite Przykłady najlepiej wykonywać od razu na bazie i eksperymentować z nimi. Tworzenie tabeli Pierwsza tabela W relacyjnych bazach danych jedna

Bardziej szczegółowo

przygotował: pawel@kasprowski.pl Podstawy języka MDX Tworzenie zbiorów

przygotował: pawel@kasprowski.pl Podstawy języka MDX Tworzenie zbiorów Podstawy języka MDX Tworzenie zbiorów Używanie zbiorów Zbiór to: wynik działania funkcji (np. funkcji members) lista elementów otoczona {...} {[Store Sales], [Unit Sales]} on columns, [Product].[Prod].[Category].members

Bardziej szczegółowo

Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania.

Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania. Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania. Przykładowa RBD o schematach relacji (tzw. płaska postać RBD): N(PRACOWNICY) = {ID_P, IMIĘ,

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia

Bardziej szczegółowo

opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje nazwy tabel lub widoków warunek (wybieranie wierszy)

opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje nazwy tabel lub widoków warunek (wybieranie wierszy) Zapytania SQL. Polecenie SELECT jest używane do pobierania danych z bazy danych (z tabel lub widoków). Struktura polecenia SELECT SELECT FROM WHERE opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje

Bardziej szczegółowo

Tworzenie zapytań do Microsoft SQL Server

Tworzenie zapytań do Microsoft SQL Server MS 20461 Tworzenie zapytań do Microsoft SQL Server Czas trwania: 5 dni (40 h) Poziom trudności: Średnio Zaawansowany Autoryzacja: Microsoft Opis: Szkolenie administratorów baz danych oraz programistów

Bardziej szczegółowo

Język SQL Złączenia. Laboratorium. Akademia Morska w Gdyni

Język SQL Złączenia. Laboratorium. Akademia Morska w Gdyni Akademia Morska w Gdyni Gdynia 2004 1. Złączenie definicja Złączenie (JOIN) to zbiór rekordów stanowiących wynik zapytania służącego pobraniu danych z połączonych tabel (związki jeden-do-jeden, jeden-do-wiele

Bardziej szczegółowo

Bazy danych Access KWERENDY

Bazy danych Access KWERENDY Bazy danych Access KWERENDY Obiekty baz danych Access tabele kwerendy (zapytania) formularze raporty makra moduły System baz danych MS Access Tabela Kwerenda Formularz Raport Makro Moduł Wyszukiwanie danych

Bardziej szczegółowo

Programowanie w SQL procedury i funkcje. UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika

Programowanie w SQL procedury i funkcje. UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika Programowanie w SQL procedury i funkcje UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika 1. Funkcje o wartościach skalarnych ang. scalar valued

Bardziej szczegółowo

Modele danych - wykład V

Modele danych - wykład V Modele danych - wykład V Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie

Bardziej szczegółowo

Schemat bazy danych. Funkcje analityczne. ROLLUP - wynik ROLLUP

Schemat bazy danych. Funkcje analityczne. ROLLUP - wynik ROLLUP Schemat bazy danych TIMES # TIME_KEY TRANSACTION_DATE DAY_OF_WEEK HOLIDAY_FLAG Funkcje analityczne Operatory ROLLUP i CUBE, funkcja GROUPING, funkcje porządkujące (ranking), okienkowe, raportujące, statystyczne,

Bardziej szczegółowo

System imed24 Instrukcja Moduł Analizy i raporty

System imed24 Instrukcja Moduł Analizy i raporty System imed24 Instrukcja Moduł Analizy i raporty Instrukcja obowiązująca do wersji 1.8.0 Spis treści 1. Moduł Analizy i Raporty... 3 1.1. Okno główne modułu Analizy i raporty... 3 1.1.1. Lista szablonów

Bardziej szczegółowo

Bazy danych 8. Podzapytania i grupowanie. P. F. Góra

Bazy danych 8. Podzapytania i grupowanie. P. F. Góra Bazy danych 8. Podzapytania i grupowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2009 Podzapytania Podzapytania pozwalaja na tworzenie strukturalnych podzapytań, co umożliwia izolowanie poszczególnych

Bardziej szczegółowo

Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Rozszerzenie obiektowe w SZBD Oracle

Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Rozszerzenie obiektowe w SZBD Oracle Rozszerzenie obiektowe w SZBD Oracle Cześć 2. Kolekcje Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Malinowski Nowak Kowalski tablica zagnieżdżona (ang.

Bardziej szczegółowo

Pawel@Kasprowski.pl Bazy danych. Bazy danych. Zapytania SELECT. Dr inż. Paweł Kasprowski. pawel@kasprowski.pl

Pawel@Kasprowski.pl Bazy danych. Bazy danych. Zapytania SELECT. Dr inż. Paweł Kasprowski. pawel@kasprowski.pl Bazy danych Zapytania SELECT Dr inż. Paweł Kasprowski pawel@kasprowski.pl Przykład HAVING Podaj liczebność zespołów dla których najstarszy pracownik urodził się po 1940 select idz, count(*) from prac p

Bardziej szczegółowo

DMX DMX DMX DMX: CREATE MINING STRUCTURE. Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

DMX DMX DMX DMX: CREATE MINING STRUCTURE. Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski DMX DMX DMX Data Mining Extensions jest językiem do tworzenia i działania na modelach eksploracji danych w Microsoft SQL Server Analysis Services SSAS. Za pomocą DMX można tworzyć strukturę nowych modeli

Bardziej szczegółowo

Przydatne sztuczki - sql. Na przykładzie postgres a.

Przydatne sztuczki - sql. Na przykładzie postgres a. Przydatne sztuczki - sql. Na przykładzie postgres a. M. Wiewiórko 05/2014 Plan Uwagi wstępne Przykład Rozwiązanie Tabela testowa Plan prezentacji: Kilka uwag wstępnych. Operacje na typach tekstowych. Korzystanie

Bardziej szczegółowo

2010-11-22 PLAN WYKŁADU BAZY DANYCH PODSTAWOWE KWESTIE BEZPIECZEŃSTWA OGRANICZENIA DOSTĘPU DO DANYCH

2010-11-22 PLAN WYKŁADU BAZY DANYCH PODSTAWOWE KWESTIE BEZPIECZEŃSTWA OGRANICZENIA DOSTĘPU DO DANYCH PLAN WYKŁADU Bezpieczeństwo w języku SQL Użytkownicy Uprawnienia Role BAZY DANYCH Wykład 8 dr inż. Agnieszka Bołtuć OGRANICZENIA DOSTĘPU DO DANYCH Ograniczenie danych z tabeli dla określonego użytkownika

Bardziej szczegółowo

Bazy danych SQL Server 2005

Bazy danych SQL Server 2005 Bazy danych SQL Server 2005 TSQL Michał Kuciapski Typ zadania: Podstawowe zapytania Select Zadanie 1: Wyświetl następujące informacje z bazy: A. 1. Wyświetl informacje o klientach: nazwa firmy, imie, nazwisko,

Bardziej szczegółowo

Bazy danych 2. Wykład 4 Structured Query Language (SQL)

Bazy danych 2. Wykład 4 Structured Query Language (SQL) Bazy danych 2 Wykład 4 Structured Query Language (SQL) Cechy SQL W standardzie SQL wyróŝnia się dwie części: DDL (Data Definition Language) - język definiowania danych DML (Data Manipulation Language)

Bardziej szczegółowo

LITERATURA. Wprowadzenie do systemów baz danych C.J.Date; WNT Warszawa 2000

LITERATURA. Wprowadzenie do systemów baz danych C.J.Date; WNT Warszawa 2000 LITERATURA Wprowadzenie do systemów baz danych C.J.Date; WNT Warszawa 2000 Systemy baz danych. Pełny wykład H. Garcia Molina, Jeffrey D. Ullman, Jennifer Widom;WNT Warszawa 2006 Wprowadzenie do systemów

Bardziej szczegółowo

Integralność danych Wersje języka SQL Klauzula SELECT i JOIN

Integralność danych Wersje języka SQL Klauzula SELECT i JOIN Integralność danych Wersje języka SQL Klauzula SELECT i JOIN Robert A. Kłopotek r.klopotek@uksw.edu.pl Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW Integralność danych Aspekty integralności

Bardziej szczegółowo

KOLEKCJE - to typy masowe,zawierające pewną liczbę jednorodnych elementów

KOLEKCJE - to typy masowe,zawierające pewną liczbę jednorodnych elementów KOLEKCJE - to typy masowe,zawierające pewną liczbę jednorodnych elementów SQL3 wprowadza następujące kolekcje: zbiory ( SETS ) - zestaw elementów bez powtórzeń, kolejność nieistotna listy ( LISTS ) - zestaw

Bardziej szczegółowo

SELECT * FROM tabela WHERE warunek wybiera dane spełniające podany warunek

SELECT * FROM tabela WHERE warunek wybiera dane spełniające podany warunek SELECT SELECT kolumna1, kolumna2,, kolumnan FROM tabela wybrane kolumny SELECT * FROM tabela wszystkie kolumny select * from Orders select CustomerID, CompanyName, Country from Customers WHERE SELECT *

Bardziej szczegółowo

Język SQL, zajęcia nr 2

Język SQL, zajęcia nr 2 Język SQL, zajęcia nr 2 SQL - Structured Query Language Strukturalny język zapytań Login: student Hasło: stmeil14 Baza danych: st https://194.29.155.15/phpmyadmin/index.php Andrzej Grzebielec Funkcja agregująca

Bardziej szczegółowo

Microsoft Excel 2003 profesjonalna analiza i raportowanie oraz prezentacja danych

Microsoft Excel 2003 profesjonalna analiza i raportowanie oraz prezentacja danych Microsoft Excel 2003 profesjonalna analiza i raportowanie oraz prezentacja danych Projekt: Wdrożenie strategii szkoleniowej prowadzony przez KancelarięPrezesa Rady Ministrów Projekt współfinansowany przez

Bardziej szczegółowo

Instrukcje DQL: SELECT. Zastosowanie SELECT, opcje i warianty

Instrukcje DQL: SELECT. Zastosowanie SELECT, opcje i warianty Wprowadzenie do psql i SQL 1 Bazy Danych Wykład p.t. Instrukcje DQL: SELECT. Zastosowanie SELECT, opcje i warianty Antoni Ligęza ligeza@agh.edu.pl http://galaxy.uci.agh.edu.pl/~ligeza Wykorzystano materiały:

Bardziej szczegółowo

BAZY DANYCH wprowadzenie do języka SQL. Opracował: dr inż. Piotr Suchomski

BAZY DANYCH wprowadzenie do języka SQL. Opracował: dr inż. Piotr Suchomski BAZY DANYCH wprowadzenie do języka SQL Opracował: dr inż. Piotr Suchomski Wprowadzenie Język SQL używany jest do pracy z relacyjną bazą danych. Jest to język nieproceduralny, należący do grupy języków

Bardziej szczegółowo

Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski. Poznań, 30.09.2015

Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski. Poznań, 30.09.2015 Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski Poznań, 30.09.2015 Plan Geneza Architektura Cechy Instalacja Standard SQL Transakcje i współbieżność Indeksy Administracja Splice Machince vs.

Bardziej szczegółowo

SQL - Structured Query Language. strukturalny język zapytań

SQL - Structured Query Language. strukturalny język zapytań SQL - Structured Query Language strukturalny język zapytań SQL - Structured Query Language - strukturalny język zapytań Światowy standard przeznaczony do definiowania, operowania i sterowania danymi w

Bardziej szczegółowo

BAZY DANYCH algebra relacyjna. Opracował: dr inż. Piotr Suchomski

BAZY DANYCH algebra relacyjna. Opracował: dr inż. Piotr Suchomski BAZY DANYCH algebra relacyjna Opracował: dr inż. Piotr Suchomski Wprowadzenie Algebra relacyjna składa się z prostych, ale mocnych mechanizmów tworzenia nowych relacji na podstawie danych relacji. Hdy

Bardziej szczegółowo

Spis tre±ci. Przedmowa... Cz ± I

Spis tre±ci. Przedmowa... Cz ± I Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja

Bardziej szczegółowo

1: 2: 3: 4: 5: 6: 7: 8: 9: 10:

1: 2: 3: 4: 5: 6: 7: 8: 9: 10: Grupa A (LATARNIE) Imię i nazwisko: Numer albumu: 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: Nazwisko prowadzącego: 11: 12: Suma: Ocena: Zad. 1 (10 pkt) Dana jest relacja T. Podaj wynik poniższego zapytania (podaj

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

EXCEL ANALIZA DANYCH. Konspekt szczegółowy

EXCEL ANALIZA DANYCH. Konspekt szczegółowy Przeznaczenie szkolenia Dla osób zaawansowanych, które potrzebują narzędzi do wszechstronnej analizy danych i prezentacji w różnych formach Wersje aplikacji MS EXCEL 2000, 2003, 2007, 2010 Wersje językowe

Bardziej szczegółowo

Wstęp wprowadzający do laboratorium 2. mgr inż. Rafał Grycuk

Wstęp wprowadzający do laboratorium 2. mgr inż. Rafał Grycuk Wstęp wprowadzający do laboratorium 2 mgr inż. Rafał Grycuk Plan prezentacji 1. Czym jest T-SQL i czym się różni od standardu SQL 2. Typy zapytań 3. Zapytanie typu SELECT 4. Słowo o indeksach T-SQL (1)

Bardziej szczegółowo

D D L S Q L. Co to jest DDL SQL i jakie s jego ą podstawowe polecenia?

D D L S Q L. Co to jest DDL SQL i jakie s jego ą podstawowe polecenia? D D L S Q L Co to jest DDL SQL i jakie s jego ą podstawowe polecenia? D D L S Q L - p o d s t a w y DDL SQL (Data Definition Language) Jest to zbiór instrukcji i definicji danych, którym posługujemy się

Bardziej szczegółowo

Program szkoleniowy. 16 h dydaktycznych (12 h zegarowych) NAZWA SZCZEGÓŁY CZAS. Skróty do przeglądania arkusza. Skróty dostępu do narzędzi

Program szkoleniowy. 16 h dydaktycznych (12 h zegarowych) NAZWA SZCZEGÓŁY CZAS. Skróty do przeglądania arkusza. Skróty dostępu do narzędzi Program szkoleniowy Microsoft Excel Poziom Średniozaawansowany 16 h dydaktycznych (12 h zegarowych) NAZWA SZCZEGÓŁY CZAS 1. Skróty klawiszowe Skróty do poruszania się po arkuszu Skróty do przeglądania

Bardziej szczegółowo

Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne, perspektywy wbudowane.

Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne, perspektywy wbudowane. Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne, perspektywy wbudowane. 1 Perspektywa Perspektywa (ang. view) jest strukturą logiczną

Bardziej szczegółowo

Grupowanie danych klauzula GROUP BY

Grupowanie danych klauzula GROUP BY Grupowanie danych klauzula GROUP BY! Użycie klazuli GROUP BY! Użycie klauzuli GROUP BY z klauzulą HAVING Użycie klauzuli GROUP BY SELECT productid, orderid,quantity SELECT productid,sum(quantity) AS total_quantity

Bardziej szczegółowo

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Technologie baz danych Wykład 4: Diagramy związków encji (ERD). SQL funkcje grupujące. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Plan wykładu Diagramy związków encji elementy ERD

Bardziej szczegółowo

strukturalny język zapytań używany do tworzenia i modyfikowania baz danych oraz do umieszczania i pobierania danych z baz danych

strukturalny język zapytań używany do tworzenia i modyfikowania baz danych oraz do umieszczania i pobierania danych z baz danych SQL SQL (ang. Structured Query Language): strukturalny język zapytań używany do tworzenia strukturalny język zapytań używany do tworzenia i modyfikowania baz danych oraz do umieszczania i pobierania danych

Bardziej szczegółowo

Wprowadzenie do języka SQL

Wprowadzenie do języka SQL Wprowadzenie do języka SQL język dostępu do bazy danych grupy poleceń języka: DQL (ang( ang.. Data Query Language) DML (ang( ang.. Data Manipulation Language) DDL (ang( ang.. Data Definition Language)

Bardziej szczegółowo

SQL Structured Query Language

SQL Structured Query Language SQL Structured Query Language stworzony na początku lat 70 ubiegłego wieku w IBM przez Donalda Messerly'ego, Donalda Chamberlina oraz Raymonda Boyce'a pod nazwą SEQUEL pierwszy SZBD System R utworzony

Bardziej szczegółowo

Politechnika Łódzka, ul. Żeromskiego 116, 90-924 Łódź, tel. (042) 631 28 83. Projekt współfinansowany przez Unię Europejską

Politechnika Łódzka, ul. Żeromskiego 116, 90-924 Łódź, tel. (042) 631 28 83. Projekt współfinansowany przez Unię Europejską Oracle i DB2 zadanie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki Łódzkiej

Bardziej szczegółowo

Integracja i Eksploracja Danych

Integracja i Eksploracja Danych Integracja i Eksploracja Danych Laboratorium nr 4 Wprowadzenie do języka MDX. Zadania: 1) Analogicznie do przykładu zawartego na poprzednich zajęciach, korzystając z SQL Server Business Intelligence Development

Bardziej szczegółowo

Podstawy języka SQL cz. 2

Podstawy języka SQL cz. 2 Podstawy języka SQL cz. 2 1. Operatory zbiorowe a. UNION suma zbiorów z eliminacją powtórzeń, b. EXCEPT różnica zbiorów z eliminacją powtórzeń, c. INTERSECT część wspólna zbiorów z eliminacją powtórzeń.

Bardziej szczegółowo

Hurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence

Hurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika

Bardziej szczegółowo

NORTHWIND. Anonco.pl. ćwiczenia praktyczne. KiK s Tutorials. NORTHWIND dwiczenia praktyczne. ANONCO.PL/SQL SQLSERVERDLAOPORNYCH.WORDPRESS.

NORTHWIND. Anonco.pl. ćwiczenia praktyczne. KiK s Tutorials. NORTHWIND dwiczenia praktyczne. ANONCO.PL/SQL SQLSERVERDLAOPORNYCH.WORDPRESS. Anonco.pl NORTHWIND dwiczenia praktyczne. NORTHWIND ćwiczenia praktyczne KiK s Tutorials Spis treści Część 1. Wprowadzenie 3 Wprowadzenie do SQL Server 3 Rozpoczynamy pracę z SQL Server 4 Część 2. Typy

Bardziej szczegółowo

Zaawansowany SQL. Robert A. Kłopotek Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW

Zaawansowany SQL. Robert A. Kłopotek Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW Zaawansowany SQL Robert A. Kłopotek r.klopotek@uksw.edu.pl Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW MySQL GREATEST i LEAST Zarówno funkcja GEATEST jak i LEAST przyjmują N argumentów

Bardziej szczegółowo

ROZSZERZENIA J ZYKA SQL DLA OPERACJI ROLAP W BAZIE ORACLE8I

ROZSZERZENIA J ZYKA SQL DLA OPERACJI ROLAP W BAZIE ORACLE8I ROZSZERZENIA J ZYKA SQL DLA OPERACJI ROLAP W BAZIE ORACLE8I GRZEGORZ DZIE A, ANDRZEJ MAKULSKI Uniwersytet Technologiczno Przyrodniczy w Bydgoszczy Streszczenie W pracy przedstawiono elementy rozszerzenia

Bardziej szczegółowo

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Tabele 9 Klucze 10 Relacje 11 Podstawowe zasady projektowania tabel 16 Rozdział 2. Praca z tabelami 25 Typy danych 25 Tworzenie tabel 29 Atrybuty kolumn

Bardziej szczegółowo

Grupowanie i funkcje agregujące

Grupowanie i funkcje agregujące Grupowanie i funkcje agregujące Zadanie 1. Stwórz odpowiednią tabelę Test_agr i wprowadź odpowiednie rekordy tak, aby wynik zapytania SELECT AVG(kol) avg_all, AVG(DISTINCT kol) avg_dist, COUNT(*) count_gw,

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

Cel szkolenia. Konspekt. Opis kursu

Cel szkolenia. Konspekt. Opis kursu Cel szkolenia Opis kursu Kurs jednodniowy,w czasie którego instruktor przedstawi kursantom metody obliczeń na danych, poprawności danych,, tworzenie stylów formatowania danych, filtrowanie danych, łączenia

Bardziej szczegółowo

Wstęp do Business Intelligence

Wstęp do Business Intelligence Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana

Bardziej szczegółowo

Wykład 05 Bazy danych

Wykład 05 Bazy danych Wykład 05 Bazy danych Tabela składa się z: Kolumn Wierszy Wartości Nazwa Wartości Opis INT [UNSIGNED] -2^31..2^31-1 lub 0..2^32-1 Zwykłe liczby całkowite VARCHAR(n) n = długość [1-255] Łańcuch znaków o

Bardziej szczegółowo