Skrypt 18. Trygonometria
|
|
- Wacław Zakrzewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Projekt Innowayjny program nauzania matematyki dla lieów ogólnokształąyh współfinansowany ze środków Unii Europejskiej w ramah Europejskiego Funduszu Społeznego Skrypt 18 Trygonometria 1. Definije i wartośi funkji sinus, osinus, tangens kątów ostryh w trójkąie prostokątnym. Definije i wartośi funkji sinus, osinus, tangens kątów ostryh w trójkąie prostokątnym wykorzystanie w zadaniah. Definije i wartośi funkji sinus, osinus, tangens kątów ostryh w trójkąie prostokątnym wykorzystanie w zadaniah z.. Wartośi funkji trygonometryznyh kątów 0, 5, Oblizanie długośi odinków w trójkąie prostokątnym wykorzystanie tabli lub kalkulatora 7. Oblizanie miary kąta ostrego gdy znana jest wartość jego funkji trygonometryznyh Opraowanie: L1 Uniwersytet SWPS ul. hodakowska 19/1, Warszawa tel , faks
2 Temat: Definije i wartośi funkji sinus, osinus, tangens kątów ostryh w trójkąie prostokątnym. Praa z wykorzystaniem apletu trygonometria Otwórz plik trygonometria01.. Zapoznaj się z definijami funkji trygonometryznyh naiskaj po kolei przyiski sin α, os α, tg α.. Przejdź do ćwizenia 1 (naiśnij Ćwizenie 1). Określaj z definiji funkje trygonometryzne zgodnie z treśią poleeń.. Przejdź do ćwizenia określaj zależność między wskazanymi wielkośiami w trójkąie. Karta pray Zadanie 1: Określ funkje sinus, osinus, tangens wskazanyh kątów ostryh trójkątów prostokątnyh. Odp: sin α a, os α, tg α Odp: sin α, os α, tg α Odp: sin α, os α, tg α Odp: str.
3 Odp: sin α s w, os α Odp: x Odp: sin α 17 8, os α Odp: Zadanie : Uzupełnij według wzoru. Odp: os β a, a b Odp: a b Odp: b a b Odp: a b str.
4 Praa z wykorzystaniem apletu trygonometria Naiśnij przyisk Zauważ, że. Poruszaj wierzhołkami trójkąta i zwróć uwagę na to, kiedy wartośi funkji trygonometryznyh sinus, osinus zy tangens kątów ostryh w trójkąie prostokątnym zmieniają się, a kiedy pozostają niezmienione (Własność 1). Karta pray Zadanie : Uzupełnij tabelę: obliz długośi odinków potrzebnyh do wyznazenia tangensa kąta α w każdym z trójkątów prostokątnyh według poniższego rysunku podaj wartośi funkji tangens kąta α we wszystkih tyh trójkątah tg α 9 tg α 1 1 tg α 1 tg α tg α tg α tg α tg α str.
5 Zadanie : Zapisz przy bokah kolejnyh trójkątów takie długośi (inne dla każdego trójkąta), aby sinus wskazanego kąta w każdym z nih był taki sam, jak sin α. Zadanie 5: Zapisz przy bokah poniższyh trójkątów takie długośi (inne dla każdego trójkąta), aby tangens wskazanego kąta w każdym z nih wynosił 1. Zadanie 6: Skreśl ten trójkąt, który ma inne kąty od pozostałyh. str. 5
6 Temat: Definije i wartośi funkji sinus, osinus, tangens kątów ostryh w trójkąie prostokątnym wykorzystanie w zadaniah. Praa z wykorzystaniem apletu trygonometria Otwórz plik trygonometria01. Przejdź do strony Zauważ, że. Poruszaj wierzhołkami trójkąta i zanim zaznazysz opję Własność spróbuj określić jakie wartośi przyjmują poszzególne funkje trygonometryzne. Kolejne własnośi odkryjesz naiskają zielone strzałki. Karta pray Zadanie 1: Spośród wymienionyh wartośi funkji trygonometryznyh skreśl te, które na pewno nie mogą być wynikami oblizeń dotyząyh kątów ostryh trójkąta prostokątnego. Dla pozostałyh wartośi narysuj trójkąty prostokątne z odpowiednimi długośiami boków. sin β 0. os β 0.8 tg β 1 sin α 1 tg α sin β 1 sin α tg α 1 os α 1.1 tg β 5 tg α 10 sin α 8 7 sin α 8 9 os α 0 Pamiętaj: długośi boków w trójkąie nie są ani ujemne, ani równe 0, a przyprostokątne w trójkąie prostokątnym są krótsze od przeiwprostokątnej. Zadanie : α i β są kątami ostrymi w trójkąie prostokątnym. Uzupełnij tabelę. a) sin α 8 7 b) sin β 1 ) os α d) os β 7 5 e) tg α 9 5 os β os α sin β sin α tg β str. 6
7 Zadanie : Na podstawie danyh na rysunku obliz wartośi wskazanyh funkji trygonometryznyh. Wyniki zaokrąglij do zęśi dziesięiotysięznyh. sin α os β tg α tg β os α sin β sin α os β Zadanie : Skorzystaj z twierdzenia Pitagorasa i obliz długość nieznanego boku trójkąta. Obliz wartośi wskazanyh funkji trygonometryznyh. Wyniki zaokrąglij do zęśi dziesięiotysięznyh. tg α sin α sin β tg α os α tg β str. 7
8 Temat: Definije i wartośi funkji sinus, osinus, tangens kątów ostryh w trójkąie prostokątnym wykorzystanie w zadaniah z.. Zadanie 1: Gdzie podział się jeden kwadraik? Powyższe trójkąty są zbudowane z tyh samyh elementów. Zgodnie ze wzorem na pole trójkąta, pola obydwu powinny być równe,5 [j ]. Tymzasem w drugim trójkąie brakuje jednej jednostki. Jak to wyjaśnisz? Zadanie : Obliz a i wiedzą, że tg α 0,5. Wyniki zaokrąglij do 0,01. Zadanie : Przekątna prostokąta ma długość. Obliz pole prostokąta wiedzą, że sinus kąta nahylenia przekątnej do dłuższego boku wynosi 0,. str. 8
9 Temat: Wartośi funkji trygonometryznyh kątów 0, 5, 60. Praa z wykorzystaniem apletu trygonometria0. 1. Otwórz plik trygonometria0.. Na pierwszej stronie znajduje się wyprowadzenie wartośi wszystkih funkji trygonometryznyh kątów 0, 5, 60. (Przehodzenie pomiędzy stroną z wartośiami funkji trygonometryznyh a następną stroną - z zadaniami - poprzez naiśnięie ramki z tematem.) Ustaw suwak na α 0. Zwróć uwagę na opis wybranyh odinków trójkąta równoboznego (wykorzystany tu jest wzór na wysokość trójkąta równoboznego o boku długośi a). Obliz sin 0. Sprawdź swoje oblizenia zaznazają pole wyboru sin 0. Postępuj podobnie dla pozostałyh wartośi funkji trygonometryznyh kątów 0, 5, 60.. Zaznaz pole wyboru Tabela tu masz zestawienie wszystkih wyprowadzonyh wartośi funkji trygonometryznyh dla kątów 0, 5, 60. ędziesz mieć do niej dostęp również w trakie rozwiązywania zadań (poprzez zaznazenie pola wyboru).. Przejdź do zadań naiśnij ramkę z tematem. Rozwiązuj kolejne zadania, a poprawność swoih rozwiązań sprawdzaj poprzez rozwinięie rozwiązania za pomoą suwaków Rozwiązanie. by rozwiązać każde z prezentowanyh zadań, zapisz najpierw zależność pomiędzy wskazanym kątem ostrym, długośią boku, którą właśnie hesz wylizyć i długośią boku danego z wykorzystaniem odpowiedniej funkji trygonometryznej. Zamień funkję danego kąta ostrego na wartość zgodnie z Tabelą. Przekształć otrzymane wyrażenie, aby oblizyć długość boku. Postępuj podobnie z drugim nieznanym bokiem trójkąta. 5. Do tej pory wszystkie oblizenia dotyzyły poszukiwania długośi boków. zy z wykorzystaniem funkji trygonometryznyh można oblizyć miarę kąta? Naiśnij ramkę z napisem Oblizanie długośi boków. Napis w rame zmieni się na Oblizanie miar kątów. Postępuj podobnie jak w przypadku zadań dotyząyh oblizania długośi boków losuj kolejne zadania, a poprawność swoih oblizeń sprawdzaj z użyiem suwaków. Pomonizo możesz poruszać wierzhołkiem trójkąta, aby dane zadania zgadzały się z kształtem trójkąta. W trakie rozwiązywania zadań korzystaj z Tabeli. str. 9
10 Temat: Oblizanie długośi odinków w trójkąie prostokątnym wykorzystanie tabli lub kalkulatora. Praa z wykorzystaniem apletu trygonometria0. 1. Otwórz plik trygonometria0.. Do rozwiązania są zadania, któryh treść po zęśi zależy od kształtu i wielkośi trójkąta. Poruszaj wierzhołkami trójkąta, aby stworzyć nową sytuaję oblizeniową i naiśnij przyisk Następny przykład.. Rozwiąż zadanie: zapisz zależność wiążąą wielkośi dane i wielkość do oblizenia; skorzystaj z tabliy wartośi funkji trygonometryznyh naiskają strzałki nawigayjne góra/dół przewiniesz tablię do strony, na której odzytasz odpowiednią wartość funkji trygonometryznej; sprawdź się poprzez naiśnięie ramki Odzytaj tablię zostaną zaznazone zerwonym kolorem nazwy kolumn, miara kąta i wartość funkji trygonometryznej; zapisz przekształenia i oblizenia.. Poprawność swoih oblizeń sprawdź używają suwaka Rozwiązanie. Przykład: W trójkąie dane są: b m, α. Obliz długość boku. W treśi zadania dany jest kąt α. Dla kąta α mamy: os α b. Ponieważ kąt α ma miarę, zapisujemy: os b i dalej: os. Odzytujemy z tabli wartośi funkji trygonometryznyh: os 0,905. Podstawiamy otrzymują: 0,905. Następnie przekształamy: 0,905 i otrzymujemy:, m. str. 10
11 Karta pray Zadanie 1: Podaj przybliżone wartośi funkji trygonometryznyh. Skorzystaj z tabli wartośi funkji trygonometryznyh. a) sin b) sin 15 ) sin 9 d) tg e) tg 8 f) tg 65 Zadanie : Podaj przybliżone wartośi funkji trygonometryznyh. Skorzystaj z tabli wartośi funkji trygonometryznyh. a) os 5 b) os 7 ) os 7 d) tg e) sin f) os 5 Zadanie : Dla danego kąta α bądź danego kąta β podaj przybliżone wartośi funkji trygonometryznyh. Skorzystaj z tabli wartośi funkji trygonometryznyh. a) α 6 sin α d) β 18 sin β g) α 6 sin α os α tg α b) α 15 os α e) β 50 os β h) β 75 sin β os β tg β ) α 15 tg α f) β 7 tg β i) α sin α os β Wskazówka: Odzytują wartośi funkji trygonometryznyh z tabli zwraaj uwagę jedynie na funkję trygonometryzną zy to jest sinus, osinus, zy tangens, oraz na miarę kąta. Nie jest istotne zy ten kąt w zadaniu nazywa się α, zy β. Na zas odzytywania wartośi funkji trygonometryznej z tabliy, kąt otrzymuje nową nazwę. Sinus i tangens odzytywany jest dla kąta α odzytaj miarę kąta z lewej strony, a osinus dla kąta β odzytaj miarę kąta z prawej strony. Za każdym razem sprawdzaj nazwy kolumn. str. 11
12 Temat: Oblizanie miary kąta ostrego gdy znana jest wartość jego funkji trygonometryznyh. Praa z wykorzystaniem apletu trygonometria0. 1. Otwórz plik trygonometria0. Przejdź do strony Oblizanie miary kąta w trójkąie poprzez naiśnięie ramki z tematem Oblizanie długośi boku trójkąta. Ukaże się aktualny temat: Oblizanie miary kąta w trójkąie.. Podobnie, jak przy poprzedniej stronie, do rozwiązania są zadania, któryh treść po zęśi zależy od kształtu i wielkośi trójkąta. Poruszaj wierzhołkami trójkąta, aby stworzyć nową sytuaję oblizeniową i naiśnij przyisk Następny przykład.. Rozwiąż zadanie: zapisz zależność wiążąą wielkośi dane i wielkość do oblizenia; podstaw dane z zadania i uprość wyrażenie stosują zaokrąglanie do 0,0001. skorzystaj z tabliy wartośi funkji trygonometryznyh naiskają strzałki nawigayjne góra/dół przewiniesz tablię do strony, na której odzytasz odpowiednią miarę kąta; sprawdź się poprzez naiśnięie ramki Odzytaj tablię zostaną zaznazone zerwonym kolorem nazwy kolumn, wartość funkji trygonometryznej i miara kąta; zapisz przekształenia i oblizenia.. Poprawność swoih oblizeń sprawdź używają suwaka Rozwiązanie. Przykład: W trójkąie dane są: b 8 m, 9 m. Obliz miarę kąta α. Zależność pomiędzy długośią boku b, długośią boku i kątem α, to: os α b. Podstawiamy dane: os α 9 8, stąd os α 0,8889. Odszukujemy w tabliy wartośi funkji trygonometryznyh w kolumnie wartośi funkji osinus lizbę najbliższą 0,8889. Odzytujemy: os 7 0,8910. Odpowiedź: α 7. str. 1
13 Karta pray Zadanie 1: Podaj przybliżoną miarę kąta ostrego, dla której funkja trygonometryzna przyjmuje daną wartość. Skorzystaj z tabli wartośi funkji trygonometryznyh. a) sin α 0,95 α d) os α 0,95 α g) sin β 0,5 β b) sin α 0, α e) os α 0, α h) tg β 1 β ) tg α 0,1 α f) tg β 0,1 β i) os β 0,5 β Wskazówka: w tabliy wartośi funkji trygonometryznyh wartośi dla kątów ostryh są przybliżone poza trzema wyjątkami: sin 0 0,5; os 60 0,5; tg 5 1. Przykład: W trójkąie dane są: a m, 8 m. Obliz miarę kąta α. Zależność pomiędzy długośią boku a, długośią boku i kątem α, to: sin α a. Podstawiamy dane: sin α 8, stąd sin α 0,5. Odzytujemy z tabliy wartośi funkji trygonometryznyh: sin α 0,5 dla α 0. Odpowiedź: α 0 Zadanie : W trójkąie dane są: a m, 8 m. Obliz miarę kąta β. str. 1
Skrypt 19. Trygonometria: Opracowanie L3
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Trygonometria: 9. Proste
Bardziej szczegółowoFUNKCJA KWADRATOWA. Poziom podstawowy
FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej
Bardziej szczegółowo8. 1. DEFINICJE FUNKCJI TRYGONOMETRYCZNYCH. Definicje funkcji trygonometrycznych kata ostrego. b- przyprostokątna przy α
8.. DEFINICJE FUNKCJI TRYGONOMETRYCZNYCH Definije funkji trygonometryznyh kt ostrego przyprostokątn nprzeiw - przyprostokątn przy - przeiwprostokątn sin - zytj: sinus os - zytj: kosinus tg - zytj: tngens
Bardziej szczegółowoDefinicje funkcji trygonometrycznych kąta ostrego
1 Definicje funkcji trygonometrycznych kąta ostrego Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej naprzeciw tego kąta do długości przeciwprostokątnej.
Bardziej szczegółowoSkrypt 12. Figury płaskie Podstawowe figury geometryczne. 7. Rozwiązywanie zadao tekstowych związanych z obliczeniem pól i obwodów czworokątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Figury płaskie Podstawowe figury geometryczne
Bardziej szczegółowoSkrypt 26. Stereometria: Opracowanie Jerzy Mil
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 26 Stereometria: 1. Przypomnienie
Bardziej szczegółowoSkrypt 32. Przygotowanie do egzaminu Trójkąty prostokątne. Opracowanie: GIM7. 1. Twierdzenie Pitagorasa i twierdzenie do niego odwrotne.
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 32 Przygotowanie do egzaminu Trójkąty prostokątne
Bardziej szczegółowoSkrypt 20. Planimetria: Opracowanie L6
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 20 Planimetria: 1. Kąty w
Bardziej szczegółowotrygonometria Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów.
Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów. Funkcje trygonometryczne dla kątów ostrych to stosunki długości odpowiednich dwóch boków trójkąta prostokątnego.
Bardziej szczegółowoSkrypt 17. Podobieństwo figur. 1. Figury podobne skala podobieństwa. Obliczanie wymiarów wielokątów powiększonych bądź pomniejszonych.
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 17 Podobieństwo figur 1. Figury podobne skala
Bardziej szczegółowoSkrypt 7. Funkcje. Opracowanie: L1
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 7 Funkcje 8. Miejsce zerowe
Bardziej szczegółowoKLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)
Bardziej szczegółowo? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
Bardziej szczegółowoSkrypt 14. Figury płaskie Okrąg wpisany i opisany na wielokącie. 7. Wielokąty foremne. Miara kąta wewnętrznego wielokąta foremnego
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 14 Figury płaskie Okrąg wpisany i opisany
Bardziej szczegółowoSkrypt 33. Powtórzenie do matury:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:
Bardziej szczegółowoProjekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.
Bardziej szczegółowoSkrypt 12. Funkcja kwadratowa:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Funkcja kwadratowa: 8.
Bardziej szczegółowoSkrypt 23. Geometria analityczna. Opracowanie L7
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.
Bardziej szczegółowoSkrypt 26. Przygotowanie do egzaminu Równania i układy równań
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 26 Przygotowanie do egzaminu Równania i układy
Bardziej szczegółowoSkrypt 24. Geometria analityczna: Opracowanie L5
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 24 Geometria analityczna:
Bardziej szczegółowoSkrypt 28. Przygotowanie do egzaminu Podstawowe figury geometryczne. 1. Przypomnienie i utrwalenie wiadomości dotyczących rodzajów i własności kątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 28 Przygotowanie do egzaminu Podstawowe figury
Bardziej szczegółowoSkrypt 16 Trójkąty prostokątne Opracowanie: GIM7
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 16 Trójkąty prostokątne 1. Twierdzenie Pitagorasa
Bardziej szczegółowoZadanie 3. (7 pkt.) Rozłożona kostka
Zadanie 1. (7 pkt.) Mniej zy więej? Z sześioma kartami (trzema dodatnimi i trzema ujemnymi) szansa Pawła na wygraną Pawła 12/30, a Piotra 18/30. Z pięioma kartami (trzema dodatnimi i dwiema ujemnymi) szansa
Bardziej szczegółowoSkrypt dla ucznia. Geometria analityczna część 3: Opracowanie L3
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Geometria analityczna
Bardziej szczegółowoMATEMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 06/07 FORMUŁA OD 05 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 07 Kluz punktowania zadań zamkniętyh Numer zadania
Bardziej szczegółowoSkrypt 16. Ciągi: Opracowanie L6
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 16 Ciągi: 1. Ciągi liczbowe.
Bardziej szczegółowoSkrypt 23. Przygotowanie do egzaminu Pierwiastki
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Przygotowanie do egzaminu Pierwiastki 1.
Bardziej szczegółowoTRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO
TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie
Bardziej szczegółowo2 5 C). Bok rombu ma długość: 8 6
Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok
Bardziej szczegółowoWykazywanie tożsamości trygonometrycznych. Scenariusz lekcji
Scenariusz lekcji 1. Informacje wstępne: Data: 28 maja 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
Bardziej szczegółowoSkrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Przygotowanie do egzaminu Okrąg wpisany
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Bardziej szczegółowoPOWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII
Zad.1 Rozwiąż trójkąt prostokątny: a) a 4, 0 b) b 8, c 1 POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII Zad. Oblicz wartość wyrażenia cos 0 cos 45 cos0 cos 45. Zad.4 Wyznacz długości przyprostokątnych trójkąta
Bardziej szczegółowoMATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi Arkusz A I Strona z 7 Wersja A Odpowiedzi Zadanie 2 3 4 5 6 7 8 9 0 2 3 Odpowiedź C D B B C C A D A B A B C Zadanie 4 5 6 7 8 9 20 2 22 23 24
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego.
Bardziej szczegółowoPlan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Bardziej szczegółowoSkrypt 29. Przygotowanie do egzaminu Koło i okrąg. Opracowanie: GIM3. 1. Obliczanie obwodów i pól kół - powtórzenie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Przygotowanie do egzaminu Koło i okrąg
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Bardziej szczegółowoSkrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna
Bardziej szczegółowoH. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania
H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku
Bardziej szczegółowoSkrypt 15. Figury płaskie Symetrie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 15 Figury płaskie Symetrie 1. Symetria względem
Bardziej szczegółowoOstatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
Bardziej szczegółowoSkrypt 7. Równania. 1. Zapisywanie związków między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 7 Równania 1. Zapisywanie związków między
Bardziej szczegółowoWielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta
Bardziej szczegółowoSkrypt 6. Funkcje. Opracowanie: L1
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 6 Funkcje 1. Pojęcie funkcji.
Bardziej szczegółowo8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.
WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM
Bardziej szczegółowow najprostszych przypadkach, np. dla trójkątów równobocznych
MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu
Bardziej szczegółowoTRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych
TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie
Bardziej szczegółowoKRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
Bardziej szczegółowoUmiejętności. Dział programowy: LICZBY CAŁKOWITE
KTLOG WYMGŃ PROGRMOWYH N POSZZEGÓLNE STOPNIE SZKOLNE W KLSIE 6 Opis osiągnięć (kategorie elu) Wiadomośi: Uzeń: zna (), rozumie () Przetwarzanie wiadomośi: Uzeń: stosuje wiadomośi w sytuajah typowyh (),
Bardziej szczegółowoKlucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do
Bardziej szczegółowoSkrypt 10. Funkcja liniowa. Opracowanie L Równanie pierwszego stopnia z dwiema niewiadomymi.
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 10 Funkcja liniowa 10. Równanie
Bardziej szczegółowoSkrypt 13. Koło i okrąg. Opracowanie: GIM3. 1. Okrąg i koło - podstawowe pojęcia (promień, średnica, cięciwa) 2. Wzajemne położenie dwóch okręgów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 13 Koło i okrąg 1. Okrąg i koło - podstawowe
Bardziej szczegółowoSkrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie
Bardziej szczegółowoPRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria
1 Pomimo, że ten dział, to typowa geometria wydawałoby się trudny dział to paradoksalnie troszkę tu odpoczniemy, jeśli chodzi o teorię. Dlaczego? Otóż jak zapewne doskonale wiesz, na maturze otrzymasz
Bardziej szczegółowoMATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej
Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Temat ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. TRYGONOMETRIA (15 h )
Bardziej szczegółowoKrzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.
Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które
Bardziej szczegółowoODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,
Bardziej szczegółowoSkrypt 8. Równania. Opracowanie: GIM6. 1. Stosunek dwóch i kilku wielkości (cz. 1) 2. Stosunek dwóch i kilku wielkości (cz. 2)
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 8 Równania 1. Stosunek dwóch i kilku wielkości
Bardziej szczegółowoKATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE W KLASIE 6
KTLOG WYMGŃ PROGRMOWYH N POSZZEGÓLNE STOPNIE SZKOLNE W KLSIE 6 Przedstawiamy, jakie umiejętnośi z danego działu powinien zdobyć uzeń, aby uzyskać poszzególne stopnie. Na oenę dopuszzająy uzeń powinien
Bardziej szczegółowoAgnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
Bardziej szczegółowoSkrypt 20. Bryły: 24. Obliczanie pól powierzchni walców w sytuacjach praktycznych. 26. Zastosowanie tw. Pitagorasa do obliczania objętości walców
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 20 Bryły: 21. Przykłady brył obrotowych 22.
Bardziej szczegółowoRównania i nierówności trygonometryczne
Równania i nierówności trygonometryczne Piotr Rzonsowski Zadanie 1. Obliczyć równania: Zadania obowiązkowe a) cos x = 1, b) tg x =, c) cos( x + π ) =, d) sin x = 1. Wskazówka: (a) Oblicz cos y = 1 a następnie
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Bardziej szczegółowoZagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f (x) = ax Przesunięcie wykresu funkcji f(x) = ax o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
Bardziej szczegółowoSkrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 18 Bryły 1. Prostopadłościan i sześcian rozpoznawanie,
Bardziej szczegółowoROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
Bardziej szczegółowozestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut
KOD UCZNIA MATEMATYKA 5 LUTY 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
Bardziej szczegółowoTemat lekcji: Utrwalenie wiadomości dotyczących rozwiązywania równań kwadratowych.
-- S C E N A R I U S Z L E K C J I Przedmiot: Matematyka Klasa: (poziom podstawowy Imię i azwisko auzyiela: Aleksadra Trzepaz Temat lekji: Utrwaleie wiadomośi dotyząyh rozwiązywaia rówań kwadratowyh. Cele
Bardziej szczegółowoTemat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14
I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu
Bardziej szczegółowoKąty, trójkąty i czworokąty.
Kąty, trójkąty i czworokąty. str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Do kartonu wstawiono 3 garnki (zobacz rysunek), których dna mają promienie:13 cm, 15 cm i 11 cm. Podaj długość
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Bardziej szczegółowoTwierdzenie sinusów i cosinusów
Twierdzenie sinusów i osinusów Aldon Dutkiewiz Anet Sikorsk-Nowk Teori Twierdzenie 1 Twierdzenie sinusów (twierdzenie Snellius) W dowolnym trójkąie stosunek długośi dowolnego boku do sinus kąt leżąego
Bardziej szczegółowoPRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
Bardziej szczegółowoDział I FUNKCJE TRYGONOMETRYCZNE
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:
Bardziej szczegółowoMATURA Przygotowanie do matury z matematyki
MATURA 01 Przygotowanie do matury z matematyki Część VI: Trygonometria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,
Bardziej szczegółowoPoziom wymagań. Dział programowy: DZIAŁANIA NA LICZBACH NATURALNYCH
Kryteria oeniania z matematyki Zakres wymagań na poszzególne oeny szkolne dla klas IV V do programu nauzania Matematyka wokół nas nr KOS 5002 02/08 WYMGNI PROGRMOWE N POSZZEGÓLNE STOPNIE SZKOLNE KLS 4
Bardziej szczegółowoPrzykłady zadań do standardów.
Przykłady zadań do standardów 1 Wykorzystanie i tworzenie informacji 1 Oblicz wartośd wyrażenia: log 5 log8 log Odp: 1 1 3 5 8 Wyrażenie 5 1 0,5 : 3 zapisz w postaci p, gdzie p jest liczbą całkowitą Odp:
Bardziej szczegółowoPraca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej
Bardziej szczegółowoFunkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako:
1. Trygonometria 1.1Wprowadzenie Jednym z podstawowych działów matematyki który wykorzystywany jest w rozwiązywaniu problemów technicznych jest trygonometria. W szkole średniej wprowadzone zostały podstawowe
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja
Bardziej szczegółowoPRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
Bardziej szczegółowoZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
Bardziej szczegółowoMATURA PRÓBNA PODSTAWOWA GEOMETRIA Z TRYGONOMETRIA
www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI MTUR PRÓN POSTWOW GEOMETRI Z TRYGONOMETRI ZNIE 1 (1 PKT) W trójkacie prostokatnym naprzeciw kata ostrego α leży przyprostokatna długości 3 cm.
Bardziej szczegółowoI. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
Bardziej szczegółowoSkrypt 9. Układy równań. 1. Zapisywanie związków między nieznanymi wielkościami za pomocą układu dwóch równań
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 9 Układy równań 1. Zapisywanie związków między
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )
Bardziej szczegółowoZagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
Bardziej szczegółowoKONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 12 marca 2009 r.
KOD Nr zad. 1 2 3 4 5 6 7 8 9 10 11 12 Razem Max liczba pkt. 3 3 3 3 3 3 3 3 4 3 3 6 40 Liczba pkt. Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 12 marca 2009 r. Przeczytaj uważnie
Bardziej szczegółowo1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
Bardziej szczegółowoWYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje
Bardziej szczegółowoARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY
Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2012 Instrukcja dla zdającego 1. Sprawdź, czy arkusz ćwiczeniowy zawiera 28 stron (zadania 1 32). 2. Odpowiedzi
Bardziej szczegółowo