POMIAR DYDAKTYCZNY Z MATEMATYKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIAR DYDAKTYCZNY Z MATEMATYKI"

Transkrypt

1 POMIAR DYDAKTYCZNY Z MATEMATYKI DZIAŁANIA NA UŁAMKACH ZWYKŁYCH KLASA VI OPRACOWAŁ NAUCZYCIEL MATEMATYKI AGNIESZKA SZCZUCHNIAK

2 CEL OGÓLNY: Umiejętność wykonywania działań na ułamkach zwykłych CELE OPERACYJNE: Kategoria A Uczeń: - rozpoznaje ułamki właściwe, niewłaściwe, skracalne i nieskracalne - podaje zasadę skracania i rozszerzania ułamków zwykłych oraz regułę obliczania ułamka danej liczby - podaje zasady obowiązujące przy porównywaniu ułamków zwykłych o tych samych licznikach lub o tych samych mianownikach Kategoria B Uczeń: - wyjaśnia sposób skracania i rozszerzania ułamków zwykłych do danego mianownika lub licznika - wyjaśnia sposób sprowadzania ułamków zwykłych do wspólnego mianownika - ilustruje sposób zamiany ułamków niewłaściwych na liczby mieszane i odwrotnie - wyjaśnia zasady obowiązujące przy wykonywaniu działań dodawania, odejmowania, mnożenia i dzielenia ułamków zwykłych oraz obliczania ułamka danej liczby przedstawia tok postępowania przy porównywaniu ułamków zwykłych o różnych mianownikach i licznikach Kategoria C Uczeń: - rozszerza i skraca ułamki zwykłe do danego mianownika lub licznika - zamienia ułamki niewłaściwe na liczby mieszane i odwrotnie - dodaje, odejmuje, mnoży i dzieli ułamki zwykłe - wykonuje działania łącznie na ułamkach zwykłych - porównuje ułamki zwykłe o jednakowych licznikach lub mianownikach - porównuje ułamki zwykłe o różnych mianownikach i licznikach - rozwiązuje zadania tekstowe wykorzystując umiejętność wykonywania działań na ułamkach zwykłych Kategoria D Uczeń: - rozwiązuje zadania tekstowe stosując umiejętność obliczania ułamka danej liczby

3 TEST MATEMATYCZNY KLASA VI ( 20 zadań, 45 minut) Test zawiera zadania dotyczące działań na ułamkach zwykłych. Po zadaniu pytania znajdują się w teście po cztery odpowiedzi oznaczone literami a, b, c, d. Zdecyduj, którą odpowiedz należy wybrać i zakreśl kółkiem odpowiednią literę. Do dwóch ostatnich zadań ( zad.19 i zad.20) nie ma podanych możliwych odpowiedzi. Rozwiązania tych zadań należy umieścić pod testem. ZAD.1. Który z ułamków jest ułamkiem niewłaściwym: a) 12 / 15 b) 4 3 / 4 c) 14 / 5 d) 5 / 15? ZAD.2. Który z ułamków jest ułamkiem nieskracalnym: a) 14 / 7 b) 7 / 14 c) 30 / 21 d) 7 / 32? ZAD.3. Jeżeli 3 / 8 = x / 24, to x jest liczbą równą: a) 4 b) 9 c) 3 d) 6. ZAD.4. Jeżeli 21 / 49 = 3 / x, to x jest równą liczbie: a) 3 b) 6 c) 7 d) 21. ZAD.5. Po wyłączeniu całości ułamek 15 / 4 jest równy liczbie mieszanej: a) 2 3 / 4 b) 3 2 / 4 c) 3 3 / 4 d) 4 3 / 4. ZAD.6. 1 / 3 liczby 16 to: a) 16 / 48 b) 1 / 48 c) 5 1 / 3 d) 3 1 / 3. ZAD.7. Który z wyników dodawania ułamków 2 / 5 i 1 / 10 jest poprawny: a) 4 / 10 b) 3 / 10 c) 1 / 2 d) 8 / 10? ZAD.8. Różnicą liczb 4 1 / 2 i 2 4 / 5 jest liczba: a) 2 2 / 3 b) 2 3 / 10 c) 1 7 / 10 d) 7 / 10. ZAD.9. Iloczynem liczb 2 1 / 4 i 2 / 3 jest liczba: a) 2 / 3 b) 3 3 / 8 c) 1 1 / 2 d) 1. ZAD.10. Wynikiem działania 2 1 / 6 : 5 / 3 jest liczba: a) 1 3 / 10 b) 26 / 30 c) 3 1 / 10 d) 4 1 / 2. ZAD.11. Jaką liczbę należy wstawić w miejsce, aby 2 1 / 3 + = 5 1 / 2 : a) 7 5 / 6 b) 1 / 6 c) 3 1 / 6 d) 2 1 / 6? ZAD.12. Wartość liczbowa wyrażenia 2 1 / / / 10 jest równa: a) 4 1 / 5 b) 4 3 / 5 c) 4 1 / 3 d) 5 23 / 25. ZAD.13. Wspólnym mianownikiem ułamków 3 / 4 i 1 / 5 może być liczba: a) 20 b) 10 c) 30 d) 9.

4 ZAD.14. Trzy miesiące - to jaka część roku? a) 1 / 4 roku b) 1 / 3 roku c) 1 / 5 roku d) 2 / 5 roku ZAD.15. Ile metrów kwadratowych tapety trzeba kupić, aby wytapetować ścianę o wymiarach 5 1 / 2 m na 4 2 / 3 m: a) 25 3 / 4 b) 25 c) 25 1 / 3 d) 25 2 / 3? ZAD.16. Grześ miał 24 cukierki. Zjadł już 1 / 4 swoich zapasów. Ile zostało mu cukierków: a) 4 b) 6 c) 18 d) 16? ZAD.17. Jaką liczbę należy wstawić w miejsce, aby 4 / 10 > / 10 : a) 5 b) 10 c) 2 d) 12? ZAD.18. Jeżeli 4 / 5 > x / 15, to x może być liczbą równą: a) 13 b) 4 c) 20 d) 16. ZAD.19. Oblicz wartość liczbową wyrażenia: 3 1 / / / / 3 ZAD.20. Pitagoras, matematyk grecki, który żył w VI wieku p.n.e. zapytany o liczbę swoich uczniów odpowiedział: Połowa moich uczniów uczy się matematyki, czwarta część przyrody, siódma część milczenia, resztę stanowią kobiety. Ilu uczniów miał Pitagoras?

5 Częścią materiału, którego opanowanie postanowiłam zbadać jest dział: Działania na ułamkach zwykłych. Jako narzędzie do określenia osiągnięć poszczególnych uczniów wybrałam test. Test obejmował 20 zadań, z których 18 było zadaniami zamkniętymi, a 2 zadaniami otwartymi. Na rozwiązanie testu uczniowie mieli do dyspozycji 45 minut

6 KARTOTEKA TESTU SPRAWDZAJĄCEGO Nr zadania Sprawdzana czynność / uczeń potrafi Kategoria celu Poziom wymagań Poprawna odpowiedź 1 - rozpoznać ułamki właściwe i A P c niewłaściwe 2 - rozpoznać ułamki skracalne i A P d nieskracalne 3 - rozszerzyć ułamek do danego C K b mianownika 4 - skrócić ułamek do danego licznika C K c 5 - zamienić ułamek niewłaściwy na C P c liczbę mieszaną 6 - obliczyć ułamek danej liczby C P c 7 - dodawać ułamki zwykłe C P c 8 - odejmować ułamki zwykłe C P c 9 - mnożyć ułamki zwykłe C P c 10 - dzielić ułamki zwykłe C P a 11 - rozwiązywać równania na ułamkach C R c zwykłych 12 - wykonywać działania łączne na C R b ułamkach zwykłych 13 - sprowadzać ułamki do wspólnego B P a mianownika 14 - przedstawiać różne wielkości w B P a postaci ułamków zwykłych 15 - rozwiązywać zadania tekstowe na C R d ułamkach zwykłych 16 - rozwiązywać zadania tekstowe wykorzystując umiejętność obliczania C D b ułamka danej liczby 17 - porównywać ułamki zwykłe o B K c jednakowych mianownikach 18 - porównywać ułamki zwykłe o C R b różnych licznikach i mianownikach 19 - wykonywać działania łączne na D D 7 2 / 5 ułamkach zwykłych 20 - rozwiązywać problemowe zadania tekstowe na ułamkach zwykłych D W 28

7 PLAN TESTU SPRAWDZAJĄCEGO KLASA VI ZAKRES MATERIAŁU: Działania na ułamkach zwykłych Poziom wymagań Kategoria celu Dział/ Badana grupa umiejętności 1. Porównywanie ułamków zwykłych 2. Rozszerzanie i skracanie ułamków zwykłych. Zamiana ułamków niewłaściwych na liczby mieszane. 3. Ułamki właściwe, niewłaściwe, skracalne i nieskracalne. 4. Dodawanie, odejmowanie, mnożenie i dzielenie ułamków zwykłych. 5. Zadania tekstowe na ułamkach zwykłych 6. Obliczanie ułamka danej liczby nr zadań A nr zadań B nr zadań C nr zadań D Waga materiału z działów / grup umiejętności Licaba zadań , 4, , , 8, 9, 10, 11, , , ,5 1 Waga celów 1 1,5 6, Liczba zadań % zadań 10% 15% 65% 10% %

8 STRUKTURYZACJA MATERIAŁU 1 Zamiana ułamków niewłaściwych na liczby mieszane i odwrotnie 2 Skracania i rozszerzanie ułamków zwykłych 3 Sprowadzanie ułamków zwykłych do wspólnego mianownika 4 Dodawanie ułamków zwykłych 5 Odejmowanie ułamków zwykłych 6 Mnożenie ułamków zwykłych 7 Dzielenie ułamków zwykłych 8 Dzielenie ułamków zwykłych 9 Obliczanie ułamka danej liczby 10 Rozwiązywanie zadań tekstowych na ułamkach zwykłych 11 Rozwiązywanie zadań tekstowych z zastosowaniem obliczania ułamków danych liczb 12 Porównywanie ułamków zwykłych o jednakowych licznikach lub mianownikach 13 Porównywanie ułamków o różnych licznikach i mianownikach

9 / / / / / / / / / / / / / 2 ŚREDNIA = 3,23 ELEMENT POCZĄTKOWY : 1 -- / 3 ELEMENE CENTRALNY : 10 5 / 1 ELEMENT KOŃCOWY : 11 2 / / --

10 TABELA ZBIORCZA Imię i Nazwisko POZIOM WYMAGAŃ WYNIK OCENA Konieczny Podstawowy Rozszerzający Dopełniający Wykraczający

11 TABELA ZBIORCZA WYNIKÓW TESTOWANIA Test sprawdzający z działu Działania na ułamkach zwykłych Data przeprowadzenia testu: Szkoła Podstaowowa nr 2 w Sztumie Klasa V Z A D A N I A Nr ucznia X x - x śr (x - x śr ) 2 1 C C E D D C A C B B A C C C D C B A C B 15 1,3 1,69 2 C C B D D --- D C E B E A D B D B A E B E 6-7,7 59,29 3 C D E D D C A D E B A C C C E B A C C E 14 0,3 0,09 4 C D E D D C A C C B E C C E E B A A E B 13-0,7 0,49 5 C B E D C C A C E B A C D D A E A C E E 10-3,7 13,69 6 C D E D D B A C B B A C C C E C A C C C 19 5,3 28,09 7 C D E D D B A C E B E A A B E A A C A A 8-5,7 32,49 8 C D B D D B A C C B E C A A A D A C C C 15 1,3 1,69 9 C D E D D B A C B B A C C C E C A C C C 19 5,3 28,09 10 C D E D B B A C E D A C C D E B C A C A 11-2,7 7,29 11 C D B D D B B C B B B C C B D C C C B B 15 1,3 1,69 12 C D E D A B B E B C D C C E E C C C A B 11-2,7 7,29 13 C --- A D D C B B B B A C C E A A C C C B 12-1,7 2,89 14 C D E D D C A C B B A C C C D C A C C B 19 5,3 28,09 15 C D E D B C E E B B A D C B A A A D D A 10-3,7 13,69 16 C D E D D C A B B B E C C C E B A C C C 15 1,3 1,69 17 C D E D D C A E B B E A C D E C A C C B 15 1,3 1,69 18 C A E D A C A E B B E B C C C C E B C B 12-1,7 2,89 19 C D E D D C A B B B A C C C D C C C C B 18 4,3 18,49 20 C D D D C C A C B B E C C C D C A C C C 17 3,3 10,89 KLUCZ C D E D D C A C B B A C C C D C A C C B x=274 =0 =262,2

12 Z A D A N I A KLUCZ C D E D D C A C B B A C C C D C A C C B A B C D E 18 p. 1 0,8 0,9 0,95 0,7 0,8 0,7 0,7 0,65 0,9 0,5 0,75 0,85 0,4 0,25 0,45 0,7 0,7 0,65 0,55 q 0 0,2 0,1 0,05 0,3 0,2 0,3 0,3 0,35 0,1 0,5 0,25 0,15 0,6 0,75 0,55 0,3 0,3 0,35 0,45 ω = p. q 1 0,16 0,09 0,05 0,21 0,16 0,21 0,21 0,23 0,09 0,25 0,19 0,13 0,24 0,19 0,26 0,21 0,21 0,23 0,26 L S L - S D ,2 0,3 0,1 0,6 0,4 0,4 0,2 0,5 0,2 0 0,3 0,3 0,4 0,5 0,7 0,2 0,4 0,5 0,3 p - współczynnik łatwości zadania q - współczynnik trudności zadania L - liczba poprawnych odpowiedzi w lepszej górnej połowie ogólnych wyników S - liczba poprawnych odpowiedzi w słabszej dolnej połowie ogólnych wyników D 50 - wskaźnik mocy różnicującej

13 ANALIZA WYKONANYCH ZADAŃ ZADANIA WG WSKAŹNIKA ŁATWOŚCI Wskaźnik łatwości 0,0-0,20 0,21 0,40 0,41-0,60 0,61-0,80 0,81-1,0 Klasyfikacja zadań Numery zadań w teście bardzo trudne Trudne średnio trudne 21 14, 15 11, 16, 20 łatwe 2, 5, 6, 7, 8, 9, 12, 17, 18, 19 bardzo łatwe 1, 3, 4, 10, 13, Ilość zadań w teście Wskaźnik mocy różnicującej Klasyfikacja zadań Numery zadań w teście Ilość zadań w teście ZADANIA WG WSKAŹNIKA MOCY RÓŻNICUJĄCEJ +0,6-1,0 +0, , ,30-0,1 - -1,0 Zadania dobrze i bardzo dobrze różnicujące Zadania średnio różnicujące 5, 16, 3, 6, 7, 9, 12, 13, 14, 15, 18, 19, 20 Zadania słabo różnicujące Zadania wadliwie skonstruowane 1, 2, 4, 8, 10, 11,

14 ANALIZA STATYSTYCZNA WYNIKÓW TESTOWANIA I. Średnia arytmetyczna a) Średnia arytmetyczna uzyskanych przez uczniów ocen: 3,6 b) Średnia arytmetyczna uzyskanych przez uczniów punktów: 13,7 pkt. II. Modalna a) Najczęściej występująca ocena w badanej grupie uczniów: 3 i 4 b) Najczęściej występująca ilość punktów w badanej grupie uczniów: 15 pkt. III. Mediana Tabela przedstawia wyniki uczniów uporządkowane w kolejności malejącej: Nazwisko i Imię Ilość punktów Ocena W tabelce uczniowie podzieleni są na dwie połowy. Wyniki (oceny) uzyskane przez uczniów zajmujących w tabeli środkowe pozycje to: 4. Oceny te są najczęściej powtarzającymi się w badanej grupie ocenę 4 - uzyskało 7 uczniów.

15 IV. Rozstęp Na tę miarę mają wpływ tylko skrajne wyniki. rozstęp = max. wynik - min. wynik Wynik maksymalny: 19 punktów Wynik minimalny: 6 punktów rozstęp dla testu = 13 rozstęp dla zadania = 1 V. Wariancja testu s 2 - wariancja wyników testowania N- liczba testowanych uczniów s 2 = (x - x śr ) 2 N 262,2 s 2 = 20 s 2 = 13,11 VI. Odchylenie standardowe s - odchylenie standardowe s = s 2 s = 13,11 s = 3,62 VII. Współczynnik rzetelności testu r tt - współczynnik rzetelności testu k - liczba zadań w teście WZÓR KUDERA-RICHARDSONA r tt = k s 2 - (p q) k - 1 s ,11 4,58 r tt = = 0, ,11

16

UŁAMKI ZWYKŁE. KLASA IV a. Opracował: Zdzisław Dziura

UŁAMKI ZWYKŁE. KLASA IV a. Opracował: Zdzisław Dziura Urszulin, maj 00 r. TEST OSIĄGNIĘĆ UCZNIÓW Z MATEMATYKI UŁAMKI ZWYKŁE KLASA IV a Opracował: Zdzisław Dziura KARTOTEKA TESTU SPRAWDZAJĄCEGO: Klasa IV a- Szkoła Podstawowa w Urszulinie; Urszulin, maj 00

Bardziej szczegółowo

UŁAMKI ZWYKŁE I DZIAŁANIA NA UŁAMKACH ZWYKŁYCH W KLASIE V SZKOŁY PODSTAWOWEJ

UŁAMKI ZWYKŁE I DZIAŁANIA NA UŁAMKACH ZWYKŁYCH W KLASIE V SZKOŁY PODSTAWOWEJ TEST SPRAWDZAJĄCY UMIEJĘTNOŚCI Z MATEMATYKI W KLASIE V UŁAMKI ZWYKŁE I DZIAŁANIA NA UŁAMKACH ZWYKŁYCH W KLASIE V SZKOŁY PODSTAWOWEJ program nauczania - Od Pitagorasa do Euklidesa test: sprawdzający nieformalny

Bardziej szczegółowo

DIAGNOZA POZIOMU WIEDZY Z MATEMATYKI UCZNIÓW KLAS I TECHNIKUM

DIAGNOZA POZIOMU WIEDZY Z MATEMATYKI UCZNIÓW KLAS I TECHNIKUM DIAGNOZA POZIOMU WIEDZY Z MATEMATYKI UCZNIÓW KLAS I TECHNIKUM OPRACOWAŁY MGR A. JASTROWSKA MGR A. KRZYKANOWSKA INOWROCŁAW WRZESIEŃ 2003 1 I. Koncepcja testu Test jest testem sprawdzającym wiadomości i

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 4a średnia klasy: 17.04 pkt średnia szkoły: 16.93 pkt średnia ogólnopolska: 15.64 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7a 7b 8 9 10 11a 11b 11c 11d

Bardziej szczegółowo

GRUPA A UŁAMKI ZWYKŁE KLASA V

GRUPA A UŁAMKI ZWYKŁE KLASA V GRUPA A UŁAMKI ZWYKŁE KLASA V zas pracy: min. Drogi uczniu! Masz przed sobą sprawdzian z zakresu ułamków zwykłych. Składa się on z 7 zadań o różnym stopniu trudności. Do pierwszych zadań podano odpowiedzi.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV REALIZOWANE WEDŁUG

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV REALIZOWANE WEDŁUG WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV REALIZOWANE WEDŁUG PROGRAMU MATEMATYKA Z PLUSEM Poziom podstawowy Poziom ponadpodstawowy Uczeń potrafi na: Uczeń potrafi na: ocenę dopuszczającą ocenę dostateczną

Bardziej szczegółowo

PODSTAWOWE FIGURY GEOMETRYCZNE

PODSTAWOWE FIGURY GEOMETRYCZNE TEST SPRAWDZAJĄCY Z MATEMATYKI dla klasy IV szkoły podstawowej z zakresu PODSTAWOWE FIGURY GEOMETRYCZNE autor: Alicja Bruska nauczyciel Szkoły Podstawowej nr 1 im. Józefa Wybickiego w Rumi WSTĘP Niniejsze

Bardziej szczegółowo

PLAN KIERUNKOWY. Liczba godzin: 180

PLAN KIERUNKOWY. Liczba godzin: 180 Klasa V Matematyka Liczba godzin: 180 PLAN KIERUNKOWY Wstępne Wykonuje działania pamięciowo i pisemnie w zbiorze liczb naturalnych Zna i stosuje reguły kolejności wykonywania działań Posługuje się ułamkami

Bardziej szczegółowo

MATEMATYKA - KLASA IV. I półrocze

MATEMATYKA - KLASA IV. I półrocze Liczby i działania MATEMATYKA - KLASA IV I półrocze Rozróżnia pojęcia: cyfra, liczba. Porównuje liczby naturalne proste przypadki. Dodaje i odejmuje liczby naturalne w zakresie 100. Mnoży i dzieli liczby

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne. Matematyka

Wymagania na poszczególne oceny szkolne. Matematyka Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Scenariusz lekcji matematyki w kl. V.

Scenariusz lekcji matematyki w kl. V. Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości ułamki zwykłe, dodawanie i odejmowanie ułamków. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie

Bardziej szczegółowo

Wymagania z matematyki klasa V Matematyka z plusem. Wymagania. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu

Wymagania z matematyki klasa V Matematyka z plusem. Wymagania. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu Wymagania z matematyki klasa V Matematyka z plusem Wymagania Lp. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu 1. Czyta ze zrozumieniem treści zadań. 2. Sprawdza uzyskane rozwiązania. C/D + + + 3. Znajduje

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA VI

Wymagania na poszczególne oceny szkolne KLASA VI Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Szkoła Podstawowa w Stęszewie

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Szkoła Podstawowa w Stęszewie PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Szkoła Podstawowa w Stęszewie Przedmiotowy System Oceniania z Matematyki I. Zasady oceniania 1) Ocenie podlegają wszystkie wymienione formy aktywności ucznia określone

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 Dział programowy: Działania na liczbach naturalnych Uczeń: 6 5 4 3 2 Opis osiągnięć rozróżnia pojęcia: cyfra, liczba 6 5 4 3 2 porównuje

Bardziej szczegółowo

KRYTERIA OCENIANIA W KLASACH CZWARTYCH - Matematyka. ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą;

KRYTERIA OCENIANIA W KLASACH CZWARTYCH - Matematyka. ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą; KRYTERIA OCENIANIA W KLASACH CZWARTYCH - Matematyka ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą; ocenę dopuszczającą otrzymuje uczeń, który: porównuje liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki- klasa 4

Wymagania edukacyjne z matematyki- klasa 4 Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

KRYTERIUM OCEN Z MATEMATYKI DLA KLASY 4 SZKOŁY PODSTAWOWEJ

KRYTERIUM OCEN Z MATEMATYKI DLA KLASY 4 SZKOŁY PODSTAWOWEJ KRYTERIUM OCEN Z MATEMATYKI DLA KLASY 4 SZKOŁY PODSTAWOWEJ DOPUSZCZAJĄCY Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

Sprowadzanie ułamków do wspólnego mianownika(

Sprowadzanie ułamków do wspólnego mianownika( STOPIEŃ BARDZO WYMAGANIA NA OCENY ŚRÓDROCZNE: LICZBY NATURALNE - POWTÓRZENIE WIADOMOŚCI I OSIĄGNIĘCIA Zapisywanie i odczytywanie liczb w dziesiątkowym systemie pozycyjnym. Obliczanie wartości wyrażeń arytmetycznych

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i

Bardziej szczegółowo

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa Klasa Va średnia klasy: 7.12 pkt średnia szkoły: 7.55 pkt średnia ogólnopolska: 8.35 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7a 7b 8 Numer zadania -

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające

Bardziej szczegółowo

Wymagania edukacyjne z matematyki na poszczególne oceny klasa IV

Wymagania edukacyjne z matematyki na poszczególne oceny klasa IV Wymagania edukacyjne z matematyki na poszczególne oceny klasa IV Ocena dopuszczająca: Rozróżnia pojęcia cyfra liczba Porównuje liczby naturalne-proste przypadki Dodaje i odejmuje liczby naturalne w zakresie

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6

KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6 KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6 DOPUSZCZAJĄC Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje,

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju.

Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju. Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju. Wiadomości i umiejętności przez Was opanowane będą sprawdzane w formie: odpowiedzi i wypowiedzi ustnych, prac

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE IV SZKOŁY PODSTAWOWEJ

KRYTERIA OCENY Z MATEMATYKI W KLASIE IV SZKOŁY PODSTAWOWEJ KRYTERIA OCENY Z MATEMATYKI W KLASIE IV SZKOŁY PODSTAWOWEJ Na stopień dostateczny uczeń powinien umieć: Arytmetyka - dodawać i odejmować w pamięci liczby dwucyfrowe, - mnożyć i dzielić w pamięci liczby

Bardziej szczegółowo

Działania na ułamkach zwykłych powtórzenie wiadomości

Działania na ułamkach zwykłych powtórzenie wiadomości Działania na ułamkach zwykłych powtórzenie wiadomości. Cele lekcji a) Wiadomości. Uczeń zna pojęcia sumy, różnicy i iloczynu. 2. Uczeń zna sposób obliczania sumy ułamków zwykłych, różnicy ułamków zwykłych,

Bardziej szczegółowo

Kryteria ocen z matematyki

Kryteria ocen z matematyki Klasa I DZIAŁ: Liczby i działania Kryteria ocen z matematyki obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki zwykłe

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

MATEMATYKA WOKÓŁ NAS Katalog wymagań programowych na poszczególne stopnie szkolne klasa 6

MATEMATYKA WOKÓŁ NAS Katalog wymagań programowych na poszczególne stopnie szkolne klasa 6 MATEMATYKA WOKÓŁ NAS Katalog wymagań programowych na poszczególne stopnie szkolne klasa 6 UCZEŃ Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę,

Bardziej szczegółowo

MATEMATYKA WOKÓŁ NAS Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4

MATEMATYKA WOKÓŁ NAS Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 MATEMATYKA WOKÓŁ NAS Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 Dział programu: Działania na liczbach naturalnych Rozróżnia pojęcia: cyfra, liczba. Porównuje liczby naturalne

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla uczniów klasy 6 Program Matematyka wokół nas

Wymagania edukacyjne z matematyki dla uczniów klasy 6 Program Matematyka wokół nas Wymagania edukacyjne z matematyki dla uczniów klasy 6 Program Matematyka wokół nas I. Ocena celująca Uzasadnia wykonalność działań w zbiorze liczb naturalnych. Ocenia wykonalność działań w zbiorze liczb

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5

KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5 KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5 KLASA 5E PROWADZĄCA: Anna Sałyga DZIAŁ PROGRAMOWY: Arytmetyka TEMAT: Dodawanie i odejmowanie liczb mieszanych. CELE: Poziom wiadomości: (kategoria A) uczeń zna algorytm

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Ułamki i działania 20 h Nazwa modułu I. Ułamki zwykłe

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa 4

Wymagania programowe na poszczególne stopnie szkolne klasa 4 Wymagania programowe na poszczególne stopnie szkolne klasa 4 Nauczyciel matematyki ocenia osiągnięcia ucznia, wykorzystując następujące formy: prace pisemne (prace klasowe, sprawdziany, kartkówki) odpowiedzi

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 6a średnia klasy: 20.67 pkt średnia szkoły: 19.37 pkt średnia ogólnopolska: 14.27 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4a 4b 4c 5 6 7 8 Numer zadania -

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów

Bardziej szczegółowo

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry rozkładu wyników

Bardziej szczegółowo

Rozkład materiału nauczania z matematyki dla klasy V

Rozkład materiału nauczania z matematyki dla klasy V Rozkład materiału nauczania z matematyki dla klasy V Lp. Temat lekcji uwagi D Lekcja organizacyjna. Zapoznanie uczniów z programem nauczania oraz systemem oceniania. LICZBY NATURALNE 1-22 1. Liczba, a

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 4.

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 4. Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 4. Semestr 1 6 5 4 3 2 Dział programu: Działania na liczbach naturalnych Rozróżnia

Bardziej szczegółowo

TEST WIELOSTOPNIOWY NAUCZYCIELSKI DLA KL. IV SPRAWDZAJĄCY CAŁOROCZNE WIADOMOŚCI I UMIEJĘTNOŚCI Z MATEMATYKI

TEST WIELOSTOPNIOWY NAUCZYCIELSKI DLA KL. IV SPRAWDZAJĄCY CAŁOROCZNE WIADOMOŚCI I UMIEJĘTNOŚCI Z MATEMATYKI TEST WIELOSTOPNIOWY NAUZYIELSKI LA KL. IV SPRAWZAJĄY AŁOROZNE WIAOMOŚI I UMIEJĘTNOŚI Z MATEMATYKI BEATA KOWALZYK NAUZYIEL MATEMATYKI SP W LIBISZOWIE Opracowała: mgr Beata Kowalczyk SPIS TREŚI 1. Spis treści..str.

Bardziej szczegółowo

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra)

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI w klasie 6 w roku szkolnym 2012/2013. Liczby naturalne

WYMAGANIA EDUKACYJNE Z MATEMATYKI w klasie 6 w roku szkolnym 2012/2013. Liczby naturalne WYMAGANIA EDUKACYJNE Z MATEMATYKI w klasie 6 w roku szkolnym 2012/2013 Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące

Bardziej szczegółowo

Kryteria oceniania na poszczególne stopnie z matematyki - klasa VI

Kryteria oceniania na poszczególne stopnie z matematyki - klasa VI Kryteria oceniania na poszczególne stopnie z matematyki - klasa VI Szkoła Podstawowa nr 9 w Mielcu Na ocenę DOPUSZCZAJĄCĄ uczeń: Oblicza różnice czasu, wymienia jednostki opisujące prędkość, drogę, czas.

Bardziej szczegółowo

Matematyka, kl. 5. Konieczne umiejętności

Matematyka, kl. 5. Konieczne umiejętności Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

Katalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas

Katalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas Katalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas OCENA DOPUSZCZAJĄCA (wymagania na ocenę dopuszczającą są równoważne z minimum programowe dla klasy VI)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV I SEMESTR a) Wymagania konieczne (na ocenę dopuszczającą) Obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez

Bardziej szczegółowo

Ułamki zwykłe. mgr Janusz Trzepizur

Ułamki zwykłe. mgr Janusz Trzepizur Ułamki zwykłe mgr Janusz Trzepizur Ułamek jako część całości W ułamku wyróżniamy licznik i mianownik. kreska ułamkowa licznik mianownik (czytamy: jedna druga) czyli połowa całości. Dwie takie połowy tworzą

Bardziej szczegółowo

Wymagania edukacyjne z matematyki na poszczególne oceny w klasie 4

Wymagania edukacyjne z matematyki na poszczególne oceny w klasie 4 Wymagania edukacyjne z matematyki na poszczególne oceny w klasie 4 Wymagania na ocenę dopuszczającą. Uczeń: - rozróżnia pojęcia: liczba, cyfra - porównuje liczny naturalne - dodaje i odejmuje liczby naturalne

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie 5 Matematyka z plusem DKOW /08

Kryteria ocen z matematyki w klasie 5 Matematyka z plusem DKOW /08 Matematyka z plusem DKOW-5002-37/08 DZIAŁ LICZBY NATURALNE WŁASNOŚCI LICZB NATURALNYCH KONIECZNE ocena dopuszczająca rozumie dziesiątkowy system pozycyjny umie zapisywać i odczytywać liczby cyframi i słownie

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH dodawać w pamięci

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 6.

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 6. Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 6. Semestr 1 Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia

Bardziej szczegółowo

KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1

KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1 KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa VI

Wymagania programowe na poszczególne stopnie szkolne klasa VI Wymagania programowe na poszczególne stopnie szkolne klasa VI 6 5 4 3 2 LICZBY NATURALNE Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

Kryteria oceniania z matematyki klasa VI

Kryteria oceniania z matematyki klasa VI Kryteria oceniania z matematyki klasa VI Ocenę dopuszczającą otrzymuje uczeń, który: Wykonuje proste obliczenia czasowe. Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt

Bardziej szczegółowo

Wymagania edukacyjne z matematyki. dla uczniów klasy VI SP. na poszczególne oceny. śródroczne i roczne

Wymagania edukacyjne z matematyki. dla uczniów klasy VI SP. na poszczególne oceny. śródroczne i roczne Wymagania edukacyjne z matematyki dla uczniów klasy VI SP na poszczególne oceny śródroczne i roczne DOPUSZCZAJĄCA ocena SEMESTR I SEMESTR II Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość,

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ 1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY V SZKOŁY PODSTAWOWEJ Materiał przedstawia Przedmiotowe Zasady Oceniania z matematyki dla

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny:

Wymagania edukacyjne na poszczególne oceny: Na ocenę dopuszczającą: Wymagania edukacyjne na poszczególne oceny: Dział programu: Liczby naturalne. Wykonuje proste obliczenia czasowe. Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 6

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 6 Katalog wymagań programowych na poszczególne stopnie szkolne klasa 6 Dział programowy: Liczby naturalne Uczeń: 6 5 4 3 2 Opis osiągnięć Wykonuje proste obliczenia czasowe. Wymienia jednostki opisujące

Bardziej szczegółowo

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

dodaje liczby bez przekraczania progu dziesiątkowego, zapisuje słownie godziny przedstawione na zegarze,

dodaje liczby bez przekraczania progu dziesiątkowego, zapisuje słownie godziny przedstawione na zegarze, MATEMATYKA KLASA 4 Wymagania na poszczególne oceny Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie

Bardziej szczegółowo

- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory;

- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory; Edukacja matematyczna kl. II Wymagania programowe Dział programu Poziom opanowania Znajdowanie części wspólnej, złączenia zbiorów oraz wyodrębnianie podzbiorów Liczby naturalne od 0 100 A bardzo dobrze

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki

Bardziej szczegółowo

Informacja dla ucznia

Informacja dla ucznia Informacja dla ucznia Test, który będziesz rozwiązywać składa się z 0 zadań o róŝnym stopniu trudności. W zadaniach wystarczy odnaleźć jedną prawidłową odpowiedź spośród kilku podanych (oznaczonych literami

Bardziej szczegółowo

Działania na ułamkach zwykłych rozwiązywanie zadań

Działania na ułamkach zwykłych rozwiązywanie zadań Działania na ułamkach zwykłych rozwiązywanie zadań 1. Cele lekcji a) Wiadomości 1. Uczeń zna pojęcia sumy, różnicy i iloczynu. 2. Uczeń zna sposób obliczania sumy ułamków zwykłych, różnicy ułamków zwykłych,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2016/2017 ZESPÓŁ SZKOLNO PRZEDSZKOLNY W BALICACH SZKOŁA PODSTAWOWA W BALICACH WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2016/2017 Matematyka 2001. Program nauczania matematyki w klasach IV-VI szkoły

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry

Bardziej szczegółowo

O 3.1. Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4

O 3.1. Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 O 3.1. Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 Kategorie zostały określone następująco: dotyczące wiadomości uczeń zna uczeń rozumie dotyczące przetwarzania wiadomości uczeń

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 Kategorie zostały określone następująco: dotyczące wiadomości uczeń zna uczeń rozumie dotyczące przetwarzanie wiadomości uczeń stosuje

Bardziej szczegółowo

UŁAMKI ZWYKŁE I DZIESIĘTNE

UŁAMKI ZWYKŁE I DZIESIĘTNE 137 - Ułamki zwykłe i dziesiętne - kółko matematyczne dla klasy VI Jesteś zalogowany(a) jako Recenzent (Wyloguj) Kreatywna szkoła ZP_137 Osoby Uczestnicy Certificates Fora dyskusyjne Głosowania Quizy Zadania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI dział dopuszczający dostateczny dobry bardzo dobry celujący LICZBY NATURALNE Wymienia jednostki opisujące prędkość, drogę, czas. Wykonuje proste obliczenia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA 4. Ocena śródroczna

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA 4. Ocena śródroczna WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA 4 (do programu nauczania Matematyka z pomysłem, WSiP) Otrzymanie oceny wyższej oznacza spełnienie wymagań także na ocenę niższą Ocena śródroczna

Bardziej szczegółowo

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie 4. Matematyka z plusem WYMAGANIA WYMAGANIA KONIECZNE. WYKRACZAJĄCE ocena ROZSZERZAJĄCE PODSTAWOWE

Kryteria ocen z matematyki w klasie 4. Matematyka z plusem WYMAGANIA WYMAGANIA KONIECZNE. WYKRACZAJĄCE ocena ROZSZERZAJĄCE PODSTAWOWE Kryteria ocen z matematyki w klasie 4 Matematyka z plusem DZIAŁ KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE ocena ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca dopuszczająca

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo