Synteza związków znakowanych i ich zastosowanie w chemii organicznej, biochemii i medycynie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Synteza związków znakowanych i ich zastosowanie w chemii organicznej, biochemii i medycynie"

Transkrypt

1 Synteza związków znakowanych i ich zastosowanie w chemii organicznej, biochemii i medycynie Część III Prof. dr hab. Marianna Kańska

2 IZTPWE METDY BADANIA MECANIZMÓW EAKCJI Ustalenie mechanizmów reakcji jest jednym z bardzo ważnych zadań fizykochemii organicznej, która ułatwia zrozumienie i sterowanie złożonymi syntezami związków biologicznie czynnych. Znajomość mechanizmów reakcji ułatwia odtworzenie in vitro przebiegu syntez, zachodzących in vivo w organizmach żywych, oraz opracowanie nowych dróg syntezy bardzo skomplikowanych związków organicznych. W badaniach mechanizmów reakcji stosuje się różne metody eksperymentalne, a wśród nich również metody izotopowe. W chemii organicznej można wyróżnić trzy metody, gdzie stosuje się znakowanie izotopami zarówno promieniotwórczymi, jak i stabilnymi.

3 1. Metoda wskaźników izotopowych, która umożliwia w warunkach laboratoryjnych lub in vivo prześledzenie drogi interesującego nas atomu, lub stabilnych grup atomów, w cząsteczce biorącej udział w reakcji organicznej lub bioorganicznej. 2. Metoda specyficznej wymiany izotopowej, która jest stosowana w radiochemii i znajduje szerokie zastosowanie w syntezie znakowych związków organicznych oraz w badaniu trwałości wiązań. Dzięki tej metodzie ustalono, które atomy wodoru w cząsteczce organicznej są labilne i wymieniają się miejscami z wodorami labilnymi cząsteczek rozpuszczalnika zawierającymi wodory np. w grupach aminowych, hydroksylowych, czy merkaptanowych. Takie radiochemiczne wstępne informacje są często wykorzystywane w syntezach związków organicznych znakowanych metodą wymiany izotopowej. Istnieje bogata literatura na temat wymian izotopowych, a mimo to metoda ta w dalszym ciągu jest wykorzystywana do ustalania struktury skomplikowanych związków organicznych

4 3. Metoda kinetycznego efektu izotopowego, KEI- (Kinetic Isotope Effect, KIE), która polega na wyznaczeniu stałych szybkości przebiegających reakcji z użyciem cięższego i lżejszego izotopu. Najczęściej wyznaczane są KEI deuteru, trytu i węgla. Cząsteczka chemiczna, wykorzystywana w tych badaniach, jest znakowana izotopem w ściśle określonym miejscu. Korelacja między doświadczalnie zmierzonym, a teoretycznie wyliczonym KEI jest jedną z najlepszych metod do wyjaśnienia struktury i detali kompleksu aktywnego, a także zmian, jakie zachodzą w wiązaniu w trakcie przechodzenia od substratu do produktu. Metoda KEI jest szczególnie użyteczna, kiedy do badania mechanizmu danej reakcji używa się kolejno substratów znakowanych w różnych pozycjach, przy których mogą występować zmiany w wiązaniach chemicznych. Dodatkowych cennych szczegółów może dostarczyć użycie substratu z różnymi podstawnikami, indukującymi zmiany w otoczeniu wiązań ulegających przekształceniu w trakcie badanego procesu.

5 Mechanizm reakcji Mechanizm opisuje przebieg reakcji chemicznej. Mówi on o tym: a) które wiązania ulegają pęknięciu, b) jakie wiązania się się tworzą, c) jaka jest kolejność tych zjawisk, d) z ilu etapów składa się rozpatrywany proces, e) jakie są względne szybkości poszczególnych etapów Poznanie odpowiedzi na te pytania jest często bardzo trudnym zadaniem. Szczególnie może to być skomplikowane w przypadku reakcji enzymatycznych, ze względu na złożoną strukturę enzymu i zachodzące procesy katalityczne.

6 Metody wyznaczania mechanizmów reakcji 1. Badanie produktów produktów reakcji: identyfikacja, dowody stereochemiczne. 2. Badanie produktów pośrednich: izolacja produktów pośrednich, wykrywanie produktów pośrednich (metody spektroskopowe i rezonansowe), wychwycenie produktów pośrednich (przy założeniu, że produkt pośredni będzie reagować z danym reagentem dając ściśle określony produkt), dodatek oczekiwanego produku pośredniego. 3. Badania kinetyczne: równanie kinetyczne (mechanizm musi objaśniać obserwowane równanie i rząd reakcji), badania katalizy (również inhibicji), efekty izotopowe. 4. Stosowanie cząsteczek znakowanych izotopowo (analiza produktów takimi technikami, jak MS, NM itp.).

7 Kinetyczny efekt izotopowy k 1 A 1 B A 1 B k 2 A 2 B A 2 B k 1 -stała szybkości reakcji z udziałem izotopu lżejszego ( 1 B) k 2 -stała szybkości reakcji z udziałem izotopu lżejszego ( 2 B) k 1 = k 2 1 nie ma KIE k k jest KIE k k odwrotny KIE

8 Kinetyczny efekt izotopowy Jednym z najpotężniejszych narzędzi w badaniu mechanizmów reakcji jest metoda kinetycznego efektu izotopowego. Jest ona bardzo często stosowana do badania mechanizmów reakcji enzymatycznych. Teoretyczne wyjaśnienie kinetycznych efektów izotopowych jest złożonym i trudnym zadaniem. Z praktycznego punktu widzenia istotne jest jedynie uzmysłowienie sensu fizycznego tego zjawiska. Zastąpienie atomu pierwiastka, w cząsteczce związku biorącym udział w reakcji, na jego cięższy izotop często powoduje zmianę szybkości reakcji. óżna szybkość tych dwóch reakcji jest nazywana kinetycznym efektem izotopowym i określa się ją jako stosunek stałych szybkości: k iz. lżejszego / k iz. cięższego

9 óżnica ta wynika z tego, że energia oscylacyjna wiązania chemicznego na najniższym możliwym poziomie (zero-point energy) nie jest zerowa (wynosi: E = hυ) i zależy od masy zredukowanej: zgodnie z prawem ook a: µ = m1m2 m m 1 2 υ 1 2 k µ (k- stała siłowa niezależna od masy). Z tego wynika że wiązanie z cięższym izotopem będzie miało niższą energię oscylacji i rozerwanie wiązania będzie wymagało większej energii.

10 brazowo przedstawiono to na poniższym schemacie: Energia dysocjacji wiązań C- i C-D Ta właśnie różnica w energiach dysocjacji jest powodem różnych szybkości procesów z udziałem izotopów. Efekt izotopowy obserwujemy jedynie wówczas, gdy rozpatrywany etap jest wystarczająco wolny, aby mieć decydujący wpływ na szybkość całego procesu.

11 Kinetyczne efekty izotopowe. Najważniejsze kryteria podziału. 1. Podział KEI ze względu na wielkość stosunku k k is.lighter is.heavier efekty normalne, występują wówczas gdy szybkość reakcji dla związku z izotopem lżejszym jest większa niż dla związku z izotopem cięższym k k is lighter. > 1 is. heavier brak efektu izotopowego k k is. lighter is. heavier = 1 efekty odwrotne (obserwowane rzadko) gdy: k k is lighter. < 1 is. heavier

12 Metody wyznaczania mechanizmów reakcji 1. Badanie produktów produktów reakcji: identyfikacja, dowody stereochemiczne. 2. Badanie produktów pośrednich: izolacja produktów pośrednich, wykrywanie produktów pośrednich (metody spektroskopowe i rezonansowe), wychwycenie produktów pośrednich (przy założeniu, że produkt pośredni będzie reagować z danym reagentem dając ściśle określony produkt), dodatek oczekiwanego produku pośredniego. 3. Badania kinetyczne: równanie kinetyczne (mechanizm musi objaśniać obserwowane równanie i rząd reakcji), badania katalizy (również inhibicji), efekty izotopowe. 4. Stosowanie cząsteczek znakowanych izotopowo (analiza produktów takimi technikami, jak MS, NM itp.).

13 3. Podział KEI ze względu na położenie znacznika izotopowego w stosunku do miejsca w cząsteczce, gdzie zachodzi etap determinujący szybkość reakcji: a) pierwszorzędowe, b) αdrugorzędowe c) βdrugorzędowe Na przykładzie mechanizmu E1 można wyjaśnić te efekty. Według tego mechanizmu, najwolniejszym etapem jest rozerwanie wiązania pomiędzy atomem węgla a grupą X (odchodzącą), co prowadzi do utworzenia karbokationu. Ten etap będzie decydował o szybkości całego procesu. W związku z tym podstawienie atomu 12 C 1 izotopem 14 C spowolni reakcję. Taki efekt izotopowy jest nazywany efektem pierwszorzędowym. Analogicznie dla wodoru 2 wystąpi efekt αdrugorzędowy, a dla wodoru 3 wystąpi efekt βdrugorzędowy. 3 2 C C 1 X wolno 3 2 C C C C szybko 1 C C 1 Mechanizm E1

14 4. Podział na efekty substratowe i rozpuszczalnikowe substratowe występują wówczas gdy zmiana składu izotopowego substratu powoduje zmianę szybkości reakcji, rozpuszczalnikowe występuje wówczas gdy zmiana rozpuszczalnika np. z 2 na D 2 powoduje zmianę szybkości reakcji. 5. Podział efektów izotopowych znajdujących odbicie w zmianie kinetycznych parametrów reakcji enzymatycznych: kinetyczne efekty izotopowe na V max kinetyczne efekty izotopowe na V max /K m

15 4. Podział na efekty substratowe i rozpuszczalnikowe substratowe występują wówczas gdy zmiana składu izotopowego substratu powoduje zmianę szybkości reakcji, rozpuszczalnikowe występuje wówczas gdy zmiana rozpuszczalnika np. z 2 na D 2 powoduje zmianę szybkości reakcji. 5. Podział efektów izotopowych znajdujących odbicie w zmianie kinetycznych parametrów reakcji enzymatycznych: kinetyczne efekty izotopowe na V max kinetyczne efekty izotopowe na V max /K m

16 METDY WYZNACZANIA KINETYCZNYC EFEKTÓW IZTPWYC 1. Bezpośrednie wyznaczanie kinetycznych efektów izotopowych. 2. Metoda zaburzeń równowagi. 3. Metody z użyciem spektrometrii mas.

17 Wyznaczanie KIE wg równań Bigeleisena i Wolsgerga ) ln(1 ) ln(1 ] 1) ( 1) ( ln[1 ) ln( f f f f p p p p = α ) ln(1 ) (1 ln 1) ( 1) ( ) (1 ln 1 1) ( ) (1 ln f f f f s s s s = α ] ) (1 ) ( 1 1 ln[ ] ) (1 ) ( 1 1 ln[ ] 1) ( ) (1 ) ( 1 1 ln[ ] 1) ( ) (1 ) ( 1 1 ln[ p s s p p s p p s s p p s p f f f f f f f f f f f f = α ) ( ) ( ln ln s p s p s p p = α aktywność molową lub stosunek zawartości izotopu lżejszego do izotopu cięższego w substracie przed rozpoczęciem reakcji, - p - aktywność molową lub stosunek zawartości izotopu lżejszego do izotopu cięższego w produkcie w chwili, gdy stopień przereagowania wynosi f, - s - aktywność molową lub stosunek zawartości izotopu lżejszego do izotopu cięższego w substracie, gdy stopień przereagowania wynosi f, - f - stopień przereagowania. - α - kinetyczny efekt izotopowy,

18 Badanie mechanizmu elektrofilowej substytucji w pierścieniu aromatycznym (1) Ar Y Ar Y Powoli; etap określajacy szybkość reakcji (2) Ar Y Z ArY : Z Szybko (1a) Ar Y Ar Y ArY Mechanizm elektrofilowej substytucji w pierścieniu aromatycznym

19 Badanie mechanizmu elektrofilowej substytucji w pierścieniu aromatycznym Znajomość efektu izotopowego oraz ogólna znajomość przyczyn jego występowania, stwarza możliwość wyjaśnienia, dlaczego ten efekt interesuje chemika organika. Z dotychczasowych ustaleń eksperymentalnych, dotyczących reakcji elektrofilowej substytucji w związkach aromatycznych, wynika, że zachodzą one według jednego mechanizmu, niezależnie od rodzaju reagenta biorącego w niej udział. Dla reagenta YZ ogólny mechanizm tej reakcji można zapisać następująco: (1) Ar Y Ar Y Powoli; etap określajacy szybkość reakcji (2) Ar Y Z ArY : Z Szybko Mechanizm elektrofilowej substytucji w pierścieniu aromatycznym

20 Mechanizm obejmuje dwa zasadnicze etapy: Etap (1) atak reagenta elektrofilowego na pierścień z utworzeniem karbokationu oraz etap (2) oderwanie protonu od karbokationu przez dowolną zasadę. Pytanie skąd wiadomo, że elektrofilowa substytucja w pierścieniu aromatycznym obejmuje dwa etapy, a nie tylko jeden. (1a) Ar Y Ar Y ArY raz skąd wiadomo, że pierwszy z dwóch etapów [etap (1)] przebiega znacznie wolniej niż [etap (2)]? dpowiedź uzyskano w wyniku serii badań rozpoczętych przez Melandera (z Instytutu Chemii im. Nobla w Sztokholmie) i prowadzonych także przez wielu innych badaczy. óżnorodne związki aromatyczne znakowane atomami deuteru i trytu w pierścieniu aromatycznym poddano nitrowaniu, bromowaniu i alkilowaniu metodą Friedla-Craftsa. Stwierdzono, że w reakcjach tych następuje wymiana atomów deuteru lub trytu z taką samą szybkością jak atomów zwykłego wodoru (protu). ównież nie zaobserwowano wyraźnego efektu izotopowego. Wiadomo, że wiązanie węgiel-deuter ulega rozerwaniu wolniej niż wiązanie węgiel-prot, a wiązanie węgiel-tryt jeszcze wolniej. Jak więc możemy interpretować fakt, że nie stwierdza się w tym przypadku efektu izotopowego?

21 Jeżeli szybkości substytucji różnych izotopów wodoru są taki same, może to tylko oznaczać, że w reakcjach, których szybkość porównujemy, nie następuje rozerwanie wiązania węgiel-wodór. Interpretacja ta jest zgodna z przyjętym mechanizmem. Powolne przyłączenie reagenta elektrofilowego określa szybkość całego procesu substytucji. Powstający karbokation szybko traci jon wodorowy i przekształca się w cząsteczkę produktu. Etap (1) jest etapem określającym szybkość reakcji. W etapie tym nie następuje rozerwanie wiązania węgiel-wodór, dlatego szybkość tego etapu, a więc szybkość całej reakcji, nie zależy od rodzaju izotopu wodoru, który znajduje się w pierścieniu. Gdyby reakcja substytucji obejmowała etap (1a), to musiał by on być etapem określającym szybkość reakcji, a ponieważ następowałoby w nim rozerwanie wiązania węgiel-wodór, powinniśmy zaobserwować kinetyczny efekt izotopowy. Gdyby natomiast etap (2) w sekwencji dwuetapowej przebiegał dostatecznie wolno w porównaniu z etapem (1), wówczas musiałby on wpływać na całkowitą szybkość reakcji i ponownie należałoby się spodziewać wystąpienia KEI.

22 Badanie mechanizmu kondensacji Dieckmana eakcja kondensacji Dieckmana polega na katalizowanej przez zasadę cyklizacji wewnętrznej estru dikarboksylowego do β-ketoestru C 2 C C 2 C B - (1) CC C 2 C (2) (3) Mechanizm kondensacji Dieckmana Każdy z trzech etapów może określać kinetykę procesu. Problem który z etapów jest kinetycznie istotnym, rozwiązano znakując kolejno ester węglem 14 C, raz w grupie metylenowej, drugi raz w grupie karbonylowej.

23 1. Jeżeli etap (1) jest istotny kinetycznie, wtedy powinniśmy obserwować KEI 14 C w grupie metylenowej oraz brak KEI 14 C w grupie karbonylowej. 2. Jeżeli etap drugi jest istotny kinetycznie, wtedy powinniśmy obserwować KEI zarówno dla węgla w grupie metylenowej jak i w grupie karbonylowej, gdyż w stanie przejściowym tego etapu ulegają zmianie wiązania chemiczne przy obu tych węglach. 3. Jeżeli etap trzeci jest istotny kinetycznie, wtedy w stanie przejściowym reakcji wiązania chemiczne przy węglu grupy metylenowej nie ulegają zmianie. W tym przypadku KEI 14 C grupy karbonylowej powinien być obserwowany. Pomiary doświadczalne wykazały istnienie kinetycznego efektu izotopowego zarówno dla węgla metylenowego i dla węgla z grupy karbonylowej; Grupa metylenowa; k 12 /k 14 = 1,089 Grupa karbonylowa; k 12 /k 14 = 1,084 znacza to, że etap drugi tj. tworzenie nowego wiązania węgiel węgiel decyduje o kinetyce reakcji.

24 Badanie mechanizmu reakcji addycji elektrofilowej chlorku 2,4 dinitrobenzenosulfenowego do styrenu i jego para pochodnych w środowisku kwasu octowego β α Z 1 ArSX ArS β Ar X β S β S α α X α Ar X Z 2 Z 3 Z 4 ArS X Z Mechanizm reakcji addycji elektrofilowej chlorku 2,4-dinitrobenzenosulfenowego

25 Jeżeli reakcje addycji chlorku 2,4-dinitrobenzenosulfenylowego do styrenu i jego para pochodnych prowadzi się w kwasie octowym, to wiadomo, że reakcja przebiega zgodnie z regułą Markownikowa i dodatnia część cząsteczki chlorku 2,4-dinitrobenzenosulfenowego przyłącza się do βc natomiast ujemny chlor przyłącza się do αc i powstają odpowiednie siarczki chloro fenyloetylowo-2,4- dinitrofenylowe. Powstaje pytanie, jaką strukturę posiada kompleks aktywny powstający w etapie określającym szybkość reakcji w reakcji elektrofilowej? Prezentowany schemat zawiera trzy różne struktury stanów przejściowych dające ten sam produkt końcowy. Na temat reakcji elektrofilowej addycji do nienasyconych węglowodorów ukazało się wiele prac, ale nie było jednomyślności jaką strukturę ma kompleks aktywny. Problem ten mógł być rozwiązany przez 14 wyznaczenie KEI C w pozycji α- i β-styrenów zawierających elektronodonorowe i elektronoakceptorowe podstaw\niki. Przewidziano, że jeżeli kompleks aktywny posiada strukturę (2) to powinniśmy obserwować kinetyczny efekt izotopowy dla βc, ponieważ tworzy się wiązanie z siarką tylko przy tym węglu. Natomiast jeżeli kompleks aktywny posiada strukturę (3) bądź (4) wówczas powinniśmy obserwować KEI dla αc i dla βc.

26 Badania doprowadziły do wyznaczenia KEI dla α C i β C następujących dla kolejno podstawionych styrenów: α C p-c 3 ; p-; p-cl; k/k α = 1,004; 1,022; 1,027 β C p-c 3 ; p-: p-cl; k/k β = 1,037; 1,032; 1,035 znaczenia wartości k/k α i k/k β wykazały, że kinetyczny efekt izotopowy dla węgla 14 C jest zależny od miejsca podstawienia izotopowego oraz od charakteru podstawników w pierścieniu aromatycznym. Wyznaczona wartość k/k β dla β C jest dość duża i nie zależny od charakteru podstawników w pozycji para pierścienia. Natomiast k/k α jest zależny od charakteru podstawnika. Wyraźnie mały kinetyczny efekt izotopowy węgla 14 C w reakcji addycji ArSCl do styrenu, posiadający elektronodonorowy podstawnik w pozycji para pierścienia aromatycznego, sugeruje, że struktura stanu przejściowego jest zbliżona do struktury otwartej karbokationu (2), w której dodatni ładunek jest zlokalizowany przy węglu α. Wiązanie β C-S tworzy się niezależnie od mechanizmu i dlatego jest jasne, że KEI występuje i jego wartość nie zmienia się, niezależnie od tego jaki podstawnik jest w pierścieniu aromatycznym.

27 Jeśli aktywny kompleks miałby strukturę (3) lub (4) to utworzone wiązanie pomiędzy α C i siarką powinno być taki samo lub podobne i wówczas KEI dla α C powinien być podobny. Im silniejsze jest wiązanie α C-S tym większy powinien być KEI. Jeżeli ładunek dodatni na α C jest bardziej zdelokalizowany w pierścieniu wówczas wiązanie α C-S jest bardzo słabe lub go nie ma i wtedy jest brak kinetycznego efektu izotopowego. Jeżeli podstawnik jest elektronodonorowy (-C 3 ), to wolna para elektronowa jest do pewnego stopnia zdelokalizowana, co powoduje zwiększenie chmury elektronowej pierścienia, a następnie osłabienie ładunku dodatniego przy α C. Wiązanie α C-S jest wtedy bardzo słabe i w konsekwencji tego KEI jest bardzo mały. becność chloru w pozycji para pierścienia powoduje, że gęstość elektronowa w pierścieniu jest mniejsza niż w cząsteczce styrenu i dlatego też wiązanie α C-S jest silniejsze i KEI jest większy. A więc jeżeli podstawnik jest elektronodonorowy, to aktywny kompleks ma strukturę (2). Jeżeli podstawnik jest elektronoakceptorowy, to aktywny kompleks ma strukturę (3) lub (4). easumując, struktura kompleksu aktywnego powstającego w etapie określającym szybkość reakcji zależy od budowy podstawnika znajdującego się przy podwójnym wiązaniu.

28 Badania mechanizmu reakcji eliminacji bromu z kwasów dibromocynamonowych do odpowiednich kwasów cynamonowych I etap: Br C C Br KI KBr IBr II etap: KJ IBr KBr I 2 I 2 KI KI 3 (KI, J 2 )

29 Mechanizm eliminacji kwasu para metylo[(2),(3s)]-dibromocynamonowego Br C Br C Br C wolno szybko C 3 C 3 C 3

30 Mechanizm eliminacji kwasu para metylo[(2),(3s)]-dibromocynamonowego E 1 (jednocząsteczkowy)? Br β C α Br - Br - β C α Br - Br β C α - Br -, - Br E 2 (zsynchronizowany)? Badania wykazały, że kinetyczny efekt izotopowy 14 C występuje w pozycjach α, β, oraz jest zależny od miejsca podstawienia izotopowego i od charakteru podstawnika w pierścieniu aromatycznym. Gdy: =, p-c 3, oraz p-n 2 wtedy (k 12 \k 14 ) w pozycji α wynoszą odpowiednio: 1,05226; 1,0094; 1,0233. Natomiast (k 12 \k 14 ) w pozycji β dla podstawników = p-c 3 i wynoszą odpowiednio: 1,072; 1,0483

31 Wnioski dotyczące mechanizmu reakcji eliminacji bromu z kwasu [(2),(3S)]-dibromocynamonowego Zakładany mechanizm E 1 (jednocząsteczkowy) KEI k / α k k / β k k / * k nie tak nie E 2 (zsynchronizowany) tak tak nie

32 Badanie mechanizmu eliminacji amin z soli p-nitrofenylo-2-etylo-n,n,ntrimetyloamoniowej i n-propylo-n,n,n-trimetyloamoniowej eakcje eliminacji, badane metodą KEI z zastosowaniem ciężkich atomów zachodziły głownie według mechanizmu E1 i E2. W związku z tym prowadzone badania były głównie ukierunkowane w stronę wyznaczenia trwałości wiązań przy β C- i α C-X. Skomplikowana natura takiej reakcji została wyjaśniona na przykładzie wyznaczenia KEI dla kolejno znakowanych związków w trakcie rozkładu soli n- propylo-n,n,n-trimetyloamoniowej oraz p-nitrofenylo-2-etylo-n,n,n-trimetyloamoniowej β α B - β α δ C C C 2 NMe 3 C 2 NMe 3 T δ B T β α C C 2 NMe 3 BT Mechanizm eliminacji soli amoniowych do styrenu

33 Badano kinetyczny efekt izotopowy dla węgla 14 C, wodoru i azotu. W literaturze występują znaczne różnice w wyznaczonych efektach izotopowych przez dwie oddzielne grupy badawcze. Pierwsza grupa dla podstawnika = C 3 otrzymała: k/k β = 1,036 dla 14 C w pozycji β, k/k α = 1,069 dla 14 C w pozycji α, oraz k /k T = 2 dla trytu w pozycji β. eakcja ta była prowadzona w temperaturze 50 o C. Ponadto wyznaczono KEI dla reakcji w tych samych warunkach z podstawnikiem = p-n 2 C 6 4 dla 14 C w pozycji α, gdzie otrzymano: k/k α = 1,026. Z tego widać, że występujące znaczne efekty izotopowe przy α C, β C i β wpływają na etapy determinujące szybkość reakcji. Druga grupa badawcza dla podstawnika = p-n 2 C 6 4 wyznaczyła kinetyczny efekt izotopowy: eakcję prowadzono w temperaturze 100 o C. k/k α = 1,078 dla 14 C w pozycji 2, k 14 /k 15 = 1,024 dla azotu, i k /k T = 2,12 dla trytu w pozycji β. Przyczyna tych rozbieżności nie jest znana, ale autorzy wyciągają podobne wnioski, że zmiany wiązań przy N, α C, β C i β decydują o szybkości reakcji.

34 Badanie mechanizmu reakcji dehydrohalogenacjii β α C CCl 3 β α C 2 C 2 NMe 3 Br para podstawiony 2,2-difenylo-1,1,1-trichloroetan bromek para podstawiony 2-fenyloetylo-N,N,N-trimetyloamoniowy β α C 2 C 2 Cl para podstawiony 1-chloro-2-fenyloetan β C Cl para podstawiony 1-chloro-1-fenyloetan α C 3

35 Badanie mechanizmu reakcji dehydrohalogenacjii Zaproponowany mechanizm reakcji dehydrohalogenacji przedstawia poniższy schemat C 3 - β C α CCl 2 E1cb? - C 3 wolno β C α CCl 2 - Cl - szybko β C α CCl 2 Cl Cl zsynchronizowany E2 - C 3, - Cl - Przed dokładnym przebadaniem reakcji dehydrohalogenacji sądzono, że przebiega ona w środowisku zasadowym według mechanizmu E1cB, ale nie wykluczono również mechanizmu podobnego do E2. W związku z czym przebadano proces eliminacji z użyciem czterech uprzednio podanych układów.

36 Zakładany mechanizm eliminacji amoniaku i odtworzenie miejsca aktywnego Enzym N N C - 2 N 3 N Enzym N a) b) N 2 C 2 - Enzym N N N 2 C 2 - c) a) Addycja Michaela b) β eliminacja c) odtworzenie dehydroalaniny przez β -eliminację Enzym N N N 3

37 Mechanizm reakcji eliminacji z udziałem PAL zaproponowany przez avir a i anson a N B N N 2 Ph C - e Si B : - N B: N 2 N Ph C - e Si B : - N B: 2 N N Ph - C - B e N B: 2 N N Ph B C -

38 Mechanizm reakcji eliminacji z udziałem PAL zaproponowany przez Schuster a i etey a N N 3 N - C N N 3 N : B e Si e Si - C N N B N N B - C - C 3 N N 3

39 Kinetyczny efekt izotopowy /T w pozycji 3-pro-S L-tyrozyny Liaza fenyloalaninowa katalizuje również eliminację amoniaku z L-tyrozyny, co pozwala na zbadanie wpływu grupy elektrodonorowej na wielkość kinetycznego efektu izotopowego w tej reakcji. Nie można jednocześnie wykluczyć, że reakcja eliminacji z udziałem L-tyrozyny przebiega według innego mechanizmu. Potwierdzeniem takiej tezy byłby wynik znacząco różny od otrzymanego dla L-Phe, czyli na przykład brak efektu lub duży efekt. T 14 N 2 C PAL p = 8,7, 30 o C 14 C N 2 T

40 Kinetyczny efekt izotopowy /T w pozycji orto pierścienia aromatycznego L-fenyloalaniny T 14 C PAL T 14 C p = 8,7 N 3 T N 2 T Wyniki badań kinetycznego efektu izotopowego /T w pozycji 2 i 6 pierścienia aromatycznego L-fenyloalaniny. Nr eksperymentu nr frakcji Stopień przereagowania [%] KEI 1-1 5,89 0, ,32 0, ,09 1, ,86 1, ,22 1, ,95 1, ,34 1, ,70 1, ,82 1, ,12 1,1598

41 Kinetyczny efekt izotopowy 12 C/ 14 C w pozycji 2 L-Phe C * N 2 PAL p = 8,7 * C Kinetyczny efekt izotopowy 12 C/ 14 C w pozycji 2 L-fenyloalaniny Nr eksp. * 0, p, f 0, r, f p, r, f 0, r, p Średnia średnia ± ±0.0019

42 Procedura wyznaczenie KEI /T w pozycji 3-pro- Mieszanina reakcyjna: enzym, L-Phe [1-14 C, 3-3 ] bufor boranowy 0,2M p = 8,7 Pobieram V1 mieszaniny reakcyjnej Mierzę aktywność (A 0 ) 14 C oraz stosunek aktywności 3 / 14 C ( 0 ) t 1 t2 t 3 t 4 t 5 Pobieram 5 frakcji (każda V1) o różnym stopniu przereagowania w zakresie od 10% do 20% Procedura postępowania dla każdej frakcji Mieszanina reakcyjna p=8,7 T 14 C N 3 T 14 C eakcja enzymatyczna zatrzymana p=0-1 T 14 C N 3 T 14 C Ekstrakcja (Et 2 ) Warstwa eterowa T 14 C Warstwa wodna T 14 C N 3 Pomiar aktywnosci 14 C (A i ) Po wydzieleniu L-Phe zastosowana oraz stosunku aktywności 3 / 14 do następnego eksperymentu C p

43 Kinetyczny efekt izotopowy /T w pozycji 3-pro- L-Phe Nr Eksp. KEI dchylenie stand. 1 1,0594 0, ,0535 0, ,0566 0, ,0480 0, ,0585 0,0193 Średnia 1,0552 0,0046

44 Procedura badania KEI w pozycji 3-pro-S L-Phe Mieszanina reakcyjna: enzym, L-Phe [1-14 C, 3S- 3 ] bufor boranowy 0,2M p = 8,7 Pobieram V1 mieszaniny reakcyjnej Mierzę aktywność (A 0 ) 14 C oraz stosunek aktywności 3 / 14 C ( 0 ) t 1 t2 t 3 t 4 t 5 Pobieram 5 frakcji (każda V1) o różnym stopniu przereagowania w zakresie od 10% do 20% Procedura postępowania dla każdej frakcji Mieszanina reakcyjna p=8,7 T 14 C N 3 N 2 T elucja 2 14 C eakcja enzymatyczna zatrzymana p=0-1 T N 3 T 14 C N 3 Ekstrakcja (Et 2 ) 14 C 0,3 M N 3 Warstwa wodna Kolumna jonowymienna T Amberlit I 120 ( ) N 3 T T 14 C N 3 14 C N 3 Warstwa eterowa 14 C Pomiar aktywnosci 14 C (A i ) T T 14 C N 3 dparowanie pod zmniejszonym ciśnieniem Pomiar stosunku aktywności 3 / 14 C ( ri )

45 Kinetyczny efekt izotopowy D/T w pozycji 3-pro-S L-Phe Nr Eksp. KEI dchylenie Stand. 1 1,0750 0, ,0953 0, ,0899 0, ,0734 0,0167 Średnia 1,0834 0,0109 (1,01%)

46 Zależność Swain a-schaad a α = k k T = k k D 1, 44 α = k k D 3, 26 = k k k k T T obl T obs Gdzie: k /k T - KIE dla 1 / 3. k /k D - KIE dla 1 / 2. k D /k T - KIE dla 2 / 3. Jeśli efekt 1 / 3, obliczony z efektów 1 / 2 lub 2 / 3 przy pomocy wspomnianych zależności, jest mniejszy od efektu zaobserwowanego, wtedy prawdopodobnie w reakcji następuje tunelowanie protonu. Jeśli wartość wyliczonego KIE jest większa od zaobserwowanej, to mamy do czynienia ze złożonością kinetyczną, tzn. nie tylko etap odrywania protonu decyduje o szybkości reakcji.

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

RJC E + E H. Slides 1 to 41

RJC E + E H. Slides 1 to 41 Aromatyczne Substytucje Elektrofilowe E + E H -H E Slides 1 to 41 Aromatyczne Addycje Elektrofilowe...do pierścienia aromatycznego przerywa sprzęŝenie elektronów π i powoduje utratę stabilizacji poprzez

Bardziej szczegółowo

Otrzymywanie halogenków alkilów

Otrzymywanie halogenków alkilów Otrzymywanie halogenków alkilów 1) Wymiana grupy OH w alkoholach C O H HX 2) reakcja podstawienia alkanów C X H 3 C CH CH 2 HBr C H 3 OH H 3 C CH CH 2 C H 3 Br h + + CH CH 2 3 Cl 2 Cl HCl CH CH 3 3 CH

Bardziej szczegółowo

Syntezy izotopomerów L-tyrozyny i ich wykorzystanie do badania mechanizmu działania. ania β-tyrozynazy

Syntezy izotopomerów L-tyrozyny i ich wykorzystanie do badania mechanizmu działania. ania β-tyrozynazy Syntezy izotopomerów Ltyrozyny i ich wykorzystanie do badania mechanizmu działania ania βtyrozynazy Wojciech Augustyniak Promotor: prof. dr hab. Marianna Kańska Pracownia Peptydów Wydział hemii UW Plan

Bardziej szczegółowo

1. REAKCJA ZE ZWIĄZKAMI POSIADAJĄCYMI KWASOWY ATOM WODORU:

1. REAKCJA ZE ZWIĄZKAMI POSIADAJĄCYMI KWASOWY ATOM WODORU: B I T E C N L CEMIA G GANICZNA I A Własności chemiczne Związki magnezoorganiczne wykazują wysoką reaktywność. eagują samorzutnie z wieloma związkami dając produkty należące do różnych klas związków organicznych.

Bardziej szczegółowo

Wykład 6. Korzystałem z : R. Morrison, R. Boyd: Chemia organiczna (wyd. ang.)

Wykład 6. Korzystałem z : R. Morrison, R. Boyd: Chemia organiczna (wyd. ang.) Wykład 6 Korzystałem z : R. Morrison, R. Boyd: Chemia organiczna (wyd. ang.) Dieny Dieny są alkenami, których cząsteczki zawierają 2 podwójne wiązania C=C. Zasadnicze właściwości dienów są takie jak alkenów.

Bardziej szczegółowo

Reakcje związków karbonylowych zudziałem atomu węgla alfa (C- )

Reakcje związków karbonylowych zudziałem atomu węgla alfa (C- ) 34-37. eakcje związków karbonylowych zudziałem atomu węgla alfa (C- ) stabilizacja rezonansem (przez delokalizację elektronów), może uczestniczyć w delokalizacji elektronów C- -, podatny na oderwanie ze

Bardziej szczegółowo

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT. Ćwiczenie 12, 13. Kinetyka chemiczna. Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. Szybkość reakcji chemicznej jest związana

Bardziej szczegółowo

Badanie biotransformacji L-alaniny. i jej pochodnych metodami izotopowymi

Badanie biotransformacji L-alaniny. i jej pochodnych metodami izotopowymi Mgr Jolanta Szymańska Warszawa, dn. 03.11.2014 r. Wydział Chemii Uniwersytetu Warszawskiego Pracownia Chemii Biomolekuł Autoreferat rozprawy doktorskiej pt.: Badanie biotransformacji L-alaniny i jej pochodnych

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto Zadanie 1. (3 pkt) Nadtlenek litu (Li 2 O 2 ) jest ciałem stałym, występującym w temperaturze pokojowej w postaci białych kryształów. Stosowany jest w oczyszczaczach powietrza, gdzie ważna jest waga użytego

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo

Laboratorium. Podstawowe procesy jednostkowe w technologii chemicznej

Laboratorium. Podstawowe procesy jednostkowe w technologii chemicznej Laboratorium Podstawowe procesy jednostkowe w technologii chemicznej Studia niestacjonarne Ćwiczenie Alkilowanie toluenu chlorkiem tert-butylu 1 PROCESY ALKILOWANIA PIERŚCIENIA AROMATYCZNEGO: ALKILOWANIE

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

Inżynieria Środowiska

Inżynieria Środowiska ROZTWORY BUFOROWE Roztworami buforowymi nazywamy takie roztwory, w których stężenie jonów wodorowych nie ulega większym zmianom ani pod wpływem rozcieńczania wodą, ani pod wpływem dodatku nieznacznych

Bardziej szczegółowo

Aminy. - Budowa i klasyfikacja amin - Nazewnictwo i izomeria amin - Otrzymywanie amin - Właściwości amin

Aminy. - Budowa i klasyfikacja amin - Nazewnictwo i izomeria amin - Otrzymywanie amin - Właściwości amin Aminy - Budowa i klasyfikacja amin - Nazewnictwo i izomeria amin - Otrzymywanie amin - Właściwości amin Budowa i klasyfikacja amin Aminy pochodne amoniaku (NH 3 ), w cząsteczce którego jeden lub kilka

Bardziej szczegółowo

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I Nr zajęć Data Zagadnienia Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I 9.10.2012. b. określenie liczby cząstek elementarnych na podstawie zapisu A z E, również dla jonów; c. określenie

Bardziej szczegółowo

KINETYKA INWERSJI SACHAROZY

KINETYKA INWERSJI SACHAROZY Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KINETYKA INWERSJI SACHAROZY Wstęp teoretyczny Kataliza kwasowo-zasadowa Kataliza kwasowo-zasadowa

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Nazwy pierwiastków: ...

Nazwy pierwiastków: ... Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20

Bardziej szczegółowo

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych I. Reakcje egzoenergetyczne i endoenergetyczne 1. Układ i otoczenie Układ - ogół substancji

Bardziej szczegółowo

Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV

Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV Informacja do zadań 1. i 2. Proces spalania pewnego węglowodoru przebiega według równania: C 4 H 8(g) + 6O 2(g) 4CO 2(g) + 4H 2 O (g) + energia cieplna Zadanie 1. (1 pkt) Procesy chemiczne można zakwalifikować

Bardziej szczegółowo

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. Projekt zrealizowany w ramach Mazowieckiego programu stypendialnego dla uczniów szczególnie uzdolnionych

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 PRZYKŁADOWE ROZWIĄZANIA WRAZ Z PUNKTACJĄ Maksymalna liczba punktów możliwa do uzyskania po

Bardziej szczegółowo

EGZAMIN MATURALNY Z CHEMII

EGZAMIN MATURALNY Z CHEMII Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MCH-W1D1P-021 EGZAMIN MATURALNY Z CHEMII Instrukcja dla zdającego Czas pracy 90 minut 1. Proszę sprawdzić, czy arkusz

Bardziej szczegółowo

Spektrometria mas (1)

Spektrometria mas (1) pracował: Wojciech Augustyniak Spektrometria mas (1) Spektrometr masowy ma źródło jonów, które jonizuje próbkę Jony wędrują w polu elektromagnetycznym do detektora Metody jonizacji: - elektronowa (EI)

Bardziej szczegółowo

Zadanie 2. (2 pkt) Roztwór kwasu solnego o ph = 5 rozcieńczono 1000 krotnie wodą. Oblicz ph roztworu po rozcieńczeniu.

Zadanie 2. (2 pkt) Roztwór kwasu solnego o ph = 5 rozcieńczono 1000 krotnie wodą. Oblicz ph roztworu po rozcieńczeniu. Zadanie 1. (2 pkt) Oblicz, z jakiej objętości powietrza odmierzonego w temperaturze 285K i pod ciśnieniem 1029 hpa można usunąć tlen i azot dysponując 14 g magnezu. Magnez w tych warunkach tworzy tlenek

Bardziej szczegółowo

Halogenki alkilowe- atom fluorowca jest związany z atomem węgla o hybrydyzacji sp 3 KLASYFIKACJA ZE WZGLĘDU NA BUDOWĘ FRAGMENTU ALKILOWEGO:

Halogenki alkilowe- atom fluorowca jest związany z atomem węgla o hybrydyzacji sp 3 KLASYFIKACJA ZE WZGLĘDU NA BUDOWĘ FRAGMENTU ALKILOWEGO: FLUOROWCOPOCHODNE Halogenki alkilowe- atom fluorowca jest związany z atomem węgla o hybrydyzacji sp 3 KLASYFIKACJA ZE WZGLĘDU NA BUDOWĘ FRAGMENTU ALKILOWEGO: Cl CH 2 -CH 2 -CH 2 -CH 3 CH 3 -CH-CH 3 pierwszorzędowe

Bardziej szczegółowo

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według

Bardziej szczegółowo

Stereochemia Ułożenie atomów w przestrzeni

Stereochemia Ułożenie atomów w przestrzeni Slajd 1 Stereochemia Ułożenie atomów w przestrzeni Slajd 2 Izomery Izomery to różne związki posiadające ten sam wzór sumaryczny izomery izomery konstytucyjne stereoizomery izomery cis-trans izomery zawierające

Bardziej szczegółowo

Mechanizm dehydratacji alkoholi

Mechanizm dehydratacji alkoholi Wykład 5 Mechanizm dehydratacji alkoholi I. Protonowanie II. odszczepienie cząsteczki wody III. odszczepienie protonu Etap 1 Reakcje alkenów Najbardziej reaktywne jest wiązanie podwójne, lub jego sąsiedztwo

Bardziej szczegółowo

Węglowodory poziom podstawowy

Węglowodory poziom podstawowy Węglowodory poziom podstawowy Zadanie 1. (2 pkt) Źródło: CKE 2010 (PP), zad. 19. W wyniku całkowitego spalenia 1 mola cząsteczek węglowodoru X powstały 2 mole cząsteczek wody i 3 mole cząsteczek tlenku

Bardziej szczegółowo

pierwszorzędowe drugorzędowe trzeciorzędowe (1 ) (2 ) (3 )

pierwszorzędowe drugorzędowe trzeciorzędowe (1 ) (2 ) (3 ) FLUOROWCOPOCODNE alogenki alkilowe- Cl C 2 -C 2 -C 2 -C 3 C 3 -C-C 3 C 2 -C-C 3 pierwszorzędowe drugorzędowe trzeciorzędowe (1 ) (2 ) (3 ) I C 3 C 3 Cl-C 2 -C=C 2 Cl-C-C=C 2 1 2 3 Allilowe atom fluorowca

Bardziej szczegółowo

VIII Podkarpacki Konkurs Chemiczny 2015/2016

VIII Podkarpacki Konkurs Chemiczny 2015/2016 III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem

Bardziej szczegółowo

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe) Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe) Kod ucznia Suma punktów Witamy Cię na drugim etapie konkursu chemicznego. Podczas konkursu możesz korzystać

Bardziej szczegółowo

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa Kinetyka chemiczna KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 fermentacja alkoholowa czynniki wpływaj ywające na szybkość reakcji chemicznych stęż ężenie reagentów w (lub ciśnienie gazów w jeżeli eli reakcja przebiega

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 26 stycznia 2015 r. 90 minut Informacje dla ucznia

Bardziej szczegółowo

Właściwości chemiczne nukleozydów pirymidynowych i purynowych

Właściwości chemiczne nukleozydów pirymidynowych i purynowych Właściwości chemiczne nukleozydów pirymidynowych i purynowych Właściwości nukleozydów są ściśle powiązane z elementami strukturalnymi ich budowy. Zasada azotowa obecna w nukleozydach może być poddawana

Bardziej szczegółowo

1. Podstawowe prawa i pojęcia chemiczne

1. Podstawowe prawa i pojęcia chemiczne 1. PODSTAWOWE PRAWA I POJĘCIA CHEMICZNE 5 1. Podstawowe prawa i pojęcia chemiczne 1.1. Wyraź w gramach masę: a. jednego atomu żelaza, b. jednej cząsteczki kwasu siarkowego. Odp. 9,3 10 23 g; 1,6 10 22

Bardziej szczegółowo

EFEKT SOLNY BRÖNSTEDA

EFEKT SOLNY BRÖNSTEDA EFEKT SLNY RÖNSTED Pojęcie eektu solnego zostało wprowadzone przez rönsteda w celu wytłumaczenia wpływu obojętnego elektrolitu na szybkość reakcji zachodzących między jonami. Założył on, że reakcja pomiędzy

Bardziej szczegółowo

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016 XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego II Etap - 18 stycznia 2016 Nazwisko i imię ucznia: Liczba uzyskanych punktów: Drogi Uczniu, przeczytaj uważnie instrukcję i postaraj

Bardziej szczegółowo

Substytucje Nukleofilowe w Pochodnych Karbonylowych

Substytucje Nukleofilowe w Pochodnych Karbonylowych J 1 Substytucje kleofilowe w Pochodnych Karbonylowych Y Y Y Slides 1 to 21 J 2 Addycje vs Podstawienia Ładunek δ zlokalizowany na atomie węgla w grupy karbonylowej powoduje, Ŝe e atak nukleofila moŝe doprowadzić

Bardziej szczegółowo

Kwasy karboksylowe grupa funkcyjna: -COOH. Wykład 8 1

Kwasy karboksylowe grupa funkcyjna: -COOH. Wykład 8 1 Kwasy karboksylowe grupa funkcyjna: -CH Wykład 8 1 1. Reakcje utleniania a) utlenianie alkoholi pierwszorzędowych trzymywanie kwasów CH 3 H 3 C C CH 2 H CH 3 alkohol pierwszorzędowy CH K 2 Cr 2 3 7 H 3

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO kod Uzyskane punkty..... WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

Bardziej szczegółowo

Pochodne węglowodorów, w cząsteczkach których jeden atom H jest zastąpiony grupą hydroksylową (- OH ).

Pochodne węglowodorów, w cząsteczkach których jeden atom H jest zastąpiony grupą hydroksylową (- OH ). Cz. XXII - Alkohole monohydroksylowe Pochodne węglowodorów, w cząsteczkach których jeden atom jest zastąpiony grupą hydroksylową (- ). 1. Klasyfikacja alkoholi monohydroksylowych i rodzaje izomerii, rzędowość

Bardziej szczegółowo

Spis treści. Budowa i nazewnictwo fenoli

Spis treści. Budowa i nazewnictwo fenoli Spis treści 1 Budowa i nazewnictwo fenoli 2 Kwasowość fenoli 2.1 Kwasowość atomów wodoru 2.2 Fenole jako kwasy organiczne. 3 Reakcje fenoli. 3.1 Zastosowanie fenolu Budowa i nazewnictwo fenoli Fenolami

Bardziej szczegółowo

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej 1) Podstawowe prawa i pojęcia chemiczne 2) Roztwory (zadania rachunkowe zbiór zadań Pazdro

Bardziej szczegółowo

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony Zadanie 1. (1 pkt) W jednym z naturalnych szeregów promieniotwórczych występują m.in. trzy izotopy polonu, których okresy półtrwania podano w nawiasach: Po-218 (T 1/2 = 3,1minuty), Po-214 (T 1/2 = 0,0016

Bardziej szczegółowo

10. Alkeny wiadomości wstępne

10. Alkeny wiadomości wstępne 0. Alkeny wiadomości wstępne 5.. Nazewnictwo Nazwa systematyczna eten propen cyklopenten cykloheksen Nazwa zwyczajowa etylen propylen Wiązanie = w łańcuchu głównym, lokant = najniższy z możliwych -propyloheks--en

Bardziej szczegółowo

Obliczenia chemiczne

Obliczenia chemiczne strona 1/8 Obliczenia chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Wagowe stosunki stechiometryczne w związkach chemicznych i reakcjach chemicznych masa atomowa

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II MDEL DPWIEDZI I SEMAT ENIANIA ARKUSZA II. Zdający otrzymuje punkty tylko za całkowicie prawidłową odpowiedź.. Gdy do jednego polecenia są dwie odpowiedzi (jedna prawidłowa, druga nieprawidłowa), to zdający

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ĆWICZENIE 5. Związki aromatyczne

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ĆWICZENIE 5. Związki aromatyczne ĆWICENIE 5 wiązki aromatyczne wiązki aromatyczne są związkami pierścieniowymi o płaskich cząsteczkach zawierających zgodnie z regułą uckla (4n2) elektrony π (n=0,1,2, ). Przedstawicielem takich związków

Bardziej szczegółowo

Spis treści 1. Struktura elektronowa związków organicznych 2. Budowa przestrzenna cząsteczek związków organicznych

Spis treści 1. Struktura elektronowa związków organicznych 2. Budowa przestrzenna cząsteczek związków organicznych Spis treści 1. Struktura elektronowa związków organicznych 13 2. Budowa przestrzenna cząsteczek związków organicznych 19 2.1. Zadania... 28 3. Zastosowanie metod spektroskopowych do ustalania struktury

Bardziej szczegółowo

RJC Y R R Y R R R H R H. Slides 1 to 24

RJC Y R R Y R R R H R H. Slides 1 to 24 JC eakcje Eliminacji (E1 & E2) B δ B δ B Slides 1 to 24 JC eakcje Eliminacji Dwa mechanizmy są moŝliwe wtedy, kiedy zasada (B - ) atakuje halogenek alkilowy z atomem w pozycji α; ; zachodząca reakcja eliminacji

Bardziej szczegółowo

Chemia organiczna. Zagadnienia i przykładowe pytania do kolokwiów dla Biotechnologii (I rok)

Chemia organiczna. Zagadnienia i przykładowe pytania do kolokwiów dla Biotechnologii (I rok) Chemia organiczna Zagadnienia i przykładowe pytania do kolokwiów dla Biotechnologii (I rok) Zakład Chemii Organicznej Wydział Chemii Uniwersytet Wrocławski 2005 Lista zagadnień: Kolokwium I...3 Kolokwium

Bardziej szczegółowo

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści Anna Kulaszewicz Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy lp. Dział Temat Zakres treści 1 Zapoznanie z przedmiotowym systemem oceniania i wymaganiami edukacyjnymi z

Bardziej szczegółowo

Addycje Nukleofilowe do Grupy Karbonylowej

Addycje Nukleofilowe do Grupy Karbonylowej J 1 Addycje kleofilowe do Grupy Karbonylowej H H +H H H Slides 1 to 29 J 2 Addycja vs Substytucja Atom w grupie karbonylowej (δ( + ) jest podatny na atak odczynnika nukleofilowego ; w zaleŝno ności od

Bardziej szczegółowo

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Jaka jest średnia masa atomowa miedzi stanowiącej mieszaninę izotopów,

Bardziej szczegółowo

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II Czas trwania testu 120 minut Informacje 1. Proszę sprawdzić czy arkusz zawiera 10 stron. Ewentualny brak należy zgłosić nauczycielowi. 2. Proszę rozwiązać

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII KOD UCZNIA... WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII Termin 20.01.2010 r. godz. 9 00 Czas pracy: 90 minut ETAP II Ilość punktów za rozwiązanie zadań Część I Część II Ilość punktów za zadanie Ilość punktów

Bardziej szczegółowo

Chemia organiczna. Mechanizmy reakcji chemicznych. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Chemia organiczna. Mechanizmy reakcji chemicznych. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Chemia organiczna Mechanizmy reakcji chemicznych Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego 1 homoliza - homolityczny rozpad wiązania w jednym z reagentów; powstają produkty zawierające

Bardziej szczegółowo

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks Obliczenia stechiometryczne, bilansowanie równań reakcji redoks Materiały pomocnicze do zajęć wspomagających z chemii opracował: dr Błażej Gierczyk Wydział Chemii UAM Obliczenia stechiometryczne Podstawą

Bardziej szczegółowo

ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji

ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji w tej temperaturze wynosi K p = 0,11. Reaktor został

Bardziej szczegółowo

8. Trwałość termodynamiczna i kinetyczna związków kompleksowych

8. Trwałość termodynamiczna i kinetyczna związków kompleksowych 8. Trwałość termodynamiczna i kinetyczna związków kompleksowych Tworzenie związku kompleksowego w roztworze wodnym następuje poprzez wymianę cząsteczek wody w akwakompleksie [M(H 2 O) n ] m+ na inne ligandy,

Bardziej szczegółowo

Materiały dodatkowe kwasy i pochodne

Materiały dodatkowe kwasy i pochodne Uniwersytet Jagielloński, Collegium Medicum, Katedra Chemii rganicznej Materiały dodatkowe kwasy i pochodne Kwasy 1. Kwasowość Kwasy karboksylowe są kwasami o stosunkowo niewielkiej mocy. Ich stała dysocjacji

Bardziej szczegółowo

O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW

O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW Jolanta Baldy Politechnika Wrocławska, 6 listopada 2015 r. Matura 2015 z chemii w liczbach Średni wynik procentowy Województwo dolnośląskie Województwo

Bardziej szczegółowo

XV Wojewódzki Konkurs z Chemii

XV Wojewódzki Konkurs z Chemii XV Wojewódzki Konkurs z Chemii dla uczniów dotychczasowych gimnazjów oraz klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa świętokrzyskiego II Etap powiatowy 16 styczeń 2018

Bardziej szczegółowo

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa Kinetyka chemiczna KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 fermentacja alkoholowa czynniki wpływaj ywające na szybkość reakcji chemicznych stęż ężenie reagentów w (lub ciśnienie gazów w jeżeli eli reakcja przebiega

Bardziej szczegółowo

1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:

1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego: 1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego: 2. Określ w którą stronę przesunie się równowaga reakcji rozkładu

Bardziej szczegółowo

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2018/2019 ETAP REJONOWY

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2018/2019 ETAP REJONOWY Wpisuje uczeń po otrzymaniu zadań Kod ucznia Wpisać po rozkodowaniu pracy Imię Nazwisko Czas pracy: 90 minut Nazwa szkoły KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2018/2019 ETAP REJONOWY Uzyskane

Bardziej szczegółowo

Dysocjacja kwasów i zasad. ponieważ stężenie wody w rozcieńczonym roztworze jest stałe to:

Dysocjacja kwasów i zasad. ponieważ stężenie wody w rozcieńczonym roztworze jest stałe to: Stała równowagi dysocjacji: Dysocjacja kwasów i zasad HX H 2 O H 3 O X - K a [ H 3O [ X [ HX [ H O 2 ponieważ stężenie wody w rozcieńczonym roztworze jest stałe to: K a [ H 3 O [ X [ HX Dla słabych kwasów

Bardziej szczegółowo

Zad. 1. Br 2 + Zad. 2

Zad. 1. Br 2 + Zad. 2 Zad. 1 ajszybciej, już bez dostępu światła, reaguje styren obecność winylowego wiązania podwójnego czyni go podatnym na reakcję addycji 2 (probówka 1). Etylobenzen i toluen ulegają reakcji wolnorodnikowej

Bardziej szczegółowo

Inżynieria Biomedyczna

Inżynieria Biomedyczna 1.Obliczyć przy jakim stężeniu kwasu octowego stopień dysocjacji osiągnie wartość 3.%, jeżeli wiadomo, że stopień dysocjacji 15.%-wego roztworu (d=1.2 g/cm 3 ) w 2. Do 1 cm 3 2% (d=1.2 g/cm 3 ) roztworu

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA WĘGLOWODORY

PRZYKŁADOWE ZADANIA WĘGLOWODORY PRZYKŁADOWE ZADANIA WĘGLOWODORY INFORMACJA DO ZADAŃ 678 680 Poniżej przedstawiono wzory półstrukturalne lub wzory uproszczone różnych węglowodorów. 1. CH 3 2. 3. CH 3 -CH 2 -CH C CH 3 CH 3 -CH-CH 2 -C

Bardziej szczegółowo

18 i 19. Substytucja nukleofilowa w halogenkach alkili

18 i 19. Substytucja nukleofilowa w halogenkach alkili 8 i 9. Substytucja nukleofilowa w halogenkach alkili Związki pojadające wiązanie C (sp 3 )-atom o większej elektroujemności od at. C elektroujemny atom sp 3 polarne wiązanie 9.. Typowe reakcje halogenków

Bardziej szczegółowo

ALKENY WĘGLOWODORY NIENASYCONE

ALKENY WĘGLOWODORY NIENASYCONE Alkeny ALKENY WĘGLOWODORY NIENASYCONE WĘGLOWODORY ALIFATYCZNE SKŁĄDAJĄ SIĘ Z ATOMÓW WĘGLA I WODORU ZAWIERAJĄ JEDNO LUB KILKA WIĄZAŃ PODWÓJNYCH WĘGIEL WĘGIEL ATOM WĘGLA WIĄZANIA PODWÓJNEGO W HYBRYDYZACJI

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy Reakcje chemiczne Literatura: L. Jones, P. Atkins Chemia ogólna. Cząsteczki, materia, reakcje. Lesław Huppenthal, Alicja Kościelecka, Zbigniew Wojtczak Chemia ogólna i analityczna dla studentów biologii.

Bardziej szczegółowo

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna Laboratorium 5 Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna Prowadzący: dr inż. Karolina Labus 1. CZĘŚĆ TEORETYCZNA Szybkość reakcji enzymatycznej zależy przede wszystkim od stężenia substratu

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony KRYTERIA EIAIA DPWIEDZI hemia Poziom rozszerzony Marzec 2019 W niniejszym schemacie oceniania zadań otwartych są prezentowane przykładowe poprawne odpowiedzi. W tego typu ch należy również uznać odpowiedzi

Bardziej szczegółowo

Beata Mendak fakultety z chemii II tura PYTANIA Z KLASY PIERWSZEJ

Beata Mendak fakultety z chemii II tura PYTANIA Z KLASY PIERWSZEJ Beata Mendak fakultety z chemii II tura Test rozwiązywany na zajęciach wymaga powtórzenia stężenia procentowego i rozpuszczalności. Podaję również pytania do naszej zaplanowanej wcześniej MEGA POWTÓRKI

Bardziej szczegółowo

Sprawdzian 2. CHEMIA. Przed próbną maturą. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 34. Imię i nazwisko ...

Sprawdzian 2. CHEMIA. Przed próbną maturą. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 34. Imię i nazwisko ... CHEMIA Przed próbną maturą Sprawdzian 2. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 34 Imię i nazwisko... Liczba punktów Procent 2 Informacja do zadań 1 i 2. Naturalny chlor występuje

Bardziej szczegółowo

SPEKTROMETRIA IRMS. (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S)

SPEKTROMETRIA IRMS. (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S) SPEKTROMETRIA IRMS (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S) R = 2 H/ 1 H; 13 C/ 12 C; 15 N/ 14 N; 18 O/ 16 O ( 17 O/ 16 O), 34 S/ 32 S Konstrukcja

Bardziej szczegółowo

Ważne pojęcia. Stopień utlenienia. Utleniacz. Reduktor. Utlenianie (dezelektronacja)

Ważne pojęcia. Stopień utlenienia. Utleniacz. Reduktor. Utlenianie (dezelektronacja) Ważne pojęcia Stopień utlenienia Utleniacz Reduktor Utlenianie (dezelektronacja) Stopień utlenienia pierwiastka w dowolnym połączeniu chemicznym jest pojęciem umownym i określa ładunek, który istniałby

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

18. Reakcje benzenu i jego pochodnych

18. Reakcje benzenu i jego pochodnych 18. Reakcje benzenu i jego pochodnych 1 18.1. Nazewnictwo mono-podstawionych benzenów nazwa podstawnika - przedrostek przed słowem benzen wiele nazw zwyczajowych (pokazane wybrane związki) pierścień benzenowy

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony KRYTERIA ENIANIA DPWIEDZI Próbna Matura z PERNEM hemia Poziom rozszerzony Listopad 018 W niniejszym schemacie oceniania zadań otwartych są prezentowane przykładowe poprawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

CHARAKTERYSTYKA KARBOKSYLANÓW

CHARAKTERYSTYKA KARBOKSYLANÓW AAKTEYSTYKA KABKSYLANÓW 1. GÓLNA AAKTEYSTYKA KWASÓW KABKSYLWY Spośród związków organicznych, które wykazują znaczną kwasowość najważniejsze są kwasy karboksylowe. Związki te zawierają w cząsteczce grupę

Bardziej szczegółowo

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I MATERIAŁY POMOCNICZE 1 GDYBY MATURA 00 BYŁA DZISIAJ OKRĘ GOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY Informacje ARKUSZ EGZAMINACYJNY I 1. Przy każdym zadaniu podano

Bardziej szczegółowo

Chemia - laboratorium

Chemia - laboratorium Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 01/1 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii

Bardziej szczegółowo

Zadanie 1. (3 pkt) a) Dokończ poniższe równanie reakcji (stosunek molowy substratów wynosi 1:1).

Zadanie 1. (3 pkt) a) Dokończ poniższe równanie reakcji (stosunek molowy substratów wynosi 1:1). Zadanie 1. (3 pkt) a) Dokończ poniższe równanie reakcji (stosunek molowy substratów wynosi 1:1). b) Podaj nazwę systematyczną związku organicznego otrzymanego w tej reakcji. c) Określ, jaką rolę w tej

Bardziej szczegółowo

14. Reakcje kwasów karboksylowych i ich pochodnych

14. Reakcje kwasów karboksylowych i ich pochodnych 14. Reakcje kwasów karboksylowych i ich pochodnych nazwa ogólna kwas karboksylowy bezwodnik kwasowy chlorek kwasowy ester amid 1 amid 2 amid 3 nitryl wzór R N R R grupa karbonylowa atom (, N lub Cl) o

Bardziej szczegółowo

1 Hydroliza soli. Hydroliza soli 1

1 Hydroliza soli. Hydroliza soli 1 Hydroliza soli 1 1 Hydroliza soli Niektóre sole, rozpuszczone w wodzie, reagują z cząsteczkami rozpuszczalnika. Reakcja ta nosi miano hydrolizy. Reakcję hydrolizy soli o wzorze BA, można schematycznie

Bardziej szczegółowo

imię i nazwisko, nazwa szkoły, miejscowość Zadania I etapu Konkursu Chemicznego Trzech Wydziałów PŁ V edycja

imię i nazwisko, nazwa szkoły, miejscowość Zadania I etapu Konkursu Chemicznego Trzech Wydziałów PŁ V edycja Zadanie 1 (2 pkt.) Zmieszano 80 cm 3 roztworu CH3COOH o stężeniu 5% wag. i gęstości 1,006 g/cm 3 oraz 70 cm 3 roztworu CH3COOK o stężeniu 0,5 mol/dm 3. Obliczyć ph powstałego roztworu. Jak zmieni się ph

Bardziej szczegółowo

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych 1. Równanie kinetyczne, szybkość reakcji, rząd i cząsteczkowość reakcji. Zmiana szybkości reakcji na skutek zmiany

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Roztwory buforowe (bufory) (opracowanie: dr Katarzyna Makyła-Juzak)

Roztwory buforowe (bufory) (opracowanie: dr Katarzyna Makyła-Juzak) Roztwory buforowe (bufory) (opracowanie: dr Katarzyna Makyła-Juzak) 1. Właściwości roztworów buforowych Dodatek nieznacznej ilości mocnego kwasu lub mocnej zasady do czystej wody powoduje stosunkowo dużą

Bardziej szczegółowo