ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R.

Wielkość: px
Rozpocząć pokaz od strony:

Download "ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R."

Transkrypt

1 ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 3 VIII 007 R. Przedstawione poniżej treści obejmujące zakres rozszerzony wyróżnione są pogrubioną czcionką. KLASA II ZAKRES PODSTAWOWY 3 godziny tygodniowo 35 tygodni = 105 godzin ZAKRES ROZSZERZONY 5 godzin tygodniowo 35 tygodni = 175 godzin Planimetria i geometria analityczna (36) Czworokąty i ich własności 1 () - sklasyfikować czworokąty - podać własności czworokątów - wskazać oś i środek symetrii figury - podać przykłady figur osiowo i środkowo symetrycznych Kąty w okręgu - znajdować kąty oparte na tym samym łuku - obliczyć miarę kąta wpisanego w okrąg, gdy zna miarę kąta środkowego opartego na tym samym łuku i odwrotnie Twierdzenie o kącie między cięciwą a styczną Okrąg wpisany w czworokąt Okrąg opisany na czworokącie Wektory na płaszczyźnie Wektory prostopadłe i równoległe 1 - podać związek między kątem środkowym i kątem między styczną a cięciwą okręgu 1 - podać warunek wpisania okręgu w czworokąt - zastosować powyższy warunek w zadaniach 1 - podać warunek opisania okręgu na czworokącie - zastosować powyższy warunek w zadaniach - dodać wektory - pomnożyć wektor przez liczbę - podać warunek prostopadłości i równoległości wektorów - zastosować powyższe własności w zadaniach 1

2 Równanie prostej przechodzącej przez dwa punkty Proste prostopadłe i równoległe Odległość i współliniowość punktów Odległość punktu od prostej 1 () - wyznaczyć współczynnik kierunkowy prostej przechodzącej przez dwa punkty - napisać równanie prostej przechodzącej przez dany punkt, gdy znany jest współczynnik kierunkowy - napisać równanie prostej przechodzącej przez dwa punkty - wskazać na podstawie równania proste równoległe i prostopadłe - wyznaczyć równanie prostej prostopadłej i równoległej - obliczyć odległość punktów na osi liczbowej i w układzie współrzędnych - sprawdzić współliniowość punktów - wyznaczyć współrzędne środka odcinka 3 - obliczyć odległość punktu od prostej Odległość dwóch prostych równoległych Twierdzenie o związkach miarowych między odcinkami stycznych isiecznych 1 - obliczyć odległość dwóch prostych równoległych - sformułować twierdzenie - zastosować twierdzenie w zadaniach Równanie okręgu - napisać równanie okręgu - wyznaczyć z równania okręgu współrzędne jego środka i długość promienia Wzajemne położenie dwóch okręgów - określić wzajemne położenie dwóch okręgów Okrąg a prosta - wyznaczyć relację między prostąa okręgiem - wyznaczyć punkty wspólne (o ile istnieją) Nierówność przedstawiająca koło Powtórzenie materiału Sprawdzian wiadomości i umiejętności oraz jego omówienie 1 - wyznaczyć współrzędne środka koła i jego promień- napisać nierówność opisującą koło, znając współrzędne środka koła i jego promień

3 Wyrażenia wymierne (5) Wyrażenia wymierne - określić, kiedy wyrażenie ma sens liczbowy - obliczyć wartość liczbową wyrażenia Skracanie i rozszerzanie wyrażeń wymiernych - skracać i rozszerzać wyrażenia wymierne Mnożenie i dzielenie wyrażeń wymiernych Dodawanie i odejmowanie wyrażeń wymiernych Działania łączne na wyrażeniach wymiernych - mnożyć i dzielić wyrażenia wymierne 3 - sprowadzić wyrażenia do wspólnego mianownika - dodawać i odejmować wyrażenia wymierne - wykonać działania na wyrażeniach wymiernych Równania wymierne 3 (4) - rozwiązywać proste równania wymierne prowadzące do równań liczbowych lub x + 1 x + 1 kwadratowych, np. =, = x x + 3 x - rozwiązać zadania tekstowe prowadzące do rozwiązywania prostych równań wymiernych Nierówności wymierne - rozwiązać proste nierówności wymierne, np. x + 1 x + 1 x + >, < x, > 3x x + 3 x x + 4 Funkcja y = x a 4 - sporządzić i omówić własności funkcji - rozwiązać zadanie tekstowe związane z proporcjonalnością odwrotną- sporządzić i omówić własności funkcji, np. y =f(x), y = f(x - 1) +, y = f ( x + ) 3, gdzie Powtórzenie materiału a f ( x) =. x Sprawdzian wiadomości i umiejętności i jego omówienie 3

4 Ciągi liczbowe 19 (3) Pojęcie ciągu liczbowego Przykłady ciągów rekurencyjnych 1 - zdefiniować ciąg liczbowy - obliczyć kolejne wyrazy ciągu - wyznaczyć kolejne wyrazy ciągów zdefiniowanych rekurencyjnie Monotoniczność ciągu - zbadać monotoniczność ciągu Ciąg arytmetyczny - zbadać, czy ciąg jest arytmetyczny - stosować wzór na n-ty wyraz ciągu arytmetycznego Suma wyrazów ciągu arytmetycznego (3) - obliczyć sumę n wyrazów ciągu arytmetycznego - rozwiązać zadanie tekstowe związane z ciągiem arytmetycznym Ciąg geometryczny - zbadać, czy ciąg jest geometryczny - stosować wzór na n-ty wyraz ciągu geometrycznego Suma wyrazów ciągu geometrycznego Ciąg arytmetyczny i geometryczny w zadaniach Powtórzenie materiału (3) - obliczyć sumę n wyrazów ciągu geometrycznego - rozwiązać zadanie tekstowe związane z ciągiem geometrycznym 4 - zastosować własności ciągów w zadaniach tekstowych Potęgi i logarytmy 19 (3) Sprawdzian wiadomości i umiejętności i jego omówienie Potęgi o wykładnikach wymiernych i rzeczywistych 3 - wykonać działania na potęgach o wykładnikach wymiernych - stosować prawa działań na potęgach o wykładnikach rzeczywistych Pierwiastki 3 - wykonać działania na pierwiastkach - zapisać pierwiastek jako potęgę- wyznaczać pierwiastki nieparzystego stopnia z liczb ujemnych Równania i nierówności pierwiastkowe 3 - rozwiązać proste równania i nierówności typu: 3 x + = 4, x + 6 =, x 9 4 4

5 Funkcja wykładnicza 4 - zdefiniować funkcję wykładnicząsporządzić wykres funkcji wykładniczej i omówić jej własności - sporządzić i omówić własności funkcji, np.: y = f(x), y = f(x + ) -3, y = f ( x 1) + 1)( +x f, gdzie f(x) = a x Równania i nierówności wykładnicze - rozwiązać proste równania x+ i nierówności typu: 3 = 4 x 3 1 > 9. Pojęcie logarytmu - wykazać się znajomością pojęcia logarytmu - obliczyć wartość logarytmu Własności logarytmów Równania i nierówności logarytmiczne 3 - stosować w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi - zastosować wzór na zamianę podstawy logarytmu 3 - rozwiązać proste równania i nierówności logarytmiczne typu: Log a x = 5, log a (x )= 3, log a ( x -3x ) > 3 Funkcja logarytmiczna Funkcja logarytmiczna w zadaniach - zdefiniować funkcję logarytmicznąsporządzić wykres funkcji logarytmicznej i omówić jej własności - sporządzić i omówić własności funkcji, np.: y = f(x), y = f(x + ) -3, y = f ( x 1) +, gdzie f(x) = log a x 3 - zastosować własności funkcji logarytmicznej w zadaniach Powtórzenie materiału Sprawdzian wiadomości i umiejętności i jego omówienie Trygonometria 15 (38) Funkcje trygonometryczne kąta ostrego - zdefiniować funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 5

6 Wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Miara kąta, stopień i radian Funkcje trygonometryczne kąta dowolnego Wartości funkcji trygonometrycznych wielokrotności całkowitych kąta prostego Wartości funkcji trygonometrycznych kąta dowolnego 3 - wykazać się znajomością wartości funkcji trygonometrycznych kątów 30º, 45º, 60º - zastosować powyższe wartości w zadaniach 1 - zamieniać miarę stopniową kąta na łukową i odwrotnie - obliczyć wartość funkcji trygonometrycznych dowolnego kąta, znając współrzędne punktu leżącego na końcowym ramieniu kąta - wykreślić w układzie współrzędnych kąt α, znając wartość jednej z funkcji trygonometrycznych dowolnego kąta α 1 - obliczyć wartości funkcji trygonometrycznych kątów 0º, 90º, 180º, 70º, 360º - wyznaczyć wartość funkcji trygonometrycznych kąta dowolnego przez sprowadzenie do przypadku kąta ostrego Znak funkcji 1 - określić, czy funkcja trygonometryczna przyjmuje wartości dodatnie, czy ujemne, w zależności od tego, w której ćwiartce leży końcowe ramię tego kąta Związki między funkcjami trygonometrycznymi tego samego kąta Zastosowanie funkcji trygonometrycznych do rozwiązywania różnych zadań Tożsamości trygonometryczne Wykres funkcji sinus i cosinus Wykres funkcji tangens i cotangens - wymienić związki między funkcjami trygonometrycznymi i zastosować je w zadaniach -wyznaczyć wartości pozostałych funkcji trygonometrycznych, znając jedną z nich, tożsamości trygonometryczne 4 - zastosować poznane wzory i własności funkcji trygonometrycznych w zadaniach z różnych dziedzin - dowodzić proste tożsamości trygonometryczne 1 - narysować wykresy funkcji trygonometrycznych i omówić ich własności 1 - narysować wykresy funkcji trygonometrycznych i omówić ich własności 6

7 Przekształcanie wykresów funkcji trygonometrycznych Funkcje trygonometryczne sumy i różnicy kątów Funkcje trygonometryczne wielokrotności kąta 3 - sporządzić wykresy funkcji: y = -f(x), y = f(-x), y = f(x + a), y = f(x) + a, y = f(x + a) + b, y =f (x), y = c f(x), y = f(c x), gdzie f jest funkcją trygonometryczną - stosować wzory na funkcje trygonometryczne sumy i różnicy kątów 3 - stosować wzory na funkcje trygonometryczne wielokrotności kąta - dowodzić tożsamości z wykorzystaniem poznanych wzorów Równania i nierówności trygonometryczne Powtórzenie materiału 4 - rozwiązywać proste równania i nierówności trygonometryczne typu: 3 sin x = 0,5, cos x <, sin x + cos x = 1 Sprawdzian wiadomości i umiejętności i jego omówienie Planimetria 9 (1) Figury podobne i jednokładne Cechy podobieństwa trójkątów Rozwiązywanie zadań dotyczących podobieństwa trójkątów Twierdzenie o związkach miarowych między odcinkami stycznych i siecznych 1 () - rozpoznawać figury podobne - wymienić własności figur podobnych i jednokładnych - sformułować cechy podobieństwa trójkątów i zastosować je w zadaniach - wyznaczyć skalę podobieństwa trójkątów 3 - zastosować poznane cechy podobieństwa do rozwiązywania zadań - wykazać się znajomością twierdzenia - zastosować twierdzenie w zadaniach 7

8 Jednokładność w układzie współrzędnych Twierdzenie sinusów Iloczyn skalarny i jego własności Twierdzenie cosinusów - wykazać się znajomością jednokładności w układzie współrzędnych - obliczyć współrzędne punktów przekształconych w jednokładności względem początku układu współrzędnych oraz dowolnego punktu układu współrzędnych - wykazać się znajomością twierdzenia - udowodnić twierdzenie sinusów - zastosować twierdzenie w zadaniach - wyznaczyć iloczyn skalarny wektorów - zastosować własności iloczynu skalarnego w zadaniach 3 - wykazać się znajomością twierdzenia - udowodnić twierdzenie cosinusów - zastosować twierdzenie w zadaniach Powtórzenie materiału 1 Sprawdzian wiadomości i umiejętności i jego omówienie Planimetria Uczeń potrafi : dopuszczający rozróżnić czworokąty i podać ich własności, zdefiniować okrąg wpisany w czworokąt i okrąg opisany na czworokącie, wyjaśnić pojęcie wielokąta opisanego i wpisanego w okrąg, zdefiniować symetralną odcinka i dwusieczną kąta, narysować symetralną odcinka i dwusieczną kąta, podać przykłady figur osiowo i środkowo symetrycznych, wskazać oś i środek symetrii figury. 8

9 dostateczny sklasyfikować czworokąt, wykorzystać własności czworokątów w zdaniach, znajdować kąty oparte na tym samym łuku, skonstruować wielokąt opisany i wpisany w okrąg, określić wzajemne położenie punktów, określić własności punktów osiowo-symetrycznych czy środkowosymetrycznych, wyznacz środek symetrii i osi symetrii figury, zaprojektować desenie, rozety, fryzy, korzystając z figur symetrycznych. dobry obliczyć miarę kąta wpisanego i środkowego opartego na tym samym łuku, sformułować warunki opisania okręgu na czworokącie i wpisania okręgu w czworokąt, skonstruować obraz figury w obrocie, wyznaczyć równanie okręgu przechodzącego przez trzy punkty, bardzo dobry zaproponować rozwiązanie zadania tekstowego o nietypowym problemie, zanalizować zadanie dotyczące nietypowego problemu i rozwiązać je. celujący zaproponować rozwiązanie zadania tekstowego o nietypowym problemie, zanalizować zadanie dotyczące nietypowego problemu i rozwiązać je. 9

10 Geometria analityczna Uczeń potrafi : dopuszczający podać wzór równania okręgu, koła, podać wzór na współczynnik kierunkowy prostej, podać warunek równoległości i prostopadłości prostych, podać postać kierunkową i ogólną równania prostej, zdefiniować odległość punktów, obliczyć odległość punktów w układzie współrzędnych, wskazać na podstawie równania proste prostopadłe i równoległe, zdefiniować wektor, zdefiniować sumę, różnicę wektorów i iloczyn wektora przez liczbę, narysować sumę wektorów i obliczyć jej współrzędne, narysować wektor równy iloczynowi wektora przez liczbę, dostateczny zastosować wzór na równanie prostej przechodzącej przez dwa punkty, wyznaczyć równania prostych prostopadłych i równoległych, obliczyć długość wektora, wyznaczyć współrzędne końca wektora, mając dane współrzędne wektora i współrzędne końca wektora, wyznaczyć współrzędne wektora będącego wynikiem działań na wektorach, napisać równanie okręgu, 10

11 narysować okrąg, mając dane jego równanie. dobry oblicz odległość punktu od prostej, zastosować warunki równoległości i prostopadłości prostych w zdaniach, wyznaczyć równanie środkowych i wysokości trójkąta, wyznaczyć z równania środek i promień okręgu, obliczyć odległość dwóch prostych równoległych, bardzo dobry wyznaczyć relacje między prostą a okręgiem, wyznaczyć punkty wspólne prostej i okręgu, obliczyć odległość dwóch prostych równoległych, obliczyć współrzędne punktów przecięcia okręgu z prostą, obliczyć współrzędne punktów przecięcia pary okręgów. celujący zaproponować rozwiązanie zadania tekstowego o nietypowym problemie, zanalizować zadanie dotyczące nietypowego problemu i rozwiązać je. Funkcje wymierne Uczeń potrafi : dopuszczający zdefiniować wyrażenie wymierne, 11

12 obliczyć wartość wyrażenia wymiernego i określić jego dziedzinę, skrócić i rozszerzyć wyrażenie wymierne, pomnożyć i podzielić wyrażenia wymierne, zdefiniować funkcję homograficzną i określić jej dziedzinę, zdefiniować równanie i nierówność wymierną. dostateczny wykonać działania łączne na prostych wyrażeniach wymiernych, wskazać wyrażenia wymierne równe, sporządzić wykres funkcji homograficznej np.: y =, y = i podać x 1 x + 1 własności, ax + b rozwiązać równanie typu = 0, cx + d ax + b rozwiązać nierówność typu 0, cx + d ax + b ax + b rozwiązać równanie i nierówność typu = k, k. cx + d cx + d dobry wykonać działania łączne na wyrażeniach wymiernych o podwyższonym stopniu trudności, wykazać równość wyrażeń wymiernych, ax + b ax + b rozwiązać równanie i nierówność, np.: = k, k., cx + d cx + d rozwiązać równanie i nierówność wymierną, bardzo dobry 1

13 zastosować wiadomości o funkcjach homograficznych w zadaniach tekstowych, wykonać wykres funkcji homograficznej z wartością bezwzględną, rozwiązać równanie wymierne z wartością bezwzględną lub parametrem. celujący uzasadnić rozwiązanie równania wymiernego z wartością bezwzględną lub parametrem, zaplanować rozwiązanie i rozwiązać zadanie tekstowe o nietypowym problemie dotyczącym funkcji homograficznej. Ciągi liczbowe Uczeń potrafi: dopuszczający zdefiniować ciąg liczbowy podać przykład ciągu liczbowego skończonego i nieskończonego, rozpoznać ciąg rosnący i malejący, zdefiniować i rozpoznać ciąg arytmetyczny i geometryczny oraz wymienić ich własności, podać wzór na n-ty wyraz ciągu arytmetycznego i geometrycznego, dostateczny rozróżnić i obliczyć procent prosty i składany, podać przykład ciągu rosnącego, malejącego, stałego, arytmetycznego, geometrycznego, 13

14 obliczyć kolejne wyrazu ciągu arytmetycznego i geometrycznego oraz sumę tych ciągów, zbadać, czy dany ciąg jest arytmetyczny czy geometryczny, wyznaczyć wyraz ciągu określonego wzorem rekurencyjnym, dobry przekształcić wzory dotyczące ciągu arytmetycznego i geometrycznego, i zastosować w rozwiązywaniu zadań tekstowych, obliczyć oprocentowanie lokat i kredytów bankowych. bardzo dobry zastosować wiedze o ciągach w zadaniach geometrycznych, rozwiązać zadanie tekstowe łącząc wiadomości o ciągach arytmetycznych i geometrycznych, celujący uzasadnić rozwiązanie zadań z treścią dotyczącą ciągów o nietypowym problemie, dowieść prawdziwość niektórych wzorów dotyczących ciągów, wykazać się umiejętnością rozwiązania zadań tekstowych z różnych dziedzin z zastosowaniem wiadomości o ciągach. Funkcja wykładnicza i logarytmiczna Uczeń potrafi: dopuszczający 14

15 zdefiniować potęgę o wykładniku całkowitym i wymiernym, podać wzory działań na potęgach o wykładniku całkowitym i wymiernym, zapisać potęgę o wykładniku wymiernym jako pierwiastek i odwrotnie, zdefiniować potęgę o wykładniku rzeczywistym, zdefiniować logarytm, podać własności działań na logarytmach, obliczyć logarytm danej liczby, zdefiniować funkcję wykładniczą i logarytmiczną, podać przykład funkcji wykładniczej i logarytmicznej rosnącej lub malejącej, zdefiniować pojęcie równania i nierówności wykładniczej i logarytmicznej. dostateczny wykonać elementarne działania na potęgach o wykładniku całkowitym i wymiernym, odczytać z wykresu własności funkcji wykładniczej i logarytmicznej, narysować wykres funkcji wykładniczej i logarytmicznej, przesuniętej wzdłuż osi układu współrzędnych, przekształcić wyrażenia zawierające potęgi, wykonać działania na logarytmach, zastosować definicję logarytmu w rozwiązywaniu prostych równań i nierówności, rozwiązać proste równania i nierówności wykładnicze, naszkicować wykres funkcji wykładniczej i logarytmicznej w zależności od podstawy. dobry 15

16 zapisać wzór wykresu funkcji wykładniczej i logarytmicznej, przesuniętej wzdłuż osi układu współrzędnych, wykonać działania na potęgach o wykładniku rzeczywistym, przekształcić wyrażenie zawierające potęgi i logarytmy o podwyższonym stopniu trudności, rozwiązać równanie i nierówność logarytmiczną, przesunąć wykres funkcji wykładniczej i logarytmicznej o dany wektor oraz zapisać wzór nowego wykresu. bardzo dobry rozwiązać równania i nierówności wykładnicze i logarytmiczne o podwyższonym stopniu trudności, rozwiązać równania i nierówności wykładnicze i logarytmiczne z wartością bezwzględną, z parametrem, z niewiadomą w podstawie, naszkicować wykres funkcji wykładniczej i logarytmicznej z wartością bezwzględną. celujący wykorzystać definicję i własności działań na potęgach i logarytmach w rozwiązaniu nietypowych problemów. Funkcje trygonometryczne Uczeń potrafi: dopuszczający 16

17 zdefiniować funkcje trygonometryczne kąta ostrego i dowolnego, zapisać zależność między miarą stopniową i łukową, podać związki między funkcjami trygonometrycznymi tego samego kąta, podać wzory na funkcje sumy i różnicy kątów, wielokrotności kąta oraz sumy i różnice funkcji trygonometrycznych. dostateczny zamienić miarę łukową na stopniową i odwrotnie, obliczyć na podstawie definicji wartości funkcji trygonometrycznych dla danego kąta, skonstruować kąt ostry, mając daną funkcję trygonometryczną, korzystać z tablic matematycznych lub kalkulatora przy wyznaczaniu wartości funkcji trygonometrycznych kątów, wyznaczyć wartości pozostałych funkcji trygonometrycznych, mając daną wartość sinusa kąta lub cosinusa kąta, obliczyć wartości całkowitych wielokrotności kąta 90, naszkicować wykresy funkcji trygonometrycznych, określić dziedzinę i przeciwdziedzinę funkcji trygonometrycznej, przekształcić wyrażenia trygonometryczne z uwzględnieniem związków między funkcjami trygonometrycznymi, zastosować wzory na funkcje trygonometryczne sumy i różnicy kątów, zastosować wzory trygonometryczne na sumy i różnice funkcji trygonometrycznych, naszkicować wykresy funkcji: y = f ( x), y + f ( x), y = f ( x) + b, y = f ( x ), y = f ( x ) + b gdzie f(x)=sin x lub f(x)=cos x, rozwiązać równanie trygonometryczne na podstawie definicji, rozwiązać nierówność trygonometryczną na podstawie wykresu, 17

18 rozwiązać trójkąt prostokątny. dobry wyznaczyć wartości pozostałych funkcji trygonometrycznych, mając daną wartość tangensa kąta lub cotangensa kąta, zastosować związki między funkcjami trygonometrycznymi w dowodzeniu prostych tożsamości trygonometrycznych, naszkicować wykres funkcji: y = kf ( x), y = f ( ax), y = f ( x), gdzie f(x)=sin x lub f(x)=cos x, zastosować związki między funkcjami trygonometrycznymi w dowodzeniu prostych tożsamości, rozwiązać proste równanie trygonometryczne, rozwiązać prostą nierówność trygonometryczną. bardzo dobry naszkicować wykres funkcji trygonometrycznej z wartością bezwzględną, wykazać się umiejętnością przekształcania wzorów trygonometrycznych, rozwiązać równanie i nierówność trygonometryczną z wartością bezwzględną, zastosować wiadomości o funkcji trygonometrycznej w zadaniach o treściach praktycznych i planimetrii. celujący dowieść prawdziwość niektórych wzorów trygonometrycznych, rozwiązać równanie i nierówność trygonometryczną z parametrem, z ciągiem arytmetycznym lub geometrycznym, 18

19 zastosować wiadomości o funkcji trygonometrycznej w nietypowych sytuacjach. Planimetria Uczeń potrafi: dopuszczający zdefiniować stosunek odcinków, podzielić odcinek w danym stosunku, podać twierdzenie Talesa i twierdzenie odwrotne do twierdzenia Talesa, wskazać na ramionach kąta odcinki proporcjonalne, zdefiniować podobieństwo, podać przykłady figur podobnych, wymienić cechy podobieństwa trójkątów, zdefiniować jednokładność i podać przykłady figur jednokładnych, podać wzór sinusów i cosinusów, zapisać wzór sinusów i cosinusów dla danego trójkąta, zdefiniować iloczyn skalarny wektorów, obliczyć na podstawie wzoru iloczyn skalarny wektorów, wyznaczyć cosinus kąta między wektorami, wymienić własności iloczynu skalarnego wektorów, sprawdzić, czy dwa wektory są prostopadłe. dostateczny skonstruować odcinki będące w danym stosunku, skonstruować odcinek będący w proporcji z trzema danymi odcinkami, 19

20 zastosować twierdzenie Talesa do obliczania długości odcinków, wypisać proporcje długości odcinków, wynikające z podobieństwa trójkątów, wykazać się umiejętnością zamiany jednostek, wykazać się umiejętnością stosowania definicji jednokładności w zadaniach tekstowych, zastosować własności iloczynu skalarnego w zadaniach, zastosować twierdzenie sinusów i cosinusów do obliczania długości boków i miar kątów trójkąta, obliczyć współrzędne punktów przekształconych w jednokładności obliczyć iloczyn skalarny wektorów. dobry wykazać się umiejętnością stosowania definicji podobieństwa w zadaniach tekstowych, zastosować twierdzenie Talesa w figurach innych niż trójkąt, obliczyć skalę podobieństwa, obliczyć skalę jednokładności, zastosować twierdzenie sinusów i cosinusów w figurach innych niż trójkąt, zastosować własności iloczynu skalarnego wektorów w zadaniach. bardzo dobry zastosować twierdzenie Talesa i twierdzenie odwrotne do twierdzenia Talesa w rozwiązywaniu zadań tekstowych z kontekstem realistycznym, zastosować twierdzenie sinusów i cosinusów w rozwiązywaniu zadań o tematyce praktycznej, zastosować własności iloczynu skalarnego wektorów w zadaniach o tematyce praktycznej, udowodnić twierdzenie sinusów i cosinusów. 0

21 celujący wykazać się umiejętnością zastosowania iloczynu skalarnego w sytuacjach problemowych, wykazać się umiejętnością stosowania wzoru sinusów i cosinusów w sytuacjach nietypowych, zastosować własności podobieństwa i twierdzenie Talesa w zadaniach nietypowych. 1

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

I. LICZBY I DZIAŁANIA

I. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA PIERWSZA GIMNAZJUM I. LICZBY I DZIAŁANIA 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej. 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne. 3. Umie

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Na ocenę dopuszczającą uczeń: zna pojęcie liczby naturalnej,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016 Litery w nawiasach oznaczają kolejno: K - ocena dopuszczająca P - ocena dostateczna

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA Poziomy wymagań edukacyjnych : KONIECZNY (K) - OCENA DOPUSZCZAJĄCA, PODSTAWOWY( P) - OCENA DOSTATECZNA, ROZSZERZAJĄCY(R) - OCENA DOBRA, DOPEŁNIAJĄCY (D) - OCENA BARDZO DOBRA WYKRACZAJACY(W) OCENA CELUJĄCA.

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

KRYTERIA OCENIANIA KLASA I

KRYTERIA OCENIANIA KLASA I KRYTERIA OCENIANIA KLASA I POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający ocena bardzo dobra

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający ocena

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki klasa I gim

Szczegółowe wymagania edukacyjne z matematyki klasa I gim Szczegółowe wymagania edukacyjne z matematyki klasa I gim POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D -

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM. rok szkolny 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM. rok szkolny 2015/2016 WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE PIERWSZEJ GIMNAZJUM rok szkolny 2015/2016 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej Kształcenie w zakresie podstawowym i rozszerzonym. cały cykl

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K)

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K) - 1 - Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE DLA KLASY I GIMNAZJUM

WYMAGANIA PROGRAMOWE DLA KLASY I GIMNAZJUM WYMAGANIA PROGRAMOWE DLA KLASY I GIMNAZJUM Wymagania podstawowe(k- ocena dopuszczająca, P ocena dostateczna), wymagania ponadpodstawowe( R ocena dobra, D ocena bardzo dobra, W ocena celująca) DZIAŁ 1:

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Wymagania z matematyki, poziom rozszerzony. nowa podstawa programowa

Wymagania z matematyki, poziom rozszerzony. nowa podstawa programowa Wymagania z matematyki, poziom rozszerzony nowa podstawa programowa Nauczyciel matematyki: mgr Izabela Stachowiak Wilk Zbiór liczb rzeczywistych i jego podzbiory odróżnia zdanie logiczne od innych wypowiedzi

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Dział programowy: Liczby i działania ( 1 )

Dział programowy: Liczby i działania ( 1 ) 1 S t r o n a Dział programowy: Liczby i działania ( 1 ) 14-20 Liczby. Rozwinięcia liczb dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. MnoŜenie

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I

Wymagania edukacyjne z matematyki Klasa I Wymagania edukacyjne z matematyki Klasa I Ocena Celujący (obejmuje wymagania na ocenę bardzo dobrą) Ocena śródroczna DZIAŁ I - LICZBY I DZIAŁANIA - umie znajdować liczby spełniające określone nietypowe

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 Kamienna Góra tel.: (+48) 75-645-0-8 fax: (+48) 75-645-0-8 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w klasie 1ab w roku szkolnym 2011/2012

Wymagania na poszczególne oceny z matematyki w klasie 1ab w roku szkolnym 2011/2012 Wymagania ocen z matematyki klasa 1 gimnazjum Wymagania na poszczególne oceny z matematyki w klasie 1ab w roku szkolnym 2011/2012 POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P -

Bardziej szczegółowo

Klasa 1. Osiągnięcia. Treści kształcenia. Dział. Uczeń: buduje zdania złożone w postaci koniunkcji, 1.1. Język matematyki

Klasa 1. Osiągnięcia. Treści kształcenia. Dział. Uczeń: buduje zdania złożone w postaci koniunkcji, 1.1. Język matematyki Opis założonych osiągnięć ucznia W tabelach dla poszczególnych klas, przy treściach kształcenia podajemy przewidywane osiągnięcia uczniów w ramach zakresu rozszerzonego. Podzieliliśmy je na podstawowe

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY I A w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY I A w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY I A w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Plan realizacji materiału nauczania został opracowany na podstawie programu nauczania Gdańskiego

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska

PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016 opracowała: mgr Anna Przybylska I. CELE EDUKACJI MATEMATYCZNEJ w zakresie rozwoju intelektualnego ucznia (cele związane z kształceniem):

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011 W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZÓŁ OGÓLNOSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 amienna Góra tel.: (+48) 75-645-0-8 fax: (+48) 75-645-0-83 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY SYSTEM

Bardziej szczegółowo

KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1.

KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1. Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1. Prace klasowe

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009

Bardziej szczegółowo

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra)

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM. Jolanta Daczko Monika Miazgowska Grzegorz Krupa

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM. Jolanta Daczko Monika Miazgowska Grzegorz Krupa PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM Jolanta Daczko Monika Miazgowska Grzegorz Krupa OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DKW DPN-5002-17/08

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009

Bardziej szczegółowo

Kryteria ocen z matematyki w I klasie gimnazjum Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Kryteria ocen z matematyki w I klasie gimnazjum Dopuszczający Dostateczny Dobry Bardzo dobry Celujący LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej porównuje liczby wymierne zaznacza liczby wymierne na osi liczbowej zamienia ułamki zwykłe na dziesiętne i odwrotnie zna pojęcia:

Bardziej szczegółowo

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I.

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I. XCII LO z Oddziałami Integracyjnymi i Sportowymi Materiał nauczania i przewidywane umiejętności uczniów Klasa I Treści nauczania I. Liczby 1. Liczby rzeczywiste, zapis dziesiętny liczby rzeczywistej, zamiana

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i

Bardziej szczegółowo

Przedmiotowy System Oceniania dla matematyki Kontrakt z uczniami: Ocena Waga

Przedmiotowy System Oceniania dla matematyki Kontrakt z uczniami: Ocena Waga Przedmiotowy System Oceniania dla matematyki Maria Wietrzykowska Kontrakt z uczniami: 1. Każdy uczeń jest oceniany zgodnie z prawe WSO i zasadami sprawiedliwości. 2. Ocenie podlega: Ocena Waga Wypowiedź

Bardziej szczegółowo

M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Zakres podstawowy i rozszerzony Katalog wymagań na poszczególne oceny: Zakres wiedzy

Bardziej szczegółowo

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od 01.09.2012 r. w klasach pierwszych

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole Cele kształcenia wymagania ogólne MATEMATYKA III etap edukacyjny I. Wykorzystanie

Bardziej szczegółowo