UŁAMKI ZWYKŁE. KLASA IV a. Opracował: Zdzisław Dziura

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "UŁAMKI ZWYKŁE. KLASA IV a. Opracował: Zdzisław Dziura"

Transkrypt

1 Urszulin, maj 00 r. TEST OSIĄGNIĘĆ UCZNIÓW Z MATEMATYKI UŁAMKI ZWYKŁE KLASA IV a Opracował: Zdzisław Dziura

2 KARTOTEKA TESTU SPRAWDZAJĄCEGO: Klasa IV a- Szkoła Podstawowa w Urszulinie; Urszulin, maj 00 r. Przedmiot- matematyka Numer zadania Sprawdzana czynność ucznia Poziom Kategoria wymagań celu 1 Opisywanie za pomocą ułamka zaznaczonej P B części figury. Ilustrowanie graficzne, jaką częścią całości P B jest dany ułamek. Wskazywanie ułamków właściwych i P B niewłaściwych. Skracanie i rozszerzanie ułamków zwykłych. P C 5 Zamiana ułamków niewłaściwych na liczbę P C mieszaną i odwrotnie. 6 A, B, C, D Porównywanie ułamków zwykłych o P C jednakowych mianownikach lub o jednakowych licznikach. 7 Dodawanie ułamków zwykłych o jednakowych P C mianownikach. 8 Odejmowanie ułamków zwykłych o P C jednakowych mianownikach. 9 Odczytywanie z osi liczbowej współrzędnej P B będącej ułamkiem. 10, 11 Obliczanie ułamka z danej liczby naturalnej. R C 1 Obliczanie ułamka z danej liczby naturalnej R C w zadaniach z treścią. 1 Obliczanie ułamka z ułamka. R C 1, 15 Obliczanie wartości dłuższego wyrażenia z zastosowaniem ułamków zwykłych. U D

3 PLAN TESTU SPRAWDZAJĄCEGO Klasa IV a - Szkoła Podstawowa w Urszulinie; Urszulin 00 r. Przedmiot - matematyka Materiał nauczania Treść podstawowa P Treść rozszerzająca R Treść uzupełniająca U A B C A B C A B C D Razem zadań Działania na ułamkach zwykłych Razem zadań A 6 B 6 C 6 D

4 OBLICZENIA 1. Punktacja odpowiedzi do zadań otwartych nr 1,, 6A, 6B, 6C, 6D, 9, 1 i 15. A- rozwiązanie poprawne i wyczerpujące-1pkt; C- rozwiązanie błędne z powodu nieznajomości pojęcia, prawa lub twierdzenia, albo wzoru opisującego dane zależności-0 pkt; E- brak rozwiązania- 0 pkt.. Średnia arytmetyczna wyników testu. x = 16 i= xi 1 = N =10,9; N- liczba uczniów biorących udział w teście; N=16.. Wskaźnik mocy różnicującej zadania. D 50 = L S 0,5 N ; N=18(liczba zadań) D 50 min = 0,6; D 50(zadowalająca moc) = 0,5. Odchylenie standardowe wyników. S t = 16 i= 1 ( x x) i N = 16,96 =,19; N=16(liczba uczniów) Przedział wyników typowych. ( x -S t, x +S t ); tutaj będzie (10,9-,19; 10,9+,19) czyli przedział (7,71; 1,09); zaokrąglając do jednego miejsca po przecinku otrzymamy (7,7;,1) 6. Rozstęp. R= x max -x min = 17-6=11 7. Modalna M o (moda). Obserwujemy rozstaw trójmodalny: M o 1 =6; M o =11; M o =1 8. Mediana M e. M e = 11

5 9. Przeliczenie wyników na stopnie szkolne. Warstwa treści Liczba zadań Norma wymagań dla TSW Uproszczony sposób przeliczenia wyników na stopnie szkolne 6-9 zadań- dopuszczający; P z P- dopuszczający; przynajmniej 10 z P- dostateczny R tyle, ile na dostateczny i dodatkowo z R- dobry 10-1 zadań-dostateczny; zadań-dobry; tyle, ile na dobry i dodatkowo U przynajmniej 1 zadanie z U- bardzo dobry Razem 18 zadań zadań-bardzo dobry 10. Zgodność stopni szkolnych. l p liczba przesunięć uzgadniających układ; m = 5( liczba stopni na skali); N- liczba uczniów; współczynnik zgodności stopni- B; B= 1- l p m 1 N = = 1- = = 0,9 Jest to wysoka zgodność ocen. Wyniki testu Oceny wystawione bez uwzględnienia norm wymagań dla TSW bdb db dst dop. ndst bdb db dst 6 dop. 6 ndst 0 N=16 Liczba uczniów 5

6 11. Współczynnik rzetelności testu KR 0 m m 1 p q r tt = (1 ) S t 18,6 = ( , 185 m- liczba zadań w teście; m= Frakcja opuszczeń. )=0,8 (test rzetelny); f 0 = liczba uczniów, którzy opuścili zadanie liczba uczniów biorących udział w testowaniu W teście, który przeprowadziłem spotykamy dwie wartości: f 0 = 0- żaden uczeń nie opuścił danego zadania; f 0 = 16 1 =0,065-tylko jeden uczeń opuścił zadanie. Dystraktor- odpowiedź nieprawidłowa w zadaniu wyboru. 6

7 WNIOSKI: 1. Analiza i ocena zadań. Test składał się z 9 zadań zamkniętych i 9 zadań otwartych. Interpretując frakcję opuszczeń f 0 =0 dla zadań 1-6A, 9-15 oraz f 0 =0,066 dla zadań 6B-8 i dla zadania 10, należy przyjąć, że zdecydowana większość zadań była czytelna dla uczniów. Zadania reprezentujące treści podstawowe posiadają współczynnik łatwości odpowiadający zadaniom łatwym i bardzo łatwym, z wyjątkiem zadania (p=0,5), zadanie 6A (p=0,), zadanie 6C(p=0,1). Treści zawarte w tych zadaniach wymagają powtórzenia i utrwalenia. Zadanie 6C należy przenieść do poziomu treści uzupełniających. Zadanie reprezentujące treści rozszerzające są umiarkowanie trudne, z wyjątkiem zadania 10 (p=0,88). Być może kilku uczniów wybrało tę odpowiedź przypadkowo, a możliwe, iż na treningu przed pracą klasową ten typ zadania był szczególnie utrwalany i eksponowany. Zadania z treści uzupełniających okazały się zbyt trudne (p=0,19) dla większości uczniów. Współczynnik mocy różnicującej D 50 dla całego testu (18 zadań) powinien spełniać następujące wymagania: minimalna moc różnicująca powinna wynosić 0,6; natomiast moc różnicująca zadowalająca 0,5. Dobrą moc różnicującą prezentują zadania:,, 6B, 9, 11. Niską moc różnicującą wykazują zadania:, 6A, 6D, 7- wynika ona z łatwości zadań, oraz zadania 1 i 15- są zbyt trudne. Analiza częstości dystraktorów- zadania 6C, 1 i 15 (odpowiedź C wybrana 1 razy) wskazuje na to, że uczniowie nie opanowali umiejętności porównywania ułamków o różnych mianownikach i ich dodawania. Wszak ww. zadania są otwarte, dlatego wystąpiła odpowiedź C. Badanie zgodności stopni szkolnych (współczynnik zgodności) wskazuje, że stopnie wystawione bez uwzględnienia normy wymagań dla TSW i wystawiane zgodnie z tą normą nie różnią się istotnie. Współczynnik ten ma wartość 0,9; co kwalifikuje go do klasy reprezentującej wysoką zgodność. 7

8 . Analiza wyników testowania. Średnia arytmetyczna wyników testu wynosi x =10,9; natomiast odchylenie standardowe wynosi S t =,19. Wyniki typowe zawierają się w przedziale (7,7;1,1). Rozstęp wynosi 11. Rozstaw wyników jest trójmodalny: M 01 =6, M 0 =11, M 0 =1. Mediana wynosi M e =11. Rozkład wyników testowania (wykres) pokazuje, że poza przedziałem wyników typowych znalazło się 6 uczniów. Uczniowie, którzy znaleźli się poniżej dolnej granicy przedziału i uczniowie powyżej górnej granicy prezentują poziom wiedzy i umiejętności adekwatny do uzyskanych wyników. Rozkład wyników testu (graficzna interpretacja) świadczy o tym, że badana grupa uczniów jest zespołem zróżnicowanym.. Analiza i ocena testu. Współczynnik rzetelności testu r tt = 0,8. Wartość ta kwalifikuje test do grupy testów rzetelnych. Po wprowadzeniu niezbędnych korekt, takich jak przesunięcie zadań w obszarach reprezentujących określone treści oraz eliminacji pewnych zadań (analiza współczynnika łatwości), o czym wcześniej już napisałem, test będzie można wykorzystać w badaniu kolejnych zespołów uczniowskich. Można w przyszłości za zadania 1 i 15 przyznać punkty, a nie jak dotychczas- 1 pkt. 8

9 PRAWIDŁOWE ODPOWIEDZI DO SPRAWDZIANU Z DZIAŁU: Ułamki zwykłe w kl. IV a = 1. B. B 5. D 6. A: 6. B: 6. C: 6. D: 6 < < = = 5 7. C 8. B 9. K= B 11. B 1. B 1. C 1. Odpowiedź Odpowiedź 5 1 KONIEC 9

10 LICZBA UZYSKANYCH PUNKTÓW PRZEZ TESTOWANYCH UCZNIÓW Liczba uczniów Liczba uzyskanych punktów Liczba uczniów Liczba uzyskanych punktów 10

11 Liczba uzyskanych punktów przez testowanych uczniów przedział wyników typowych ,7 10,9 1,1 LICZBA PUNKTÓW X

12 TABELA ZBIORCZA WYNIKÓW TESTU ZAKRES MATERIAŁU: Ułamki zwykłe; Klasa: IV a; Zespół Szkół w Urszulinie; maj 00 r.; 18 zadań; 16 uczniów; maksymalna liczba punktów- 18 pkt. Zadania otwarte: 1,, 6A, 6B, 6C, 6D, 9, 1, 15; 9 zadań otwartych, 9 zamkniętych; w zadaniach otwartych: odpowiedź A- 1pkt; odpowiedź C- 0 pkt; odpowiedź E- 0 pkt (uczeń opuścił zadanie); x = 10,9; m o = 6, 11, 1; m e = 11; S t = 10,185; S t =,19; 8uczniów- lepsza część klasy; 8 uczniów- słabsza część klasy. Zadania zamknięte:,, 5, 7, 8, 10, 11, 1, 1. Imię i nazwisko ucznia Podstawowe P Wymagania Rozszerzające R Uzupełniające U Zaliczenie pozycji wymagań P R U Kategoria celu B B B C C C C C C C C B C C C C D D X i X i - X (X i - X ) Odpowiedzi prawidłowe A A B B D A A A A C B A B B B C A A 1 Numery zadań 1 5 6A 6B 6C 6D Dominik Jurko A A B B D A A A A C B A B B B C A C ,1 7,1 Łukasz Kowalski A A B B D C C A A C B A B B B B A A ,1 6,01 Krzysztof Stopa A A B B D A A A A C B A B B B C C C ,1 6,01 Michał Kapała A A B B D C A A A B A A B B B C C C 9 0 1,1,1 Anna Niećko A A B A D A A C A C B A B A A C C A ,1,1 Wiola Doszko A A B B D C A C A C B A B B B B C C ,1,1 Karol Marciniuk A A B B B C A C A B B A B B B B C C ,1 0,01 Monika Jędruszak A A B A D A A C A C A A B A D C C C ,1 0,01 Izabela Korona A A B A D C C A A C B A B A D C C C ,1 0,01 Grzegorz Pawłowski A A B B B C A C A C B A E D B A C C ,1 0,01 Piotr Wysocki A C B B D C C C A B B C B B B B C C ,1 1,1 Ocena 1

13 Iwona Janowska C A A C C A C C A C B C B A A A A A ,1,1 Monika Radko A A B D B C A C A C A C B D D C C C ,1,1 Mariusz Szadkowski A A A D C A C C A C A C B C D D C C ,1 16,81 Emil Ośko A A A C D A C C A A C C A D B D C C ,1 16,81 Karolina Korona C A B A D C E E E E E A B A A C C C 0 6 -,1 16,81 SUMA ,96 p 0,88 0,9 0,81 0,5 0,69 0, 0,56 0,1 0,9 0,69 0,6 0,69 0,88 0, 0,56 0,5 0,19 0,19 q 0,1 0,06 0,19 0,5 0,1 0,56 0, 0,69 0,06 0,1 0,7 0,1 0,1 0,56 0, 0,5 0,81 0,81 p q 0,11 0,06 0,15 0,5 0,1 0,5 0,5 0, , 0, 0,1 0,11 0,5 0,5 0,5 0,15 0,15 Suma p q=,6 f ,06 0,06 0,06 0,06 0,06 0 0, L S L-S D 0,1 0,8 0,5 0,8 0,1 0,6 0,8 0,1 0,1 0,5 0,6 0,5 0,6 0,8 0,5 0,1 0,1 50 0,5 1

14 SPRAWDZIAN WIADOMOŚCI Z DZIAŁU: Ułamki zwykłe Imię i nazwisko: klasa IV a; r. 1. Jaką część figury zamalowano?. Zacieniuj figury.. Zaznacz prawidłową odpowiedź. A. Ułamki właściwe to:, 5, B. Ułamki niewłaściwe to:,, A Ułamek to inaczej: 00 B. C. 6 5 D Ułamek A. 1 B. jest równy: C. D Wstaw właściwy ze znaków: > ; = ; < A B C D Wynikiem dodawania ułamków 7 8 i 7 jest: 8 A. 77 B. 1 1 C. 7 D. 9

15 Wynikiem odejmowania ułamków i jest: 19 A. 8 B. C D Odczytaj z osi liczbowej współrzędną K będącą ułamkiem. 0 K liczby 7 stanowi: A B C. 11 D liczby 1000 stanowi: A B. 15 C. 1 D wszystkich cukierków w paczce stanowią landrynki. Toffi stanowią także 1 wszystkich cukierków. Pozostałe cukierki to karmelki, których jest 10. Ile jest wszystkich cukierków w paczce? A. 5 B. 0 C. 0 D Oblicz 8 1 ułamka 7 : A. 7 B. 8 7 C Oblicz wartość wyrażenia: D : = Oblicz wartość wyrażenia: : + (8-) : + 5= Życzę sukcesu! 15

POMIAR DYDAKTYCZNY Z MATEMATYKI

POMIAR DYDAKTYCZNY Z MATEMATYKI POMIAR DYDAKTYCZNY Z MATEMATYKI DZIAŁANIA NA UŁAMKACH ZWYKŁYCH KLASA VI OPRACOWAŁ NAUCZYCIEL MATEMATYKI AGNIESZKA SZCZUCHNIAK CEL OGÓLNY: Umiejętność wykonywania działań na ułamkach zwykłych CELE OPERACYJNE:

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 4a średnia klasy: 17.04 pkt średnia szkoły: 16.93 pkt średnia ogólnopolska: 15.64 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7a 7b 8 9 10 11a 11b 11c 11d

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny

Bardziej szczegółowo

GRUPA A UŁAMKI ZWYKŁE KLASA V

GRUPA A UŁAMKI ZWYKŁE KLASA V GRUPA A UŁAMKI ZWYKŁE KLASA V zas pracy: min. Drogi uczniu! Masz przed sobą sprawdzian z zakresu ułamków zwykłych. Składa się on z 7 zadań o różnym stopniu trudności. Do pierwszych zadań podano odpowiedzi.

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie

Bardziej szczegółowo

DIAGNOZA POZIOMU WIEDZY Z MATEMATYKI UCZNIÓW KLAS I TECHNIKUM

DIAGNOZA POZIOMU WIEDZY Z MATEMATYKI UCZNIÓW KLAS I TECHNIKUM DIAGNOZA POZIOMU WIEDZY Z MATEMATYKI UCZNIÓW KLAS I TECHNIKUM OPRACOWAŁY MGR A. JASTROWSKA MGR A. KRZYKANOWSKA INOWROCŁAW WRZESIEŃ 2003 1 I. Koncepcja testu Test jest testem sprawdzającym wiadomości i

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry rozkładu wyników

Bardziej szczegółowo

Maria Mauryc SP nr 2 w Czarnej Białostockiej

Maria Mauryc SP nr 2 w Czarnej Białostockiej Autor Maria Mauryc SP nr w Czarnej Białostockiej Poziom szkoła podstawowa Klasa V Dział Ułamki zwykłe Czas min Temat Utrwalenie wiadomości o ułamkach zwykłych Uwaga Powtórzenie działu. Cele lekcji Po zakończeniu

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa Klasa Va średnia klasy: 7.12 pkt średnia szkoły: 7.55 pkt średnia ogólnopolska: 8.35 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7a 7b 8 Numer zadania -

Bardziej szczegółowo

UŁAMKI ZWYKŁE I DZIAŁANIA NA UŁAMKACH ZWYKŁYCH W KLASIE V SZKOŁY PODSTAWOWEJ

UŁAMKI ZWYKŁE I DZIAŁANIA NA UŁAMKACH ZWYKŁYCH W KLASIE V SZKOŁY PODSTAWOWEJ TEST SPRAWDZAJĄCY UMIEJĘTNOŚCI Z MATEMATYKI W KLASIE V UŁAMKI ZWYKŁE I DZIAŁANIA NA UŁAMKACH ZWYKŁYCH W KLASIE V SZKOŁY PODSTAWOWEJ program nauczania - Od Pitagorasa do Euklidesa test: sprawdzający nieformalny

Bardziej szczegółowo

Klasa I szkoły ponadgimnazjalnej matematyka

Klasa I szkoły ponadgimnazjalnej matematyka Klasa I szkoły ponadgimnazjalnej matematyka. Informacje ogólne Badanie osiągnięć uczniów I klas odbyło się 7 września 2009 r. Wyniki badań nadesłało 2 szkół. Analizie poddano wyniki 992 uczniów z 4 klas

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Szkoła Podstawowa w Stęszewie

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Szkoła Podstawowa w Stęszewie PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Szkoła Podstawowa w Stęszewie Przedmiotowy System Oceniania z Matematyki I. Zasady oceniania 1) Ocenie podlegają wszystkie wymienione formy aktywności ucznia określone

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju.

Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju. Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju. Wiadomości i umiejętności przez Was opanowane będą sprawdzane w formie: odpowiedzi i wypowiedzi ustnych, prac

Bardziej szczegółowo

PODSTAWOWE FIGURY GEOMETRYCZNE

PODSTAWOWE FIGURY GEOMETRYCZNE TEST SPRAWDZAJĄCY Z MATEMATYKI dla klasy IV szkoły podstawowej z zakresu PODSTAWOWE FIGURY GEOMETRYCZNE autor: Alicja Bruska nauczyciel Szkoły Podstawowej nr 1 im. Józefa Wybickiego w Rumi WSTĘP Niniejsze

Bardziej szczegółowo

ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ

ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ 1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY VI SZKOŁY PODSTAWOWEJ Materiał przedstawia Zasady Oceniania z matematyki dla klasy VI szkoły podstawowej.

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne 1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne. Matematyka

Wymagania na poszczególne oceny szkolne. Matematyka Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny

Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASACH IV-VI NA LEKCJACH MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASACH IV-VI NA LEKCJACH MATEMATYKI PRZEDMIOTOWY SYSTEM OCENIANIA W KLASACH IV-VI NA LEKCJACH MATEMATYKI KONTRAKT 1. Przedmiotem oceniania są: umiejętności, wiedza ucznia, zaangażowanie w proces nauczania (aktywność). 2. Sprawdzanie wiedzy

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

Przedmiotowy System Oceniania

Przedmiotowy System Oceniania Przedmiotowy System Oceniania Fizyka i astronomia poziom podstawowy Dla klas : II gimnazjum III gimnazjum Marcin Lewicki 1) Poniższy Przedmiotowy System Oceniania został oparty na : Programie nauczania

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH dodawać w pamięci

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI OBOWIĄZUJĄCY W SZKOLE PODSTAWOWEJ W ŁASZCZOWIE

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI OBOWIĄZUJĄCY W SZKOLE PODSTAWOWEJ W ŁASZCZOWIE PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI OBOWIĄZUJĄCY W SZKOLE PODSTAWOWEJ W ŁASZCZOWIE 1. Podręcznik Matematyka wokół nas, H. Lewicka, M. Kowalczyk, Wyd. WSiP + 2 zeszyty ćwiczeń. Uczniowie na początku

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012 WYNIKI ZESTAWU W CZĘŚCI matematycznej Dane statystyczne o uczniach (słuchaczach) przystępujących do egzaminu gimnazjalnego Liczbę uczniów

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA Wymagania edukacyjne niezbędne do otrzymania przez ucznia klasy 5 poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych w roku szkolnym2016/2017. TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie

Bardziej szczegółowo

TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 2007/2008)

TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 2007/2008) TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 007/008) Test i analizę opracował: mgr Wojciech Janeczek Test przeprowadziły: mgr Barbara Zalewska, mgr

Bardziej szczegółowo

Udział punktów możliwych do uzyskania w zależności od kategorii standardów przedstawia tabela.

Udział punktów możliwych do uzyskania w zależności od kategorii standardów przedstawia tabela. Wprowadzenie Na podstawie rozporządzenia Ministra Edukacji Narodowej z dnia 30 kwietnia 2007 roku w sprawie warunków i sposobu oceniania, klasyfikowania i promowania uczniów i słuchaczy oraz przeprowadzania

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA W GIMNAZJUM NR 1 HISTORIA

PRZEDMIOTOWE ZASADY OCENIANIA W GIMNAZJUM NR 1 HISTORIA PRZEDMIOTOWE ZASADY OCENIANIA W GIMNAZJUM NR 1 HISTORIA 1. Przedmiotowe wymagania edukacyjne z historii. 2. Sposoby sprawdzania dydaktycznych osiągnięć uczniów. 3. Sposoby informowania uczniów, rodziców

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki

Bardziej szczegółowo

Scenariusz lekcji matematyki w kl. V.

Scenariusz lekcji matematyki w kl. V. Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości ułamki zwykłe, dodawanie i odejmowanie ułamków. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie

Bardziej szczegółowo

PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z CKE GRUDZIEŃ 2014

PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z CKE GRUDZIEŃ 2014 PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z CKE GRUDZIEŃ 2014 1 1 Wstęp W kwietniu 2015 roku uczniowie klas szóstych będą pisać swój sprawdzian w nowej formule: część 1. - język polski i matematyka

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

POZIOMY WYMAGAŃ I OGÓLNE KRYTERIA OCEN. Z MATEMATYKI. kl. I

POZIOMY WYMAGAŃ I OGÓLNE KRYTERIA OCEN. Z MATEMATYKI. kl. I POZIOMY WYMAGAŃ I OGÓLNE KRYTERIA OCEN Ocenę niedostateczna Z MATEMATYKI. kl. I Ocenę tę otrzymuje uczeń, który nie opanował podstawowych wiadomości i umiejętności wynikających z programu nauczania oraz:

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY 2011 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna

EGZAMIN GIMNAZJALNY 2011 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna EGZAMIN GIMNAZJALNY 2011 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja wiosenna Jaworzno 2011 SPIS TREŚCI 1. WPROWADZENIE... 3 2. OGÓLNE WYNIKI UZYSKANE PRZEZ SŁUCHACZY GIMNAZJÓW DLA DOROSŁYCH

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa Klasa Va Rozkład łatwości zadań Średni wynik klasy 20.53 pkt 59% Średni wynik szkoły.9 pkt 48% Średni wynik ogólnopolski 19.10 pkt 55% 1 0.9 0.8 0. 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 8

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe.

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU MATEMATYKA V LICEUM OGÓLNOKSZTAŁCĄCE IM. KLAUDYNY POTOCKIEJ W POZNANIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU MATEMATYKA V LICEUM OGÓLNOKSZTAŁCĄCE IM. KLAUDYNY POTOCKIEJ W POZNANIU PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU MATEMATYKA V LICEUM OGÓLNOKSZTAŁCĄCE IM. KLAUDYNY POTOCKIEJ W POZNANIU Każdy uczeń ma prawo zdobywać wiedzę na lekcjach matematyki, rozwijać ją i utrwalać samodzielną

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania

Bardziej szczegółowo

Przedmiotowe Zasady Oceniania

Przedmiotowe Zasady Oceniania Przedmiotowe Zasady Oceniania 1. Przedmiot: Matematyka 2. Etap edukacyjny: Szkoła Podstawowa, Gimnazjum 3. Imię i nazwisko nauczyciela: Iwona Świątkowska, Wioletta Stokowiec, Monika Golda, Katarzyna Łakomiec

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z RELIGII W KL. I - III

PRZEDMIOTOWY SYSTEM OCENIANIA Z RELIGII W KL. I - III PRZEDMIOTOWY SYSTEM OCENIANIA Z RELIGII W KL. I - III A. Ocenie podlegają: wiadomości i umiejętności związane z realizowanym programem wiadomości i umiejętności związane z Rokiem Liturgicznym znajomość

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i

Bardziej szczegółowo

Rozkład materiału nauczania z matematyki dla klasy V

Rozkład materiału nauczania z matematyki dla klasy V Rozkład materiału nauczania z matematyki dla klasy V Lp. Temat lekcji uwagi D Lekcja organizacyjna. Zapoznanie uczniów z programem nauczania oraz systemem oceniania. LICZBY NATURALNE 1-22 1. Liczba, a

Bardziej szczegółowo

Wymagania edukacyjne z matematyki- klasa 4

Wymagania edukacyjne z matematyki- klasa 4 Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA KLASY IV SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA KLASY IV SZKOŁY PODSTAWOWEJ ROZKŁAD MATERIAŁU DLA KLASY IV SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 23 grudnia 2008 r., obowiązującą w klasie IV od roku szkolnego 202/203 oraz stanowi

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające

Bardziej szczegółowo

Analiza testu diagnostycznego z przedmiotu

Analiza testu diagnostycznego z przedmiotu Analiza testu diagnostycznego z przedmiotu Matematyka Działdowo, wrzesień 2016 1. Dane ogólne KLasa Stan klasy /szkoły Pisało test % piszących Zaliczyło poziom P % Zaliczyło poziom PP % Średnia ocena wg

Bardziej szczegółowo

PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z OPERONEM. styczeń 2015

PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z OPERONEM. styczeń 2015 PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z OPERONEM styczeń 2015 1 1 Wstęp Przedstawione poniżej wyniki dotyczą sprawdzianu opracowanego zgodnie z nowymi zasadami przez Wydawnictwo OPERON. Sprawdzian

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 liczba punktów - wyniki niskie - wyniki średnie - wyniki

Bardziej szczegółowo

Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016

Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016 Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016 Sprawdzian próbny napisało 19 uczniów klasy 6a, 1 uczeń nie przystąpił do sprawdzianu próbnego (nie był obecny w szkole). Jedna uczennica

Bardziej szczegółowo

Wymagania z matematyki klasa V Matematyka z plusem. Wymagania. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu

Wymagania z matematyki klasa V Matematyka z plusem. Wymagania. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu Wymagania z matematyki klasa V Matematyka z plusem Wymagania Lp. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu 1. Czyta ze zrozumieniem treści zadań. 2. Sprawdza uzyskane rozwiązania. C/D + + + 3. Znajduje

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA 4. Ocena śródroczna

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA 4. Ocena śródroczna WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA 4 (do programu nauczania Matematyka z pomysłem, WSiP) Otrzymanie oceny wyższej oznacza spełnienie wymagań także na ocenę niższą Ocena śródroczna

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI (PSO)

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI (PSO) PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI (PSO) aktualizacja 27.08.2015r. I. Celem oceniania z matematyki jest: poinformowanie ucznia o poziomie osiągnięć edukacyjnych i postępach w tym zakresie, pomoc

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania

Bardziej szczegółowo

SPRAWOZDANIE DOTYCZĄCE WYNIKÓW SPRAWDZIANU W ROKU 2014

SPRAWOZDANIE DOTYCZĄCE WYNIKÓW SPRAWDZIANU W ROKU 2014 SZKOŁA PODSTAWOWA W BAŁUCZU SPRAWOZDANIE DOTYCZĄCE WYNIKÓW SPRAWDZIANU W ROKU 2014 Opracował zespół ds. sprawdzianu: mgr G.Grabia mgr R. Komuńska mgr R. Klimczak mgr A. Magacz W kwietniu 2014 roku do sprawdzianu

Bardziej szczegółowo

Program nauczania: Katarzyna Makowska, Łatwa matematyka. Program nauczania matematyki w klasach IV VI szkoły podstawowej.

Program nauczania: Katarzyna Makowska, Łatwa matematyka. Program nauczania matematyki w klasach IV VI szkoły podstawowej. ROZKŁAD MATERIAŁU DLA KLASY V SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 23 grudnia 2008 r., obowiązującą w klasie IV od roku szkolnego 202/203 oraz stanowi

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 1a średnia klasy: 14.60 pkt średnia szkoły: 10.88 pkt średnia ogólnopolska: 10.95 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8a 8b 8c 8d 9 10 11 12 13

Bardziej szczegółowo

SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)

SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania Wymagania ponad Dział 1. Liczby. Uczeń: 1. Zbieranie i prezentowanie danych gromadzi dane; odczytuje dane przedstawione w tekstach, tabelach,

Bardziej szczegółowo

Matematyka, kl. 5. Konieczne umiejętności

Matematyka, kl. 5. Konieczne umiejętności Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Zespół Szkół Ekonomicznych w Brzozowie PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Przedmiotowy System Oceniania (PSO) z matematyki opracowany na podstawie programu nauczania nr DKW-4015-37/01 oraz podręczników

Bardziej szczegółowo

Przedmiotowy System Oceniania z matematyki dla klasy IV i V szkoły podstawowej

Przedmiotowy System Oceniania z matematyki dla klasy IV i V szkoły podstawowej Zespół Szkół w Karpaczu Szkoła Podstawowa w Karpaczu Przedmiotowy System Oceniania z matematyki dla klasy IV i V szkoły podstawowej (wg programu Matematyka wokół nas ) Opracowała: Lucyna Krawiec Jest to

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry

Bardziej szczegółowo

Klasa I gimnazjum Język polski

Klasa I gimnazjum Język polski Klasa I gimnazjum Język polski 1. Informacje ogólne Badanie osiągnięć uczniów I klas odbyło się 15 września 2011 r. Wyniki badań nadesłało 31 szkół. Analizie poddano wyniki 2129 uczniów ze 102 klas gimnazjalnych.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z CHEMII

PRZEDMIOTOWE ZASADY OCENIANIA Z CHEMII PRZEDMIOTOWE ZASADY OCENIANIA Z CHEMII Przedmiot: CHEMIA Imię i nazwisko nauczyciela: Marta Raczyńska-Żak Klasy: I-III gimnazjum Wymagania edukacyjne na poszczególne śródroczne/ roczne oceny klasyfikacyjne.

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ 1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY V SZKOŁY PODSTAWOWEJ Materiał przedstawia Przedmiotowe Zasady Oceniania z matematyki dla

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5

KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5 KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5 KLASA 5E PROWADZĄCA: Anna Sałyga DZIAŁ PROGRAMOWY: Arytmetyka TEMAT: Dodawanie i odejmowanie liczb mieszanych. CELE: Poziom wiadomości: (kategoria A) uczeń zna algorytm

Bardziej szczegółowo

Przedmiotowy System Oceniania w SP 77. w klasach IV - VI. matematyka

Przedmiotowy System Oceniania w SP 77. w klasach IV - VI. matematyka Przedmiotowy System Oceniania w SP 77 w klasach IV - VI matematyka Spis treści I. Główne założenia PSO... 2 II. Obszary aktywności podleające ocenie... 2 III. Wymagania na poszczególne oceny z uwzględnieniem

Bardziej szczegółowo

Przedmiotowe Zasady Oceniania

Przedmiotowe Zasady Oceniania Przedmiotowe Zasady Oceniania 1. Przedmiot: Fizyka 2. Etap edukacyjny: Gimnazjum 3. Imię i nazwisko nauczyciela: Katarzyna Łakomiec 4. Klasa: I-III Gim. 5. Wymagania edukacyjne na poszczególne śródroczne/roczne

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w kl. IV-VI

Przedmiotowy system oceniania z matematyki w kl. IV-VI Przedmiotowy system oceniania z matematyki w kl. IV-VI Ocenianie i klasyfikowanie uczniów: Uczniowie oceniani są według skali określonej w przepisach ogólnych Wewnątrzszkolnego Systemu Oceniania. Oceny

Bardziej szczegółowo

DANE STATYSTYCZNE

DANE STATYSTYCZNE DANE STATYSTYCZNE Sposoby przedstawiania danych: - tabelka - wykres - diagram słupkowy / kolumnowy jest czytelny i łatwo na jego podstawie porównywad dane - diagram kołowy pozwala na przedstawienie ułamków

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE (opracowali Janina Kurek, Henryk Zarach, Katarzyna Matusz) ZASADY PSO 1. PSO ma na celu czytelne przedstawienie wymagań

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym

Bardziej szczegółowo

TEMATY JEDNOSTEK METODYCZNYCH

TEMATY JEDNOSTEK METODYCZNYCH TEMATY JEDNOSTEK METODYCZNYCH I SEMESTR 63 h Lp. Tematyka jednostki metodycznej Liczba godzin Uwagi o realizacji 3 4 LICZBY NATURALNE Działania w zbiorze liczb naturalnych rachunek pamięciowy 30 Czas przeznaczony

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY 2012 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna

EGZAMIN GIMNAZJALNY 2012 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna EGZAMIN GIMNAZJALNY 2012 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja wiosenna Jaworzno 2012 SPIS TREŚCI 1. WPROWADZENIE... 3 2. WYNIKI SŁUCHACZY GIMNAZJÓW DLA DOROSŁYCH DOTYCZĄCE STANDARDOWYCH

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 10 9 8 7 procent uczniów 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 - wyniki niskie -

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 10 9 8 7 procent uczniów 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 - wyniki niskie -

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki

Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki Zestaw zadań egzaminacyjnych zawierał 23, w tym 20 zadań zamkniętych

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA KLASY IV - VI

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA KLASY IV - VI PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA KLASY IV - VI 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości, ocena powinna być w razie potrzeby uzasadniona ustnie. 2. Ocenie podlegają następujące

Bardziej szczegółowo