Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna"

Transkrypt

1 Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

2 Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna zmienna niezależna Zmienna zależna jednowymiarowa oraz wiele zmiennych niezależnych Zmienna zależna wielowymiarowa oraz jedna zmienna niezależna Zmienna zależna wielowymiarowa oraz wiele zmiennych niezależnych. Postać (kształt) zależności może być : liniowy lub nieliniowy.

3 Regresja wieloraka - wielokrotna Celem regresji wielorakiej jest ilościowe ujęcie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (kryterialną, objaśnianą).

4 Przykłady. 1. Wytrzymałość betonu zależy od proporcji w jakiej zastosowano trzy podstawowe składniki. Pytanie: W jakiej proporcji stosować te składniki, by wytrzymałość była największa?

5 Wycena mieszkań powierzchnia, garaż, wiek, ogrzewanie, położenie, piętro,... Cena rynkowa

6 Udzielanie kredytu dochody, zabezpieczenie, wiek, stan cywilny, oszczędności, zatrudnienie... przyznać czy nie przyznać?

7 Porównanie długości życia mieszkańców kilku miast Dochody, Zanieczyszczenia powietrza, Zanieczyszczenia gleby, Nakłady inwestycyjne na ochronę środowiska Powierzchnia lasów Liczba szpitali Długość życia...

8 Liniowy model regresji wielokrotnej Załóżmy, że rozważamy wpływ zbioru k zmiennych X 1, X 2,..., X k, na zmienną Y. Liniowy model regresji jest określony równaniem: Y = b 0 + b 1 X 1 + b 2 X b k X k + e gdzie: b i - parametry modelu (współczynniki regresji) opisujące wpływ i-tej zmiennej e - składnik losowy

9 Modele regresji wielokrotnej Aby model był jak najbardziej wiarygodny należy wprowadzić do modelu jak największą liczbę zmiennych niezależnych. W modelu powinny się znaleźć zmienne silnie skorelowane ze zmienną zależną i jednocześnie jak najsłabiej skorelowane między sobą.

10 Oznaczenia Niech X oznacza (n * (k+1)) wymiarową macierz obserwacji dokonanych w n-elementowej próbie na k+1 zmiennych niezależnych (tzw. objaśniających ) X 1, X 2,... X k, X k+1,, przy czym X k+1 1 (jest to zmienna występująca przy wyrazie wolnym), X x x... x n x x x 1k 2k... nk x x 1k1 2k1... x n

11 y oznacza n-wymiarowy wektor kolumnowy obserwacji dokonanych w n-elementowej próbie na zmiennej zależnej (objaśnianej) Y: y y y y n

12 b oznacza (k+1) wymiarowy wektor kolumnowy parametrów zwanych współczynnikami regresji wielorakiej: b b b b k b k

13 e oznacza n-wymiarowy wektor kolumnowy losowy, którego składowymi są tzw. składniki losowe zwane też zakłóceniami losowymi: e e e e n

14 n nk n1 1 2k 2k k 1k 11 x x... x x x... x x x... x n 2 1 y... y y k1 k b b b b n e e e y = X b + e Założenie liniowości: y=xb+e

15 Zadanie regresji wielokrotnej: Na podstawie wyników próby, tj. macierzy X oraz wektora y należy oszacować wektor b parametrów tego modelu (współczynników regresji) i wariancję składnika losowego 2.

16 Regresja wieloraka Oszacowanie równania regresji na podstawie n- elementowej próby ma postać Y = b 0 + b 1 *X 1 + b 2 *X b p *X p +e czyli dla każdego t (t = 1,..., n) zachodzi równość y t b 1 xt1 b2xt2... b k x tk b x k 1 t( k1) e t

17 Parametry powyższego modelu szacuje się metodą najmniejszych kwadratów tj. tak, aby suma kwadratów zaobserwowanych odchyleń (reszt) od hiperpłaszczyzny regresji była najmniejsza. 2 j j j k kj j j 2 s e y b b x b x min

18 Korelacja cząstkowa. Współczynniki modelu b 1,..., b k nazywane są cząstkowymi współczynnikami regresji. y b b x b x e j j k kj j

19 Korelacja cząstkowa. W równaniu regresji współczynniki regresji (współczynniki b) reprezentują niezależne wkłady każdej ze zmiennych niezależnych do prognozowania zmiennej zależnej.

20 Współczynnik korelacji cząstkowej Korelacja cząstkowa jest korelacją pomiędzy daną zmienną a zmienną zależną z uwzględnieniem jej skorelowania ze wszystkimi pozostałymi zmiennymi..

21 Ujemne wartości współczynników regresji świadczą o ujemnym, a dodatnie o dodatnim, oddziaływaniu poziomu zmiennej niezależnej na zmienną zależną.

22 Interpretacja i-ty, cząstkowy współczynnik regresji opisuje o ile średnio zmieni się wartość zmiennej Y przy wzroście i-tej wartości zmiennej X o jednostkę przy ustalonych wartościach pozostałych zmiennych niezależnych.

23 Korelacja semicząsteczkowa Jest to korelacja danej zmiennej niezależnej z uwzględnieniem powiązań ze wszystkimi pozostałymi zmiennymi i oryginalną (bez uwzględnienia jej korelacji z innymi zmiennymi) zmienną zależną.

24 Współczynnik korelacji wielorakiej Współczynnik korelacji wielorakiej jest miarą współzależności między jedną ze zmiennych a pozostałymi zmiennymi traktowanymi łącznie.

25 Badanie istotności regresji wielokrotnej Hipotezę odrzucamy gdy p< alfa H 0 : b 1 b 2 b k 0 Odrzucenie hipotezy H 0 jest równoznaczne z tym, że co najmniej jeden współczynnik regresji jest różny od zera tzn. istnieje związek funkcyjny liniowy między zmienną zależną a zmiennymi niezależnymi.

26 Weryfikacja hipotez o istotności cząstkowych współczynników regresji Problem sprowadza się do zweryfikowania serii k hipotez zerowych mówiących o tym, że i-ty cząstkowy współczynnik regresji jest równy zero. Hipotezy te mogą być weryfikowane testem t-studenta

27 Istotność zmiennych W przypadku istnienia silnych współzależności między zmiennymi niezależnymi, funkcja regresji wielokrotnej jest istotna statystycznie (test F). Otrzymujemy istotną funkcję regresji ale wszystkie zmienne (analizowane oddzielnie) mogą okazać się nieistotne. W takim przypadku powinny być usunięte z modelu.

28 Predykcja na podstawie modelu regresji. Prognozowanie predykcja dla nowych wartości.

29 Weryfikacja modelu Weryfikacja modelu matematycznego polega na sprawdzeniu, czy spełnione są następujące założenia:

30 1. Założenie liniowości: y=xb+e Założenie to mówi o liniowości związku między obserwacjami w próbie na zmiennych objaśniających i na zmiennej zależnej z dokładnością do składnika losowego czyli dla każdego t (t = 1,..., n) zachodzi równość y t b 1 xt1 b2xt2... b k x tk b x k 1 t( k1) e t

31 Założenie 2. Liczba obserwacji n musi być większa od liczby oszacowanych parametrów, tj. n > k + 1. (liczba n powinna być wielokrotnie większa od liczby oszacowanych parametrów).

32 Założenie 3. Żadna ze zmiennych niezależnych nie jest kombinacją liniową innych zmiennych niezależnych czyli brak jest współliniowości (nadmiarowości).

33 Nadmiarowość

34 Tolerancja dla danej zmiennej Tolerancja równa się 1 - R 2 Im mniejsza jest tolerancja zmiennej tym bardziej nadmiarowy jest jej wkład w równanie regresji. Jeśli tolerancja = 0 - nie można obliczyć współczynników równania regresji. Jeśli tolerancja dla zmiennej spada poniżej 0,1 to wówczas taki model regresji staje się mało przydatny.

35 Wartość R 2 wartość R 2 między daną zmienną a wszystkimi pozostałymi zmiennymi niezależnymi Wskaźnik ten informuje nas, ile zmienności danej zmiennej jest wyjaśnione przez pozostałe zmienne. Im bliżej jedności, tym bardziej nadmiarowa jest zmienna.

36 Czynnik inflacji wariancji (CIW). CIW = 1/(1 - R 2 ). Jeżeli nie ma współliniowości, to CIW jest równe jedności. Jeśli współliniowość występuje, to CIW pokazuje stopień inflacji, czyli - ile razy obliczona wariancja estymatora jest większa od wartości prawdziwej (niezakłóconej współliniowością). Uważa się, że wartość CIW >10 jest świadectwem zakłócającej współliniowości.

37 Założenie 4. Składnik losowy e i ma wartość oczekiwaną równą zeru (E(e i ) = 0 dla wszystkich i = 1, 2,..., n)

38 Założenie 5. Wariancja składnika losowego (reszt e i ) jest taka sama dla wszystkich obserwacji (War(e i ) = s 2 dla wszystkich i = 1, 2,..., n) Takie założenie nosi nazwę homoscedastyczności i mówi, że czynniki ujęte w modelu mają taką samą zmienność (rozrzut) niezależnie od numeru obserwacji. W przeciwnym wypadku mówimy o heteroscedastyczności.

39 Interpretacja Założenie homoscedastyczności jest naruszone jeśli wartości reszt są bardziej zróżnicowane (rozrzucone) dla pewnych wartości przewidywanych niż dla innych lub kiedy wartości wariancji zdają się rosnąć wraz ze wzrostem wartości przewidywanej.

40 Założenie 6. Składniki losowe (reszty) są nieskorelowane czyli e i oraz e j są od siebie niezależne dla wszystkich par i oraz j, gdzie i, j = 1, 2,..., n oraz i różne od j (brak autokorelacji reszt).

41 Założenie 7. Każdy ze składników losowych (reszty) ma rozkład normalny N(0, ) tj. średniej 0 i wariancji 2.

42 Przykład W badaniach lekarskich dotyczących pewnej choroby analizowano czas pobytu w szpitalu w zależności od stężenia we krwi cholesterolu, glukozy i fibrynogenu. Wyniki pomiarów dla 20 losowo wybranych pacjentów podane są w tabeli

43 Przykład Stwierdzono, że długość życia mieszkańców dla poszczególnych województw znacznie się różni. Aby zbadać przyczyny, przeprowadzono analizę statystyczną wg danych GUS.

44 Do analizy wybrano następujące dane: Średni przyrost przeciętnego trwania życia od roku - zmienna zależna Y Przeciętny czas trwania życia w roku bazowym 1990 Średnie nakłady na środki trwałe służące ochronie środowiska + nakłady na gospodarkę wodną w przeliczeniu na 1 mieszkańca Średnie nakłady na środki trwałe służące ochronie środowiska + nakłady na gospodarkę wodną w przeliczeniu na na 1 km 2 powierzchni

45 Przyrost przeciętn ego trwania życia 1990 Nakłady w przeliczeniu na 1 mieszkańca Nakłady /1 km 2 Dolnośląskie Kujawsko-pomorskie Lubelskie Lubuskie Łódzkie Małopolskie Mazowieckie Opolskie Podkarpackie Podlaskie Pomorskie Śląskie Świętokrzyskie Warmińsko-Mazurskie Wielkopolskie Zachodniopomorskie

46 Interesuje nas równanie regresji opisujące zależność przyrostu długości życia (zmienna Y) od roku bazowego oraz wskaźnika 1 i wskaźnika 2 i oceny istotności ich oddziaływania.

47 Najniższy nakład na głowę mieszkańca ma woj.lubelskie (0,137 - przyrost życia 3.4 )i świętokrzyskie (0,137, przyrost życia 4,31) Najniższy przyrost długości życia jest w województwie łódzkim (3,35) przy nakładach Najwyższy przyrost długości życia jest w województwie opolskim (5,63) przy najwyższych nakładach Najwyższe nakłady na 1 km 2 ma woj. Śląskie - przyrost wyniósł 4.89.

48 Regresja wielokrotna Y = X* b + e Y = b 0 + b 1 *Rok b 2 * Wskaźnik 1+ b 3 * Wskaźnik 2 +e

49 8 Wykres rozrzutu Y względem 1990 długość życia wg województw.sta 4v*16c Y = *x Y :Y: r = ; p = ; r 2 =

50 8 Wykres rozrzutu Y względem Wskaźnik 1 długość życia wg województw.sta 4v*16c Y = *x Y Wskaźnik 1:Y: r = ; p = ; r 2 = Wskaźnik 1

51 8 Wykres rozrzutu Y względem Wskaźnik 2 długość życia wg województw.sta 4v*16c Y = *x Y Wskaźnik 2:Y: r = ; p = ; r 2 = Wskaźnik 2

52 Wykres rozrzutu - powierzchniowy Wykres powierzchniowy 3W Y względem Wskaźnik 1 i Wskaźnik 2 Arkusz1 4v*16c Y = Wygładzanie najmniejszych kwadratów ważone odległościami > 6 < 5.5 < 4.5 < 3.5 < 2.5 < 1.5 < 0.5

53 Wykres z punktami danych Wykres powierzchniowy 3W Y względem 1990 i Wskaźnik 1 Arkusz1 4v*16c Y = Sklejana > 6.5 < 6.1 < 5.6 < 5.1 < 4.6 < 4.1 < 3.6

54 Wykres powierzchniowy 3W Y względem 1990 i Wskaźnik 1 Arkusz1 4v*16c Y = *x *y > 5.8 < 5.6 < 5.2 < 4.8 < 4.4 < 4

55

56

57

58 Y= Rok wskaźnik wskaźnik /0.62

59 Dla Roku bazowego 1990 i wskaźnika 2 p > alfa zatem brak jest istotności parametrów dla tych zmiennych. Błąd standardowy oceny wyrazu wolnego w stosunku do jego wartości jest relatywnie duży.

60 Ujemne wartości współczynników regresji świadczą o ujemnym (rok bazowy, wskaźnik 2), a dodatnie o dodatnim, oddziaływaniu poziomu zmiennej niezależnej na zmienną zależną.

61 Współczynnik korelacji wielorakiej informuje, że zmienna zależna skorygowana jest ze wszystkimi zmiennymi niezależnymi. Współczynnik determinacji oznacza, że 35% zmienności zmiennej Y jest wyjaśnione przez model. Skorygowane R 2 stosujemy, jeśli liczba pomiarów jest niewiele większa od liczby wyznaczanych parametrów.

62 Przycisk Wykonaj analizę reszt

63 Założenie 1. Model jest liniowy względem parametrów, tzn. = b 0 + b 1 x 1i + b 2 x 2i b k x ki dla i = 1, 2,..., n. Liniowość sprawdzamy testem F, którego wyniki możemy znaleźć w oknie Regresja wieloraka

64 Weryfikacja liniowości - wykresy rozrzutu reszt Interpretacja. Jeżeli założenie jest spełnione, to reszty układają się w postaci równomiernej chmury Jeżeli zaś założenie nie jest spełnione, to na wykresie mogą się pojawić charakterystyczne układy punktów.

65 Okno - Analiza reszt - Wykr. Rozrzutu.

66 Wykres rozrzutu reszt dla zmiennej Y 1.2 Przewidywane względem wartości resztowych Zmienna zależna: Y Reszty Wart. przewidyw Prz.Ufn.

67 Wartości przewidywane względem obserwowanych 5.8 Wartości przewidywane względem obserwowanych Zmienna zależna: Y Wart. obserw Wart. przewidyw Prz.Ufn.

68 Jeśli nieliniowość jest oczywista, możemy dokonać przekształcenia zmiennych (sprowadzając do liniowości) albo zastosować techniki nieliniowe.

69 Założenie 2. Liczba obserwacji n musi być większa od liczby oszacowanych parametrów, tj. n > k + 1. n = 16, k = 4

70 Założenie 3. Żadna ze zmiennych niezależnych nie jest kombinacją liniową innych zmiennych niezależnych czyli brak jest współliniowości.

71 Statistica Wskaźniki statystyczne do wykrycia współliniowości (nadmiarowości) otrzymujemy po kliknięciu zakładki "Więcej", przycisk Nadmiarowość w oknie "Wyniki regresji"

72 Nadmiarowość

73 Tolerancja dla danej zmiennej Tolerancja równa się 1 - R 2 Im mniejsza jest tolerancja zmiennej tym bardziej nadmiarowy jest jej wkład w równanie regresji. Jeśli tolerancja = 0 - nie można obliczyć współczynników równania regresji. Jeśli tolerancja dla zmiennej spada poniżej 0,1 to wówczas taki model regresji staje się mało przydatny.

74 Wartość R 2 wartość R 2 między daną zmienną a wszystkimi pozostałymi zmiennymi niezależnymi Wskaźnik ten informuje nas, ile zmienności danej zmiennej jest wyjaśnione przez pozostałe zmienne. Im bliżej jedności, tym bardziej nadmiarowa jest zmienna.

75 Czynnik inflacji wariancji (CIW). CIW = 1/(1 - R 2 ). Jeżeli nie ma współliniowości, to CIW jest równe jedności. Jeśli współliniowość występuje, to CIW pokazuje stopień inflacji, czyli - ile razy obliczona wariancja estymatora jest większa od wartości prawdziwej (niezakłóconej współliniowością). Uważa się, że wartość CIW >10 jest świadectwem zakłócającej współliniowości.

76 Korelacja cząstkowa Korelacja cząstkowa jest korelacją pomiędzy daną zmienną a zmienną zależną z uwzględnieniem jej skorelowania ze wszystkimi pozostałymi zmiennymi.

77 Korelacja semicząsteczkowa Jest to korelacja danej zmiennej niezależnej z uwzględnieniem powiązań ze wszystkimi pozostałymi zmiennymi i oryginalną (bez uwzględnienia jej korelacji z innymi zmiennymi) zmienną zależną.

78 Analiza Korelacje wskazują, że zmienna Y nie jest skorelowana ze zmienną 1990.

79 Założenie 4. Składnik losowy e i ma wartość oczekiwaną równą zeru - można utworzyć wykres normalności reszt średnia wartość oraz mediana powinny być równe lub bliskie 0.

80 Wykres normalności reszt 2.0 Wykres normalności reszt Wartość normalna Reszty

81 Założenie 5. Wariancja składnika losowego (reszt e i ) jest taka sama dla wszystkich obserwacji - wykres rozrzutu reszt

82 Sprawdzenie, czy istnieje heteroscedastyczność Heteroscedastyczność (naruszenie założenia) Utworzenie odpowiednich wykresów rozrzutu. wykres rozrzutu reszt względem wartości przewidywanych lub rozrzutu wartości przewidywanych względem kwadratów reszt.

83 Interpretacja Założenie homoscedastyczności jest naruszone jeśli wartości reszt są bardziej zróżnicowane (rozrzucone) dla pewnych wartości przewidywanych niż dla innych lub kiedy wartości wariancji zdają się rosnąć wraz ze wzrostem wartości przewidywanej.

84 1.2 Przewidywane względem wartości resztowych Zmienna zależna: Y Reszty Wart. przewidyw Prz.Ufn.

85 Założenie 6. Badanie autokorelacji reszt. W pakiecie STATISTICA do wykrywania autokorelacji służy test Durbina i Watsona dostępny po kliknięciu przycisku

86 Założenie 7. Każdy ze składników losowych (reszty) ma rozkład normalny.

87 2.0 Wykres normalności reszt Wartość normalna Reszty

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Analiza regresji część II. Agnieszka Nowak - Brzezińska

Analiza regresji część II. Agnieszka Nowak - Brzezińska Analiza regresji część II Agnieszka Nowak - Brzezińska Niebezpieczeństwo ekstrapolacji Analitycy powinni ograniczyć predykcję i estymację, które są wykonywane za pomocą równania regresji dla wartości objaśniającej

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna 1 Laboratorium VIII: Analiza kanoniczna Spis treści Laboratorium VIII: Analiza kanoniczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 Przykład... 2 Podstawowe pojęcia... 2 Założenia analizy

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 15 13.5 12 1.5 procent uczniów 9 7.5 6 4.5 3 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 37 38 39 4 41 42 43 44 45 46 47 48 49

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Szkice rozwiązań z R:

Szkice rozwiązań z R: Szkice rozwiązań z R: Zadanie 1. Założono doświadczenie farmakologiczne. Obserwowano przyrost wagi ciała (przyrost [gram]) przy zadanych dawkach trzech preparatów (dawka.a, dawka.b, dawka.c). Obiektami

Bardziej szczegółowo

Klasówka po szkole podstawowej Historia. Edycja 2006/2007. Raport zbiorczy

Klasówka po szkole podstawowej Historia. Edycja 2006/2007. Raport zbiorczy Klasówka po szkole podstawowej Historia Edycja 2006/2007 Raport zbiorczy Opracowano w: Gdańskiej Fundacji Rozwoju im. Adama Mysiora Informacje ogólne... 3 Raport szczegółowy... 3 Tabela 1. Podział liczby

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Średnia wielkość powierzchni gruntów rolnych w gospodarstwie za rok 2006 (w hektarach) Jednostka podziału administracyjnego kraju

Średnia wielkość powierzchni gruntów rolnych w gospodarstwie za rok 2006 (w hektarach) Jednostka podziału administracyjnego kraju ROLNYCH W GOSPODARSTWIE W KRAJU ZA 2006 ROK w gospodarstwie za rok 2006 (w hektarach) Województwo dolnośląskie 14,63 Województwo kujawsko-pomorskie 14,47 Województwo lubelskie 7,15 Województwo lubuskie

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 2 18 16 14 procent uczniów 12 1 8 6 4 2 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Szymon Bargłowski, sb39345 MODEL. 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1

Szymon Bargłowski, sb39345 MODEL. 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1 Szymon Bargłowski, sb39345 MODEL 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1 2 C t = b 1 b 2 PKB t b 3 Invest t 1 b 4 G t 2 3 Invest t = d 1 d 2 C t d 3 R t 3 gdzie: G - wydatki

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu wyników

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 liczba punktów - wyniki niskie - wyniki średnie - wyniki

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań 6.11.1 1 Badanie współzależności atrybutów jakościowych w wielowymiarowych tabelach danych. 1.1 Analiza współzależności

Bardziej szczegółowo

1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1.

1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Spis treści 1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Zastosowana metodologia rangowania obiektów wielocechowych... 53 1.2.2. Potencjał innowacyjny

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry rozkładu wyników

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry rozkładu wyników

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 25 22.5 2 17.5 procent uczniów 15 12.5 1 7.5 5 2.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów

Bardziej szczegółowo

Klasówka po gimnazjum biologia. Edycja 2006\2007. Raport zbiorczy

Klasówka po gimnazjum biologia. Edycja 2006\2007. Raport zbiorczy Klasówka po gimnazjum biologia Edycja 2006\2007 Raport zbiorczy Opracowano w: Gdańskiej Fundacji Rozwoju im. Adama Mysiora Informacje ogólne... 3 Raport szczegółowy... 3 Tabela. Podział liczby uczniów

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu

Bardziej szczegółowo

Dolnośląski O/W Kujawsko-Pomorski O/W Lubelski O/W. plan IV- XII 2003 r. Wykonanie

Dolnośląski O/W Kujawsko-Pomorski O/W Lubelski O/W. plan IV- XII 2003 r. Wykonanie Dolnośląski O/W Kujawsko-Pomorski O/W Lubelski O/W 14 371 13 455,56-915,44 93,63% 11 033 10 496,64-536,36 95,14% 10 905 10 760,90-144,10 98,68% 697 576,69-120,31 82,74% 441 415,97-25,03 94,32% 622 510,30-111,70

Bardziej szczegółowo

Wyniki analizy statystycznej opartej na metodzie modelowania miękkiego

Wyniki analizy statystycznej opartej na metodzie modelowania miękkiego Wyniki analizy statystycznej opartej na metodzie modelowania miękkiego Dorota Perło Uniwersytet w Białymstoku Wydział Ekonomii i Zarządzania Plan prezentacji. Założenia metodologiczne 2. Specyfikacja modelu

Bardziej szczegółowo

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII NAZWISKO IMIĘ Nr albumu Nr zestawu Zadanie 1. Dana jest macierz Leontiefa pewnego zamkniętego trzygałęziowego układu gospodarczego: 0,64 0,3 0,3 0,6 0,88 0,. 0,4 0,8 0,85 W okresie t stosunek zuŝycia środków

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki

Bardziej szczegółowo

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych 1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu

Bardziej szczegółowo

ANALIZA RYNKU NIERUCHOMOŚCI PRZY ZASTOSOWANIU PROGRAMU GRETL

ANALIZA RYNKU NIERUCHOMOŚCI PRZY ZASTOSOWANIU PROGRAMU GRETL ANALIZA RYNKU NIERUCHOMOŚCI PRZY ZASTOSOWANIU PROGRAMU GRETL Joanna B. Waluk-Pacholska Jak przy pomocy ogólnie dostępnego oprogramowania przeprowadzić analizę rynku nieruchomości i w jaki sposób określić

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Modelowanie glikemii w procesie insulinoterapii

Modelowanie glikemii w procesie insulinoterapii Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 10 9 8 7 procent uczniów 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 - wyniki niskie -

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 10 9 8 7 procent uczniów 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 - wyniki niskie -

Bardziej szczegółowo

Sytuacja młodych na rynku pracy

Sytuacja młodych na rynku pracy Sytuacja młodych na rynku pracy Plan prezentacji Zamiany w modelu: w obrębie każdego z obszarów oraz zastosowanych wskaźników cząstkowych w metodologii obliczeń wskaźników syntetycznych w obrębie syntetycznego

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

1.1 Klasyczny Model Regresji Liniowej

1.1 Klasyczny Model Regresji Liniowej 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między

Bardziej szczegółowo

Współliniowość zmiennych objaśniających: test Walda i test Studenta w badaniu istotności zmiennych objaśniających - przykłady.

Współliniowość zmiennych objaśniających: test Walda i test Studenta w badaniu istotności zmiennych objaśniających - przykłady. Współliniowość zmiennych objaśniających: test Walda i test Studenta w badaniu istotności zmiennych objaśniających - przykłady. Przykład: Test Walda a test Studenta w badaniu istotności zmiennych objaśniających.

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że kilka średnich dla analizowanej zmiennej grupującej mają jednakowe wartości średnie.

Bardziej szczegółowo

Ekonometria. Robert Pietrzykowski.

Ekonometria. Robert Pietrzykowski. Ekonometria Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Na dziś Sprawy bieżące Prowadzący Zasady zaliczenia Konsultacje Inne 2 Sprawy ogólne czyli co nas czeka Zaliczenie

Bardziej szczegółowo

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi.

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi. ANALIZA KORELACJI Większość zjawisk w otaczającym nas świecie występuje nie samotnie a w różnorodnych związkach. Odnosi się to również do zjawisk biologiczno-medycznych. O powiązaniach między nimi mówią

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Analiza statystyczna trudności tekstu

Analiza statystyczna trudności tekstu Analiza statystyczna trudności tekstu Łukasz Dębowski ldebowsk@ipipan.waw.pl Problem badawczy Chcielibyśmy mieć wzór matematyczny,...... który dla dowolnego tekstu...... na podstawie pewnych statystyk......

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Analiza zdarzeń Event studies

Analiza zdarzeń Event studies Analiza zdarzeń Event studies Dobromił Serwa akson.sgh.waw.pl/~dserwa/ef.htm Leratura Campbell J., Lo A., MacKinlay A.C.(997) he Econometrics of Financial Markets. Princeton Universy Press, Rozdział 4.

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo