Wydział Mechaniczno-Energetyczny Kierunek ENERGETYKA. Zbigniew Modlioski Wrocław 2011

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wydział Mechaniczno-Energetyczny Kierunek ENERGETYKA. Zbigniew Modlioski Wrocław 2011"

Transkrypt

1 Wydział Mechaniczno-Energetyczny Kierunek ENERGETYKA Zbigniew Modlioski Wrocław

2 Zbigniew Modlioski, dr inż. Zakład Kotłów i Turbin pok. 305, A-4 tel

3 1. GOSPODARKA ENERGETYCZNA W GMINIE. Tworzenie gospodarki energetycznej, wdrażanie gospodarki energetycznej, gospodarka energetyczna w praktyce, outsourcing w gospodarce energetycznej, oszczędzanie w oświetleniu, oszczędzanie w napędach, oszczędzanie w wentylacji, oszczędzanie w klimatyzacji i chłodnictwie, oszczędzanie w ogrzewaniu, Firmy typu esco 2. GLOBALNE I SEKTOROWE WSKAŹNIKI EFEKTYWNOŚCI ENERGETYCZNEJ. Projekt Inteligentna Energia dla Europy, rozwój gospodarczy PKB, zużycie i ceny energii, Wskaźniki makroekonomiczne, przemysł, gospodarstwa domowe, transport, ciepłownie i elektrociepłownie, wskaźniki ODEX i oszczędności energii, Polska a kraje UE 3. USTAWA O EFEKTYWNOŚCI ENERGETYCZNEJ. Źródła ustawy, ustawa o efektywności energetycznej, krajowy cel w zakresie oszczędnego gospodarowania energią, zadania jednostek sektora publicznego, zasady uzyskania i umorzenia świadectwa efektywności energetycznej, rodzaje przedsięwzięć służące poprawie efektywności energetycznej, prawa majątkowe, zasady sporządzania audytu efektywności energetycznej, zasady uzyskania uprawnieo audytora efektywności energetycznej, zmiany w prawie budowlanym 4. CHARAKTERYSTYKI PROCESÓW ENERGETYCZNYCH. Określanie charakterystyk procesów energetycznych, zużycie energii od produkcji, zużycie energii od czasu, kontrola zużycia energii, metoda Integracji Procesu, wykresy uporządkowane 3

4 5. ZARZĄDZANIE ENERGIĄ W PRZEDSIĘBIORSTWIE. Auto-audyt - procedura postępowania, racjonalizacja użytkowania energii, ogrzewanie pomieszczeo, wentylacja, izolacje cieplne, instalacje pary, sprężonego powietrza, kotły parowe i wodne, prawidłowe spalanie, stan paleniska, odzysk ciepła 6. ANALIZA EGZERGETYCZNA PROCESÓW CIEPLNYCH. Egzergia, straty egzergii, termoekonomia, reguły zmniejszania niedoskonałości termodynamicznej, bilans energii i egzergii w elektrowni parowej 7. ZAAWANSOWANE METODY OBLICZENIOWE W ENERGETYCE. Modelowanie fizyczne, modelowanie matematyczne, kategorie modelowania matematycznego, symulatory niestacjonarne, symulator stacjonarny bloku, symulator stacjonarny bloku, diagnostyka bloku (kotła), zanieczyszczenie pow. kotła 8. NUMERYCZNE TABLICE WODY I PARY WODNEJ. Wprowadzenie, tablice wody i pary do mathcada i excela, tablice wody i pary omówienie, funkcje dla pary mokrej, instalacja tablic 9. ARKUSZE KALKULACYJNE W ENERGETYCE. Arkusz kalkulacyjny czy pakiet obliczeniowy, MathCad cechy, funkcje, Excel, programowanie w VBA, przykład aplikacji, analiza pomiarów, Excel przykład aplikacji 10. UZGADNIANIE BILANSÓW SUBSTANCJI I ENERGII. Nadmiar informacji, nadmiar równao, uogólniona metoda uzgadniania, algorytm, przykład, formułowanie równao bilansowych, wstępne oszacowanie niewiadomej i niedokładności, poszukiwanie poprawek na pomiary i obliczenia, poprawione pomiary i obliczenia. 4

5 12. OBLICZANIE OBIEGÓW CIEPLNYCH. Elektrownie kondensacyjne, podstawowe zależności, moc wewnętrzna turbiny, rozprężanie, straty w rurociągach, praca pompy wody zasilającej, praca pompy wody zasilającej w obiegu Rankine a, przegrzew pary, sprawności, wskaźniki, elektrociepłownia z turbiną przeciwprężną 13. OBLICZANIE UKŁADÓW CIEPLNYCH W ARKUSZACH KALKULACYJNYCH, Proste obiegi cieplne (Excel - Solver), proste obiegi cieplne, mała elektrociepłownia schemat, mała elektrociepłownia algorytm obliczeń, blok kondensacyjny algorytm, wymienniki ciepła 14. SKOJARZONA GOSPODARKA CIEPLNO-ELEKTRYCZNA. Wsparcie kogeneracji, realizacja wsparcia kogeneracji, oszczędność energii pierwotnej, obowiązek zakupu energii elektrycznej wytwarzanej w skojarzeniu, straty i potrzeby własne elektrociepłowni, jednostkowy koszt produkcji, koszty eksploatacji elektrociepłowni, podział kosztów między produkcję ciepła i elektryczności, systemy ciepłownicze 15. EFEKTYWNOŚĆ ENERGETYCZNA W BUDOWNICTWIE. Prawo krajowe dotyczące efektywności energetycznej, certyfikat energetyczny, audyt i certyfikat energetyczny, straty ciepła w budynku, straty ciepła przez przegrody budowlane 5

6 LITERATURA PODSTAWOWA 1. J.Szargut, A.Ziębik, Podstawy energetyki cieplnej, WN PWN, Warszawa, A.Ziębik, J.Szargut, Podstawy gospodarki energetycznej, Wydawnictwo Politechniki Śląskiej, Gliwice, J.Marecki, Gospodarka skojarzona cieplno-ektryczna, WNT, Warszawa, R.S.Janiczek, Eksploatacja elektrowni parowych, WNT, Warszawa, 1997 LITERATURA UZUPEŁNIAJĄCA 1. Wayne C. Turner, Energy Management Handbook 5th ed., The Fairmont Press, Inc., Barney Capehart, PhD, C.E.M, Basics of Energy Management, Online Seminar, 3. Combined-Cycle Gas & Steam Turbine Power Plants. Kehlhofer, R..ISBN

7 1.1. Definicje 1.2. Gospodarka energetyczna w gminie lub instytucji 1.3. Tworzenie gospodarki energetycznej 1.4. Tworzenie gospodarki energetycznej c.d Tworzenie gospodarki energetycznej c.d Wdrażanie gospodarki energetycznej 1.7. Gospodarka energetyczna w praktyce 1.8. Outsourcing w gospodarce energetycznej 1.9. Oszczędzanie w oświetleniu Oszczędzanie w napędach Oszczędzanie w wentylacji Oszczędzanie w klimatyzacji i chłodnictwie Oszczędzanie w ogrzewaniu Firmy typu ESCO 7

8 GOSPODARKA ENERGETYCZNA - działania związane z redukcją kosztów energii oraz wzrostem sprawności jej wykorzystania. GOSPODARKA ENERGETYCZNA (klasycznie) obejmuje : - przygotowanie i wdrożenie systemu pomiarów i kontroli, - interpretację wyników pomiarowych i kontroli (diagnostyka), - zaplanowanie działao, - wdrażanie odpowiednich usprawnieo technicznych. GOSPODARKA ENERGETYCZNA w skali: budynku, zakładu przemysłowego, gminy, województwa, kraju, UE Gospodarka energetyczna - działanie cykliczne 8

9 Model organizacyjny gospodarki energetycznej w gminie lub instytucji Lokalne warunki (różna wielkość samorządu i instytucji państwowych) sprawiają, że organizacja gospodarki energetycznej może być w gminach różna. Grupa Koordynująca Zaleca się utworzenie takiej grupy. Powinni to być członkowie różnych działów i instytucji czuwający nad realizacją działań w gospodarce en. Samorząd Miejski Rada Gminy Instytucja Grupa Koordynująca: Kierownik ds. Energii - tworzenie strategii energetycznej dla gminy (zmienna podaż, ceny); - zarządzanie bieżącymi potrzebami energetycznymi; - kierownik projektu, zarządzanie zmianami; - odpowiedzalny za realizację budżetu dotyczącego energii; - upowszechnianie informacji dotyczące gospodarki energetycznej; - kontrola nad sposobem zużycia energii; - ekonomiczny zakup energii; - monitorowanie wyników energetycznych, porównywanie z latami poprzednimi oraz innymi gminami (instytucjami); - rozpowszechnianie informacji wśród kierownictwa i pracowników Burmistrz Dyrektor Techniczny Właściciele budynków pomocnik Kierownik ds. Energii pomocnik Rys.1. Jeden z możliwych sposobów organizacji gospodarki energetycznej Korzystano z Zrównoważona Gospodarka Energetyczna w Gminach, EIE/05/155/SI

10 Zdobycie ogólnego obrazu zużycia energii w budynkach, które mają zostać poddane zmianom. Określenie obszarów, w których ma miejsce największe zużycie energii. Gdzie można najszybciej uzyskać oszczędności. Zebranie jak największej ilości danych: statystyki dotyczące zużycia energii sposób olicznikowania i taryfy dla energii informacje na temat stanu budynków. 10

11 Statystyki dotyczące zużycia energii Minimum danych: całkowite zużycie energii przez obiekt (w kwh lub MWh) całkowite zużycie energii na potrzeby grzewcze i ciepłą wodę z rozróżnieniem na źródło energii: miejska sieć ciepłownicza- MWh, GJ, Gcal; gaz ziemny- m3, olej opałowy- m3 węgiel - tony, elektryczność- kwh Identyfikacja budynków liczba budynków sposób użytkowania powierzchnia użytkowa powierzchnia grzewcza rodzaj ogrzewania ilość kondygnacji rok budowy 11

12 Identyfikacja liczników Należy określić lokalizację wszystkich liczników. Należy określić budynki i rodzaj działalności objętej każdym licznikiem. Wszystkie informacje na temat budynków i liczników powinny być zbierane przez instytucje w specjalnie stworzonym w tym celu programie komputerowym. Inne Wyszczególnić taryfy według których rozliczani są użytkownicy energii. Niektóre taryfy są podzielone na dwie lub trzy grupy, w których zużycie jest rozliczane w różny sposób w zależności od pory dnia. Ważne jest również uwzględnienie godzin otwarcia instytucji, czyli rzeczywistego czasu użytkowania budynku. Jest to szczególnie ważne w przypadku porównywania zużycia energii w różnych instytucjach prowadzących podobną działalność. 12

13 Wdrażanie nowej gospodarki energetycznej można rozpocząć w dowolnym momencie roku. Rezultaty identyfikacji obszarów pozwalają określić gdzie należy jak najszybciej skoncentrować działania. Przygotowania wstępne. - Dane zebrane w fazie identyfikacji dotyczące zużycia energii i wydatków na ten cel mogą być przyjęte jako dane bazowe (odniesienia). Dane bazowe muszą być aktualne. Powinny one być uaktualniane, aby umożliwić analizę zmian w wielkości zużycia energii. Dane bazowe stanowią ważny zestaw założeń dla kontroli gospodarki energetycznej. Dane te będą wykorzystane do przygotowania budżetu. - Każdy rodzaj energii składający się na gospodarkę energetyczną powinien podlegać pomiarom. - Kluczem do prawidłowego wdrożenia i funkcjonowania nowej gospodarki energetycznej są dokładne odczyty i zapis zużycia energii (liczniki). - Należy przygotować wymianę i obróbkę danych dotyczących zużycia energii między kierownikiem ds. energii, jego współpracownikami a organami decyzyjnymi. Zaleca się przystosowanie systemów komputerowych do gromadzenia danych, opracowywania budżetów i analiz. 13

14 Przyjąć comiesięczny lub cotygodniowy tryb pomiarów zużycia energii. Pomiarom zużycia energii powinna towarzyszyć bieżąca analiza na dwóch poziomach: instytucjonalnym ogólnym (całej gminy lub instytucji państwowej) Należy wyznaczyć limity zużycia energii na każdym poziomie. Analiza zużycia energii. 14

15 Istnieją firmy, które proponują szereg rozwiązań z zakresu outsourcingu w dziedzinie zarządzania energią. Zapewniają np. wdrożenie inwestycji opartej na partnerstwie, które pozwalają Klientom na dokonywanie oszczędności bez konieczności angażowania środków własnych. Outsourcing usług w dziedzinie energetyki ma zastosowanie dla takich obiektów jak: - Budynki biurowe, - Centra handlowe, - Centra logistyczne, - Hotele, - Osiedla, - Samorządy, - Sieci handlowe, - Stacje benzynowe, - Super i Hipermarkety, - Zakłady energetyczne, - Zakłady produkcyjne. 15

16 Lampy LED do oświetlenia zewnętrznego znaczne oszczędności w zużyciu energii elektrycznej (do 70%) przewidywana trwałość urządzenia określona na ponad godzin (sodowa h, rtęciowa h) redukcja kosztów użytkowania lamp, znikomy spadek strumienia świetlnego wraz z upływem czasu, natężenie oświetlenia przyjazne dla oka ludzkiego, brak emisji szkodliwego promieniowania UV, brak efektu stroboskopowego, bezgłośna praca w każdych warunkach, specjalny system chłodzenia (parujący gaz techniczny), soczewki Urządzenie elektroenergetyczne "LEC" (Light Energy Controller) do lamp wyładowczych (fluorescencyjnych, sodowych, metalohalogenkowych itp.). Poziom uzyskiwanych oszczędności waha się pomiędzy 20%-30%. Oszczędności wynikają z kontrolowanej redukcji napięcia zasilającego. 16

17 Kontroler Pracy Silnika - optymalizuje pracę silników elektrycznych nie w pełni obciążonych lub pracujących przy zmiennym obciążeniu, np. w wentylacji, schodach ruchomych, przenośnikach, mieszarkach, pompach. Łączący cechy układu miękkiego rozruchu, korektora współczynnika mocy i układu oszczędnościowego. zmniejszenie prądu zasilającego o 20% 50% zmniejszenie poboru mocy o 3% 20%, w zależności od obciążenia mechanicznego silnika zmniejszenie strat na przesyle energii o 30% 70% poprawę współczynnika mocy o 15% 60% 17

18 oszczędzanie w wentylacji kuchennej System dopasowuje działanie urządzenia do rzeczywistego zapotrzebowania oraz wydłużają ich żywotność dzięki zmniejszeniu obciążeń, którymi są poddawane. Użycie w systemie specjalistycznych czujników i procesorów gwarantuje precyzyjną kontrolę wywiewanego i nawiewanego powietrza, w zależności od zapotrzebowania i tym samym generowanie oszczędności. Zwrot z inwestycji w terminie do 3 lat. Głównymi odbiorcami tego rozwiązania są sieci supermarketów, hotele i restauracje. układy wentylacyjne oparte o silniki indukcyjne. Silnik asynchroniczny (indukcyjny) Wykorzystaniu zapasu mocy w silnikach wentylatorów. Większość instalacji wentylacyjnych została zaprojektowana z zapasem mocy (wentylatory nawiewne około 20%). Oszczędności są możliwe, jeżeli dopasujemy wydajność silnika do faktycznego zapotrzebowania na powietrze wentylujące. Nawet minimalne ograniczenie prędkości obrotowej silników pozwala na oszczędzenie znacznej ilości energii. Dla przykładu przy ograniczeniu prędkości zaledwie o 20%, pobierana moc spada aż o połowę. Dodatkowo układ może pozwalać na sterowanie adaptacyjne przepływem powietrza, dopasowując automatycznie działanie układu wentylacyjnego do warunków. Ta funkcja pozwala na dodatkowe oszczędności. 18

19 Technologia Smartcool obniżenie zużycia energii elektrycznej oraz zmniejszenie wielkości pobieranej mocy przez sprężarki w układach HVAC+R przy zachowaniu stałych parametrów chłodzenia. Poprzez aktywną optymalizację pracy sprężarki technologia Smartcool obniża zużycie energii elektrycznej o 10-25%. Oszczędności są generowane poprzez jedną z dwóch metod optymalizacji: Optymalizacja cykli pracy Technologia opiera się na dynamicznej regulacji długości każdego cyklu chłodzenia zależnie od obciążenia. Pozwala to pracować kompresorowi częściej w najbardziej efektywnym zakresie ciśnienia ssawnego. To rozwiązanie jest powszechnie stosowane w układach klimatyzacji, chłodzenia oraz pompach ciepła na całym świecie. Modulacja obciążenia Technologia Smartcool wykorzystuje oferowaną przez producentów chillerów możliwość zdalnej regulacji nastaw w celu najlepszego dopasowania do bieżącego obciążenia podczas cyklu chłodzenia. To rozwiązanie jest powszechnie stosowane w wielu chillerach 19

20 Około 1/3 całej energii zużywanej w Polsce jest pochłaniana na ogrzewanie gospodarstw domowych, hal produkcyjnych, sklepów czy centrów handlowych. Blisko 70% energii w przeciętnym gospodarstwie domowym przeznaczana jest właśnie na ogrzewanie. System wentylatorów umożliwiający cyrkulację powietrza i sprowadzenie mas ciepłego powietrza na dół. Umieszczony pod sufitem wysokich pomieszczeń daje możliwość generowania oszczędności sięgających 30% zużycia energii grzewczej. 20

21 ESCO - Energy Service Companies (firmy usług energetycznych), oferujące kompleksowe usługi eksperckie w zakresie energetyki gwarantujące potencjalnym klientom oszczędności energii i zmniejszenie ponoszonych z tego tytułu kosztów. TPF - Third Party Financing (finansowanie przez trzecią stronę), SPA - Shared Profits Arrangement (zasada dzielenia się oszczędnościami). Czy firmy typu ESCO mają dużą rolę do odegrania w finansowaniu działań z zakresu poprawy efektywności energetycznej? Umowa ESCO w ciepłownictwie. 21

22 2.1. Projekt Inteligentna Energia dla Europy 2.2. Rozwój gospodarczy PKB 2.3. Zużycie i ceny energii 2.4. Zużycie i ceny energii c.d Zużycie i ceny energii c.d Wskaźniki makroekonomiczne 2.7. Wskaźniki makroekonomiczne c.d Przemysł 2.9. Przemysł c.d Przemysł c.d Przemysł c.d Gospodarstwa domowe Gospodarstwa domowe c.d Transport Ciepłownie i elektrociepłownie Wskaźniki ODEX i oszczędności energii Polska a kraje UE Polska a kraje UE c.d Polska a kraje UE c.d Polska a kraje UE c.d Zakończenie 2.22 Aplikacje Google

23 Monitorowanie krajowych i unijnych celów w zakresie efektywności energetycznej (Monitoring of European Union and national energy efficiency targets) Główny Urząd Statystyczny oraz Krajowa Agencja Poszanowania Energii Baza danych ODYSSEE2 - dane statystyczne i wartości wskaźników efektywności energetycznej Baza danych MURE3 - informacje dotyczące działań na rzecz poprawy efektywności energetycznej Literatura: 1. Efektywność wykorzystania energii w latach , GUS, Warszawa

24 Rys. 1. Dynamika podstawowych wskaźników makroekonomicznych (1990=100). Źródło [1]. Rys. 2. Zmiany PKB, wartości dodanej w głównych sektorach gospodarki narodowej i spożycia indywidualnego. Źródło [1]. Tempo wzrostu PKB w latach %/rok PKB - wartość dóbr i usług PKB = konsumpcja + inwestycje + wydatki rządowe + eksport - import + zmiana stanu zapasów. PKB = wartość dodana brutto + podatki od produktów dotacje do produktów produkt narodowy brutto -? 24

25 Spadek zużycia energii ( ) : - programy modernizacyjne, - restrukturyzacja gospodarki, - urynkowienie cen energii. Korekta klimatyczna - stopniodni Rys. 3. Zużycie energii pierwotnej i finalne zużycie energii. Źródło [1]. Rys. 4. Struktura finalnego zużycia energii w Polsce wg nośników. Źródło [1]. 25

26 Rys. 5. Struktura finalnego zużycia energii w Polsce wg sektorów. Źródło [1]. Rys. 6. Zmiany cen oleju napędowego i benzyny. Źródło [1]. podwyżki akcyzy - koniec lat 90-tych 26

27 Rys. 7. Zmiany cen energii elektrycznej dla gospodarstw domowych i przemysłu. Źródło [1]. początek lat 90-tych likwidacja dotacji do cen energii elektrycznej uwolnienie cen energii elektrycznej dla odbiorców przemysłowych Rys. 8. Zmiany cen gazu dla gospodarstw domowych i przemysłu. Źródło [1]. 27

28 Rys. 9. Zmiany wskaźnika energochłonności PKB. Źródło [1]. Spadek energochłonności wykorzystanie tzw. prostych rezerw? Rys. 10. Relacja energochłonności finalnej PKB do pierwotnej. Źródło [1]. 28

29 Rys. 11. Zmiany wskaźnika energochłonności finalnej PKB. Źródło [1]. 29

30 Rys. 12. Zużycie finalne energii w przemyśle wg nośników. Źródło [1]. 30

31 Rys. 13. Struktura działowa finalnego zużycia energii w przemyśle przetwórczym. Źródło [1]. Rys. 14. Zmiany wskaźnika energochłonności w energochłonnych gałęziach przemysłu. Źródło [1]. 31

32 Rys. 15. Zmiany wskaźnika energochłonności w nisko energochłonnych gałęziach przemysłu. Źródło [1]. Rys. 16. Zmiany energochłonności przemysłu przetwórczego rola zmian strukturalnych. Źródło [1]. 32

33 Rys. 17. Efekt zmian strukturalnych wpływ poszczególnych branż w różnych okresach. Źródło [1]. cement zlikwidowano o energochłonną technologię produkcji cementu metodą mokrą, stal - opóźnienie w procesach prywatyzacji i wdrażaniu nowoczesnych technologii, papier szybka prywatyzacja Rys. 18. Zmiany wskaźników energochłonności produkcji wybranych wyrobów przemysłowych. Źródło [1]. 33

34 Rys. 19. Struktura zużycia energii w gospodarstwach omowych według kierunków użytkowania. Źródło [1]. Udział zużycia energii w gospodarstwach domowych w finalnym zużyciu energii wyniósł 31% w 2009 r Rys. 20. Zmiany wskaźnika zużycia energii w gospodarstwach domowych w przeliczeniu na 1 mieszkanie. Źródło [1]. 34

35 Rys. 21. Zużycie energii w gospodarstwach domowych na m 2. Źródło [1]. wzrost cen (początek lat 90) Rys. 22. Zmiany cen i wskaźnika zużycia energii elektrycznej w gospodarstwach domowych w przeliczeniu na 1 mieszkanie. Źródło [1]. 35

36 95% - transport drogowy, 2% - kolejowy, 3% - lotniczy. Rys. 23. Przewozy i zużycie energii w transporcie Samochód ekwiwalentny - umowna miara Liczba samochodów ekwiwalentnych : Se = 0,15*M+So+4*Sc+15*A, gdzie: M liczba motocykli, So liczba samochodów osobowych, Sc liczba samochodów ciężarowych, A liczba autobusów. Współczynniki są szacunkowym rocznym zużyciem paliw przez dany typ. Rys. 24. Zużycie paliw przez samochód ekwiwalentny 36

37 Ciepłownie produkujące ciepło sieciowe oraz elektrociepłownie produkujące energię elektryczną i ciepło w skojarzeniu. Rys. 27. Zmiany sprawności ciepłowni i elektrociepłowni. Źródło [1]. 37

38 Rys. 28. Wskaźnik ODEX. Źródło [1]. ODEX - zagregowany wskaźnik efektywności energetycznej. Wskaźnik ODEX pokazuje postęp w stosunku do roku bazowego. W przemyśle, na przykład, ogólny efekt zużycia jednostkowego zostanie otrzymany poprzez agregację efektów zużycia jednostkowego energii w poszczególnych działach. ODEX jest obliczony na każdy rok jako iloraz rzeczywistego zużycia energii Et i teoretycznego zużycia energii bez brania pod uwagę efektu zużycia jednostkowego (tzn. bez oszczędności energii uzyskanej poprzez zmniejszenie jednostkowego zużycia energii w wyniku działań na rzecz poprawy efektywności energetycznej procesu produkcji danego wyrobu). Jeśli wskaźnik efektywności energetycznej wyniósł 85 w 2000 r. to oznacza to poprawę efektywności energetycznej o 15% w porównaniu do technologii energetycznych i praktyk stosowanych w 1990 r. 38

39 Rys. 29. Skumulowane oszczędności energii. Źródło [1]. - o ile byłoby wyższe zużycie energii w danym roku, gdyby nie wprowadzono usprawnień z zakresu efektywności energetycznej po roku 2000, - w 2009 r. 18,5 Mtoe, czyli ok. 32% rocznego finalnego zużycia energii w Polsce. 39

40 Rys. 30. Energochłonność pierwotna PKB (euro05, ppp) Rys. 31. Energochłonność finalna PKB (euro05, ppp) 40

41 Rys. 32. Energochłonność finalna przemysłu przetwórczego w średniej strukturze europejskiej (euro05, ppp). Źródło [1]. Rys. 33. Zużycie energii przez samochód ekwiwalentny. Źródło [1]. 41

42 Rys. 34. Zużycie energii na mieszkanie w średnim klimacie europejskim. Źródło [1]. Rys. 35. Zużycie energii na 1 zatrudnionego w sektorze usług z korektą klimatyczną. Źródło [1]. 42

43 jeden z największych w Europie postęp w zakresie efektywnego wykorzystania energii, większość usprawnień wynikała z prywatyzacji przedsiębiorstw państwowych, rządowe programy wsparcia efektywnego wykorzystania energii - Fundusz Termomodernizacyjny dystans Polski do średniej europejskiej w zakresie najważniejszych wskaźników efektywności energetycznej obniżył się do kilkunastu procent, jednakże w stosunku do najefektywniejszych gospodarek ciągle pozostaje znaczący. oszczędności energii powinny być liczone jako bezwzględne zmniejszenie zużycia energii w wyniku działań organizacyjnych jak i osiągnięte w wyniku realizacji określonych przedsięwzięć inwestycyjnych lub modernizacyjnych. skróty: kgoe kilogram oleju ekwiwalentnego toe tona oleju ekwiwalentnego euro00 wartość euro wyrażona w kursie rynkowym w roku 2000 euro05ppp euro wyrażona w kursie rynkowym w roku 2005 z uwzględnieniem wartości siły nabywczej waluty kwh kilowatogodzina 43

44 Google public data explorer 800,000 petabytes = 800,000,000 terabytes = 800,000,000,000 gigabytes - narzędzie pozwalające tworzyć wykresy oparte na dostępnych publicznie danych statystycznych, - zbiór wizualizacji danych, - wyświetlanie dynamiczne, - Bank Światowy, Organizacja Współpracy Gospodarczej i Rozwoju, -

45 3.1. Źródła ustawy 3.2. Ustawa o efektywności energetycznej Krajowy cel w zakresie oszczędnego gospodarowania energią 3.4. Zadania jednostek sektora publicznego 3.5. Zasady uzyskania i umorzenia świadectwa efektywności energetycznej 3.6. Zasady uzyskania i umorzenia świadectwa efektywności energetycznej c.d Zasady uzyskania i umorzenia świadectwa efektywności energetycznej c.d Rodzaje przedsięwzięć służące poprawie efektywności energetycznej 3.9. Prawa majątkowe Zasady sporządzania audytu efektywności energetycznej Zasady uzyskania uprawnień audytora efektywności energetycznej Zmiany w prawie budowlanym Podsumowanie

46 efektywność energetyczna = efekt użytkowy zużycie energii Polska w ciągu ostatnich 10 lat: - duży postęp w zakresie efektywności energetycznej - spadek energochłonności PKB o 1/3; - ustawa o wspieraniu przedsięwzięć termomodernizacyjnych, - optymalizacja procesów przemysłowych (cementownie,huty metali nieżelaznych, huty szkła nie odbiegają od poziomu europejskiego), - modernizacja oświetlenia ulicznego, Jednak efektywność energetyczna polskiej gospodarki jest: - około 3 razy niższa niż w najbardziej rozwiniętych krajach europejskich, - około 2 razy niższa niż średnia w krajach UE - zużycie energii pierwotnej w Polsce, odniesione do liczebności populacji, jest niemal 40 % niższe niż w krajach starej 15 - potencjał w zakresie oszczędzania energii Ustawa o efektywności energetycznej to wynik: - Dyrektywy 2006/32/WE w sprawie efektywności końcowego wykorzystania energii i usług energetycznych, - przyjęcia przez Radę Europejską w 2007 r. celu 20% obniżenia zużycia energii w UE do 2020 r. Misja Ministerstwo Gospodarki: Stworzenie najlepszych w Europie warunków prowadzenia działalności gospodarczej. J.F. Kennedy (1961r.): "Do końca dekady Amerykanin postawi swoją stopę na Księżycu". 46

47 obowiązuje od sierpnia 2011 do dnia 31 grudnia 2016 r. Art. 1. Ustawa określa: 1) krajowy cel w zakresie oszczędnego gospodarowania energią; 2) zadania jednostek sektora publicznego w zakresie efektywności energetycznej; 3) zasady uzyskania i umorzenia świadectwa efektywności energetycznej; 4) zasady sporządzania audytu efektywności energetycznej oraz uzyskania uprawnień audytora efektywności energetycznej. Transpozycja dyrektywy 2006/32/ WE w Polsce jest opóźniona o kilka lat. Jak wynika z art. 18 ust. 1 dyrektywy 2006/32/WE termin jej transpozycji do prawa krajowego minął 17 maja 2008 r. Okres transpozycji podany jest każdorazowo w treści dyrektywy na ogół wynosi od roku do 3 lat. W tym czasie państwa są zobowiązane do dostosowania prawa krajowego do założeń i postanowień dyrektywy. Transpozycja następuje poprzez przyjęcie przez odpowiednie organy prawodawcze danego państwa odpowiedniego aktu prawnego, Ustawa weszła w życie 11 sierpnia (będzie obowiązywać krótko). efektywność energetyczna stosunek uzyskanej wielkości efektu użytkowego danego obiektu, urządzenia technicznego lub instalacji, w typowych warunkach ich użytkowania lub eksploatacji, do ilości zużycia energii przez ten obiekt, urządzenie techniczne lub instalację, niezbędnej do uzyskania tego efektu; 47

48 ... uzyskanie do 2016 r. oszczędności energii finalnej w ilości nie mniejszej niż 9% średniego krajowego zużycia tej energii w ciągu roku, przy czym uśrednienie obejmuje lata minister gospodarki co 3 lata przedstawia krajowy plan działań dotyczący efektywności energetycznej, - ma być przekazywany do Komisji Europejskiej - krajowy plan działań realizują ministrowie i wojewodowie energia pierwotna energia zawarta w pierwotnych nośnikach energii, pozyskiwanych bezpośrednio ze środowiska, w szczegolności: węglu kamiennym energetycznym (łącznie z węglem odzyskanym z hałd), węglu kamiennym koksowym, węglu brunatnym, ropie naftowej (łącznie z gazoliną), gazie ziemnym wysokometanowym (łącznie z gazem z odmetanowania kopalń węgla kamiennego), gazie ziemnym zaazotowanym, torfie do celow opałowych oraz energię: wody, wiatru, słoneczną, geotermalną wykorzystywane do wytwarzania energii elektrycznej, ciepła lub chłodu, a także biomasę energia finalna energia lub paliwa, z wyłączeniem paliw lotniczych i paliw w zbiornikach morskich, zużyte przez odbiorcę końcowego; Minimalny horyzont czasowy jest wyznaczony przez dyrektywę 2006/32/WE : Państwa członkowskie przyjmują i dążą do osiągnięcia krajowego celu indykatywnego w zakresie oszczędności energii w wysokości 9 proc. w dziewiątym roku stosowania niniejszej dyrektywy, który realizują za pomocą usług energetycznych i innych środków poprawy efektywności energetycznej ". Niewiele czasu do 2016 r. Przedsięwzięcia wymagające dużych nakładów, realizowane latami, mogą się okazać dla przedsiębiorców niepewne. Zwłaszcza w wypadku przedsięwzięć budowlanych. Gdy w grę wchodzą zakupy sprzętu, może być łatwiej. 48

49 Jednostka sektora publicznego stosuje co najmniej dwa ze środków poprawy efektywności energetycznej: 1) umowę, której przedmiotem jest realizacja i finansowanie przedsięwzięcia służącego poprawie efektywności energetycznej; 2) nabycie nowego urządzenia, instalacji lub pojazdu,charakteryzujących się niskim zużyciem energii oraz niskimi kosztami eksploatacji; 3) wymiana eksploatowanego urządzenia, instalacji lub pojazdu na urządzenie, instalację lub pojazd, o których mowa w pkt 2, albo ich modernizacja; 4) nabycie lub wynajęcie efektywnych energetycznie budynków lub ich części albo przebudowa lub remont użytkowanych budynków, w tym realizacja przedsięwzięcia termomodernizacyjnego; 5) sporządzenie audytu energetycznego budynku o powierzchni użytkowej powyżej 500 m2, których jednostka sektora publicznego jest właścicielem lub zarządcą. Jednostki sektora publicznego: np. budżetowe (rządowe i samorządowe) audyt efektywności energetycznej opracowanie zawierające analizę zużycia energii oraz określające stan techniczny obiektu, urządzenia technicznego lub instalacji, zawierające wykaz przedsięwzięć służących poprawie efektywności energetycznej tych obiektow, urządzeń lub instalacji, a także ocenę ich opłacalności ekonomicznej i możliwej do uzyskania oszczędności energii; - Ustawa nie określa żadnych wskaźników, parametrów lub wymagań dla jednostek sektora publicznego. Obowiązki ustawowe będzie bardzo łatwo wypełnić. - W toku prac parlamentarnych odrzucono poprawkę, aby wprowadzić obowiązek jednostek sektora publicznego zaoszczędzenia w każdym roku 1% średniego zużycia energii. Odrzucona propozycja oznaczała wypełnienie art. 5 dyrektywy 2006/32/WE. Norma ta nakazuje, aby jednostki sektora publicznego pełniły wzorcową rolę w dziedzinie oszczędnego gospodarowania energią. Komisja Europejska w ramach Planu działań na rzecz efektywności energetycznej 2011" zapowiada nałożenie wiążących prawnie obowiązków modernizacji i ocieplania 3 proc. budynków publicznych każdego roku. - były chyba obawy, że obowiązek oszczędności energii o 1 proc. w skali roku spowoduje znaczący wzrost wydatków budżetu państwa. - początkowe nakłady w oszczędność energii zawsze się zwracają... 49

50 zielone certyfikaty - za energię ze źródeł odnawialnych czerwone certyfikaty za produkcję energii w kogeneracji, białe certyfikaty (świadectwo efektywności energetycznej) za projekty, które prowadzą do zmniejszenia zużycia energii ( wydaje prezes URE ) Przedsiębiorstwo energetyczne sprzedające energię elektryczną, ciepło (ponad 5 MW) lub gaz ziemny odbiorcom końcowym, odbiorca końcowy członek giełdy, dom maklerski jest obowiązane: 1) uzyskać i umorzyć świadectwa efektywności energetycznej, o wartości nie większej niż 3% przychodu (w tonach oleju ekwiwalentnego) Wartość minimalnej energii pierwotnej podlegającej obowiązkowi 2) uiścić opłatę zastępczą, wynikającą z niedopełnienia obowiązku umorzenia świadectw Wielkość i sposób obliczania ilości energii pierwotnej odpowiadającej wartości świadectwa efektywności energetycznej, które jest obowiązane uzyskać i przedstawić do umorzenia przedsiębiorstwo energetyczne określi minister. tona oleju ekwiwalentnego rownoważnik jednej tony ropy naftowej o wartości opałowej rownej kj/kg; W odróżnieniu od sektora publicznego sektor przedsiębiorstw obarczo znaczącymi obciążeniami. 50

51 Jak przedsiębiorstwo energetyczne sprzedające energię elektryczną, ciepło lub gaz ziemny odbiorcom końcowym może uzyskać i umorzyć świadectwa efektywności energetycznej? I sposób Przedsiębiorstwo energetyczne i jego klient (odbiorca końcowy) Warunki dla odbiorcy końcowego: - zużycie w 2011 r. nie mniej niż 400 GWh, - udział kosztu energii elektrycznej w wartości jego produkcji jest nie mniejszy niż 15%, - zakończenie nie wcześniej niż w dniu 1 stycznia 2011 r. przedsięwzięcia służącego poprawie efektywności energetycznej, - ograniczenie zużycia energii elektrycznej w przeliczeniu na wielkość produkcji, o nie mniej niż 1% rocznie w stosunku do średniej jego wielkości z lat zamówienie audytu efektywności energetycznej. Odbiorca końcowy przedstawia przedsiębiorstwu energetycznemu oświadczenie o zrealizowaniu przedsięwzięcia służącego poprawie efektywności energetycznej. Przedsiębiorstwo energetyczne sprzedające energię elektryczną, które otrzymało od odbiorcy końcowego oświadczenie wraz z audytem efektywności energetycznej, przekazuje to oświadczenie i audyt Prezesowi URE. - przedsięwzięcie nie dotyczy instalacji objętych systemem handlu uprawnieniami do emisji, 51

52 Przetargi Prezesa URE (zapewnienie realizacji krajowego celu). Przetarg przeprowadza się oddzielnie dla następujących kategorii przedsięwzięć służących poprawie efektywności energetycznej: 1) zwiększenia oszczędności energii przez odbiorców końcowych; 2) zwiększenia oszczędności energii przez urządzenia potrzeb własnych; 3) zmniejszenia strat energii elektrycznej, ciepła lub gazu ziemnego w przesyle lub dystrybucji. Do przetargu może być zgłoszone przedsięwzięcie służące poprawie efektywności energetycznej, w wyniku którego uzyskuje się oszczędność energii w ilości stanowiącej równowartość co najmniej 10 toe średnio w ciągu roku, albo przedsięwzięcia w wyniku których uzyskuje się łączną oszczędność co najmniej 10 toe średnio w ciągu roku. Nie mogą być zgłoszone przedsięwzięcia: 1) zakończone przed dniem 1 stycznia 2011 r.; 2) na którego realizację: a) przyznano premię termomodernizacyjną, b) uzyskano środki pochodzące z budżetu Unii Europejskiej lub z budżetu państwa; 3) wg I sposobu W przetargu może uczestniczyć podmiot, który przedłoży Prezesowi URE prawidłowo wypełnioną deklarację przetargową wraz z audytem efektywności energetycznej sporządzonym dla przedsięwzięcia lub przedsięwzięć tego samego rodzaju służących poprawie efektywności energetycznej. Prezes URE wydaje świadectwo efektywności energetycznej podmiotom w tonach oleju ekwiwal. toe ton of oil equivalent ekwiwalent ropy (paliwo o kaloryczności kcal/kg) Pierwszy odbędzie się prawdopodobnie w drugiej połowie 2012 r. 52

53 1) izolacja instalacji przemysłowych; 2) przebudowa lub remont budynków; 3) modernizacja: a) urządzeń przeznaczonych do użytku domowego, b) oświetlenia, c) urządzeń potrzeb własnych, d) urządzeń i instalacji wykorzystywanych w procesach przemysłowych, e) lokalnych sieci ciepłowniczych i lokalnych źródeł ciepła; 4) odzysk energii w procesach przemysłowych; 5) ograniczenie: a) przepływów mocy biernej, b) strat sieciowych w ciągach liniowych, c) strat w transformatorach; 6) stosowanie do ogrzewania lub chłodzenia obiektów - energii wytwarzanej we własnych lub przyłączonych do sieci odnawialnych źródłach energii, - ciepła użytkowego w kogeneracji, - lub ciepła odpadowego z instalacji przemysłowych. ma być szczegółowy wykaz 53

54 Prawa majątkowe wynikające ze świadectwa efektywności energetycznej są towarem giełdowym. Prawa te są zbywalne. Prezes URE, na wniosek przedsiębiorstwa energetycznego, odbiorcy końcowego oraz towarowego domu maklerskiego lub domu maklerskiego, którym przysługują prawa majątkowe wynikające ze świadectwa efektywności energetycznej, w drodze decyzji, umarza to świadectwo w całości albo w części. Prawa majątkowe wynikające ze świadectwa efektywności energetycznej wygasają z chwilą jego umorzenia Prawa majątkowe wynikające ze świadectw efektywności energetycznej, które nie zostaną umorzone przez Prezesa URE do dnia 31 marca 2016 r., wygasają z mocy prawa z dniem 1 kwietnia 2016 r. 54

55 Audyt efektywności energetycznej powinien zawierać: 1) imię, nazwisko... 2) kartę audytu efektywności energetycznej; 3) oznaczenie miejsca lokalizacji przedsięwzięcia służącego poprawie efektywnościenergetycznej; 4) ocenę stanu technicznego oraz analizę zużycia energii obiektu, urządzenia technicznego lub instalacji; 5) ocenę efektów uzyskanych w wyniku realizacji przedsięwzięcia służącego poprawie efektywności energetycznej, w tym w szczególności określenie osiągniętej oszczędności energii Audyt efektywności energetycznej, powinien zawierać także opis możliwych rodzajów i wariantów realizacji przedsięwzięć służących poprawie efektywności energetycznej wraz z oceną opłacalności ekonomicznej tych przedsięwzięć i możliwej do uzyskania oszczędności energii. Minister..., w drodze rozporządzenia: 1) szczegółowy zakres i sposób sporządzania audytu efektywności energetycznej, 2) wzór karty audytu efektywności energetycznej, 3) dane i metody, które mogą być wykorzystywane..., 55

56 Audyt efektywności energetycznej może sporządzić osoba, która: 3) ukończyła magisterskie studia wyższe w zakresie technicznym; 4) odbyła szkolenie dla osób ubiegających się o nadanie uprawnień audytora efektywności energ. lub ukończyła co najmniej roczne studia podyplomowe. 5) złożyła z wynikiem pozytywnym egzamin na audytora efektywności energetycznej. Audytor efektywności energetycznej podlega obowiązkowemu ubezpieczeniu od odpowiedzialności cywilnej za szkody wyrządzone w związku ze sporządzaniem audytu efektywności energetycznej 56

57 Ubiegając się o prawo do budowy budynku większego niż dom jednorodzinny, trzeba będzie udowodnić, że jego ogrzewanie będzie energetycznie efektywne. W ustawie o efektywności energetycznej zapisano wprowadzenie reguły "efektywnościowej" w stosunku do nowych obiektów o zapotrzebowaniu ciepła powyżej 50 kw (obiekty większe od standardowych domków jednorodzinnych) ubiegający się o pozwolenie na budowę takiego obiektu będzie musiał zaproponować wybudowanie własnego odnawialnego źródła energii lub własnej instalacji kogeneracji, ewentualnie wykorzystanie do ogrzewania budynku ciepła odpadowego z instalacji przemysłowych. jeśli ubiegający się o budowę nie chce takich indywidualnych rozwiązań, a jest w zasięgu sieci ciepłowniczej, która jest zasilana w 75 proc. energią z OZE, kogeneracji lub z ciepła odpadowego, to musi się do takiej sieci przyłączyć. Chyba, że przedstawi audyt energetyczny, z którego będzie wynikało, że proponowane przez niego dowolnie wybrane rozwiązanie jest bardziej korzystne i efektywne energetycznie. Właściciel będzie więc miał różne możliwości ogrzania budynku, muszą być one jednak energetycznie efektywne. 57

58 Dzięki ustawie za działania dające oszczędność energii można uzyskać tzw. białe certyfikaty i obracać nimi na giełdzie energii. Certyfikaty (świadectwa efektywności energetycznej) przyznaje prezes URE. Ustawa zawiera katalog przedsięwzięć, za które będzie można je dostać Przetargi organizowane przez URE Ile można będzie zarobić na certyfikacie? prawdopodobnie 1,8 2,5 tys. zł za dokument potwierdzający zaoszczędzenie 10 ton oleju. Mały nie zaoszczędzi 10 ton oleju więc działania w grupie (np. cały blok). Zbieraniem małych podmiotów i działaniem w ich imieniu powinny się zająć profesjonalne firmy pośredniczące typu ESCO Działania grupowe przewidują producenci sprzętu AGD - w razie zakupu lodówki klasy energetycznej A+ można będzie liczyć na mniej więcej 100 zł premii, a gdy sprzęt oszczędza więcej energii nawet na zł. Według wyliczeń wydatki na energię spadną o mln zł rocznie, co w okresie 15 lat daje ponad 5 mld zł oszczędności. Jednocześnie ceny energii mogą wzrosnąć o 1,5 2 proc., ponieważ przedsiębiorstwa energetyczne będą musiały kupić białe certyfikaty za ok. 2 mld zł rocznie. ESCO - Energy Service Companies (firmy usług energetycznych), oferujące kompleksowe usługi eksperckie w zakresie energetyki gwarantujące potencjalnym klientom oszczędności energii i zmniejszenie ponoszonych z tego tytułu kosztów. TPF = Third Party Financing (finansowanie przez trzecią stronę), SPA = Shared Profits Arrangement (zasada dzielenia się oszczędnościami). 58

59 4.1. Określanie charakterystyk energetycznych procesów 4.2. Zużycie energii od produkcji 4.3. Zużycie energii od produkcji c.d Zużycie energii od czasu 4.5. Kontrola zużycia energii 4.6. Kontrola zużycia energii c.d Metoda Integracji Procesu 4.8. Metoda Integracji Procesu c.d Metoda Integracji Procesu c.d Wykresy uporządkowane Wykresy uporządkowane c.d Wykresy uporządkowane c.d. 1. BAŁTYCKA AGENCJA POSZANOWANIA ENERGII S.A., ZARZĄDZANIE ENERGIĄ W ZAKŁADZIE PRZEMYSŁOWYM PLANOWANIE INWESTYCJI MODERNIZACYJNYCH (MATERIAŁY SZKOLENIOWE) GRUDZIEŃ

60 Do której grupy procesów należy mój proces? 1. Procesy, w których zachodzi wyraźna zależność pomiędzy zużyciem energii a wielkością produkcji, np. proces o dużym zapotrzebowaniu na ciepło, proces chemiczny, proces chłodnicze i.t.p; 2. Proces w którym jest mały związek wielkości produkcji z zapotrzebowaniem na energię energii wymagają jedynie czynności o charakterze usługowym np. cięcie, mieszanie itp. - Poszukiwanie zależności zużycia energii od produkcji. - Regresja liniowa? Zużycie energii = (m x produkcja) + c c zużycie jałowe 60

61 Określanie charakterystyk energetycznych procesów Zależność zużycia energii od produkcji. Zużycie energii = (m x produkcja) + c Gdy stała c osiąga duże wartości (np. powyżej 50%) potrzebna jest często dodatkowa analiza ponieważ może występować jeden z przypadków: 1. Procesy rozruchu i utrzymania ciągłości produkcji są niezwykle energochłonne, 2. W procesie produkcyjnym występują znaczne straty energii (np. na skutek nieszczelności lub złej izolacji termicznej, źle dobranych napędów, braku układów regulacyjnych itp.). Przypadek powinien oznaczać początek procedury poszukiwania nadmiernych start energii i wprowadzanie technologii energooszczędnych. Pomocne tu mogą być porównania pomiędzy podobnymi liniami technologicznymi lub do wskaźników charakterystycznych dla branży. 3. Produkcja jest scharakteryzowana przez jednostki niewłaściwe do oceny zużycia energii (np. w przypadku maszyn drukarskich, gdy zużycie energii zależy nie tylko od masy zadrukowanego papieru, ale także jego wilgotności i rodzaju). Potrzebna jest zmiana w podejściu do analizy danych i poszukiwania innych wskaźników charakteryzujących wielkość produkcji. Wielkość zużycia jałowego ukierunkowuje też poszukiwania sposobów oszczędzania energii na określone fazy procesu produkcyjnego. 61

62 Określanie charakterystyk energetycznych procesów Zależność zużycia energii od produkcji. Zużycie energii = (m x produkcja) + c Możliwe problemy: 1. Mała zmienność wielkości produkcji (np. powtarzająca się produkcja dobowa) - mały rozrzut danych i duży błąd metody 2. Duży rozrzut wielkości np. źle działająca regulacja, 3. Nieliniowa zależność między zużyciem energii a produkcją 4. Ujemny współczynnik kierunkowy prostej przy rosnącej produkcji spada zapotrzebowanie na energię np. procesy egzotermiczne (np. produkcja piwa). 5. Silnie nieliniowa charakterystyka strat w funkcji obciążenia (niektóre napędy, straty w transformatorach, liniach elektroenergetycznych itp.) 62

63 Określanie charakterystyk energetycznych procesów Zależność zużycia energii od czasu. Zawsze jest celowe wyznaczenie tej zależności dla energii elektrycznej. Pobór energii elektrycznej objawia się okresowym powtarzaniem określonych zmienności. Typowe cykle to: Doba (pobór energii w określonych strefach doby), Tydzień (różnica pomiędzy dniami roboczymi a weekendami i świętami w wykresie obciążenia), Rok (ilości energii pobierane w poszczególnych miesiącach roku). Znajomość tych zmienności (również okresów szczytowych poborów mocy) jest istotna z powodów: - taryfowych optymalizacja wariantów rozliczeń taryfowych, - pozwala też pośrednio identyfikować przyczyny nadmiernego zużycia energii - pozwala zaplanować działania energooszczędne. Zbyt mała zależność zużycia energii od typowego rytmu działań produkcyjnych np. małe spadki w zużyciu energii w okresach przerw (np. posiłkowych) - nadmierny ruch jałowy? źle eksploatowane oświetlenie? brak regulacji? złe rozmieszczenie wyłączników? itp. 63

64 Analiza bieżących pomiarów. Odchyłki przypadkowe czy są wynikiem niekorzystnych tendencji w prowadzonej gospodarce energetycznej? (Odchylenie średniokwadratowe) Procedura postępowania: 1. Wyznaczenie oczekiwanych standardów zużycia energii. 2. Obliczanie różnic pomiędzy mierzonymi na bieżąco wartościami a wielkościami oczekiwanymi. 3. Identyfikacja przypadków nadmiernych odchyłek. 4. Ingerencja w procesy produkcyjne w celu zminimalizowania tych odchyłek. Odchyłki o znacznej wartości awaria (instalacja systemu wczesnego wykrywania?) lub wadliwie działający system pomiarowy. Odchyłki niewielkie ale systematyczne. Stany te są znacznie trudniejsze do jednoznacznej interpretacji (łatwe do przeoczenia). Ich identyfikacja jest szczególnie ważna z punktu widzenia prawidłowo prowadzonej gospodarki energetycznej. Diagnostyka (obliczanie sum skumulowanych?) 64

65 Wykorzystanie sum skumulowanych polega na: - obliczaniu odchyłek pomiędzy wielkościami pomierzonymi a przewidywanymi. - obliczaniu skumulowanej sumy odchyłek, poprzez dodawanie odchyłek do siebie od momentu początkowego pomiarów a chwilą bieżącą. Rysuje się wykres sumy skumulowanej w zależności od czasu. Gdy odchyłki mają charakter przypadkowy ich znaki są często przeciwne i wzajemnie się znoszą. Na wykresie równoległe do osi czasu. Gdy odchyłki występują systematyczne, obliczana suma skumulowana zaczyna narastać. Na wykresie funkcja rosnąca. Takie stany świadczą o niekorzystnych zmianach w sposobie użytkowania energii. Gdy wśród odchyłek zaczynają dominować wartości ujemne, suma skumulowana zaczyna maleć. Może to być efekt wdrożonych działań energooszczędnych. Niezbędna korekcja zalecanych wskaźników energetycznych procesu. Gdzie można zastosować: Piece elektryczne np. łukowe, Pompy, Procesy elektrolityczne, Sprężarki, Procesy chłodnicze, Kuchnie elektryczne. 65

66 Technologia produkcyjna z wieloma procesami grzania i chłodzenia (odzysk ciepła) na różnych etapach procesu sieć wymienników ciepła z różnymi czynnikami. Jak zaprojektować sieć i dobrać parametry czynników aby zapewnić minimalną ilość wymienników i ich minimalną moc grzewczą lub chłodniczą. (Process Intergration) Pinch Technology. Przykład dla jednego z zakładów przemysłu chemicznego tradycyjne zintegrowane liczba wymienników ciepła 6 ( 2 parowe) 4 ( 1 parowy) moc grzewcza [kw] moc chłodnicza [kw]

67 Dwa strumienie. Strumień 1 (45 o C, 170 o C, 390 kw) Strumień 2 (60 o C, 200 o C, 330 kw) po optymalizacji i zastosowaniu odzysku moc szczytowa Strumień 1 ( 90 kw) Strumień 2 ( 70 kw) Źródło [1] 67

68 Podstawowe zasady metody Integracji:: - nie stosować wymiany ciepła poprzez punkt pinch - nie stosować zewnętrznego chłodzenia punktem pinch - nie stosować zewnętrznego grzania poniżej pinch Metodą na przekazywanie ciepła poprzez pinch point jest zastosowanie pomp ciepła. Zastosowanie parownika w linii schładzanego strumienia poniżej pinch point a skraplacza w linii podgrzewanego strumienia powyżej pinch. Krzywe uporządkowane. 68

69 SO2, [mg/nm3] Qu, [MW] tm, [C] tp, [C] tp, superheater temperature outlet Qu, Thermal Power, MW tm, reheater temperature outlet SO2 in flue gas, [mg/nm3] Wykres wielkości chwilowych, na rys. Qu [MW] moc cieplna kotła. Może być zapotrzebowanie na ciepło, i.t.d

70 Parowa wydajność kotła, D[t/h] 6,4% 5,7% 12,0% Ilość godzin pracy z określoną wydajnością 4,0% 1,9% 7,0% 0,0% D 0,0% [t/h] 48% WYD 16,0% 8,1% 11,5% godz. 166 godz.(ok.16%) 119 godz. 84 godz. 127 godz. Test od dnia do dnia godz. 125 godz. 66 godz ,8% 12,3% 240 Sumaryczna liczba godzin pracy przy określonej wydajności kotła [godz.] Rys.12. Wykres obciążeń kotła w czasie testu spalania węgli LSC w 2007r ( ), EC Kraków, K-1 Wykres uporządkowany powstaje poprzez sortowanie w arkuszu kalkulacyjnym wartości chwilowych dla uzyskania zmienności obciążenia w formie krzywej malejącej od obciążeń największych do najmniejszych. Pole pod krzywą wykresu reprezentuje roczną produkcję lub zapotrzebowanie energii. 70

71 Wykres uporządkowany pozwala na określenie czasu trwania poszczególnych zakresów rozpatrywanej wielkości, np. wartości szczytowej Zastosowania wykresu uporządkowanego: - dobór wielkości jednostek podstawowych, podszczytowych i szczytowych dla zasilania systemu energetycznego lub grzewczego - wybór paliwa dla poszczególnych zakresów, szczególnie przy nośnikach sieciowych i konieczności optymalizacji mocy zamówionych - ocena podziału zużycia energii pomiędzy poszczególne odbiory energii i ciepła. W poradnikach ogrzewania można znaleźć wzory na przybliżone przedstawienie krzywych wykresu uporządkowanego dla systemów grzewczych. Pozwalają one na wprowadzenie równań wykresów do arkuszy kalkulacyjnych i obliczenia danych dla wykresów uporządkowanych dla systemów ciepłowniczych. Prowadzi to do lepszego projektowania systemów grzewczych, doboru kotłów i optymalizacji wykorzystania paliw w kotłowni wielopaliwowej (gaz/olej, biomasa/olej). 71

72 5.1. Wprowadzenie 5.2. Auto-audyt - procedura postępowania 5.3. Racjonalizacja użytkowania energii 5.4. Ogrzewanie pomieszczeń 5.5. Wentylacja 5.6. Izolacje cieplne 5.7. Instalacje pary, sprężonego powietrza 5.8. Kotły parowe i wodne 5.9. Prawidłowe spalanie, stan paleniska Odzysk ciepła Materiał źródłowy: 1. BAŁTYCKA AGENCJA POSZANOWANIA ENERGII S.A., ZARZĄDZANIE ENERGIĄ W ZAKŁADZIE PRZEMYSŁOWYM PLANOWANIE INWESTYCJI MODERNIZACYJNYCH (MATERIAŁY SZKOLENIOWE) GRUDZIEŃ

73 - system pomiarowy, - system archiwizacji danych, - system diagnostyczny, - system automatycznego zarządzania energią (zarządzanie on-line) w tradycyjnej gospodarce energetycznej: - system pomiarowy, - system archiwizacji danych - analiza off-line pomiarów (audyt energetyczny niezależny specjalista) - przy braku środków wykorzystanie własnych służb energetycznych (auto-audyt energetyczny [1] ) cechy auto-audytu - ciągły proces (cykliczny), - stałe gromadzenie danych o produkcji i zużyciu energii, - stała analiza danych, - wyszukiwanie nieprawidłowości powodujących zwiększenie zużycia energii, - planowanie usprawnień (analiza techniczna i ekonomiczna), - okresowe raporty o stanie gospodarki energetycznej zakładu, - informowanie kierownictwa o możliwościach dokonania usprawnień. 73

74 Rejestracja danych Co można zmienić w istniejącym systemie gromadzenia danych? (częstotliwość odczytu, wprowadzenie dodatkowych pomiarów, system archiwizacji) Typy gromadzonych danych: 1. dotące zużycia energii, 2. o produkcji lub wydajności procesu technologicznego 3. parametry otoczenia Analiza danych Poszukiwanie zależności pomiędzy gromadzonymi danymi w celu identyfikacji podstawowych wskaźników energetycznych powadzonych procesów. Identyfikacja nieprawidłowości Raporty Cel - wypracowywanie podstaw do decyzji. Forma raportu 74

75 Istnieją wykazy głównych zaleceń i punktów przy sporządzaniu list kontrolnych (check list) oceny systemów i urządzeń energetycznych. W przedsiębiorstwie zalecenia mogą dotyczyć: ogrzewania pomieszczeń, wentylacji, izolacji cieplnych, instalacji pary, sprężonego powietrza, kotłów parowych lub wodnych, procesów spalania, stanu paleniska, odzysku ciepła 75

76 Ogrzewanie pomieszczeń wymaga dużych ilości energii - potencjalne oszczędności mogą być znaczne. 1. obniżenie temperatur wewnętrznych, unikanie przegrzania (temperatury wewnętrzne powinny wynosić odpowiednio o C w zależności od przeznaczenia pomieszczenia/budynku), 2. wyłączenie z ogrzewania przestrzeni nieużywanych, 3. stosowanie kurtyn powietrznych, przedsionków, śluz, 4. zastosowanie automatyki i zaworów termostatycznych, 5. stosowanie obniżeń nocnych i weekendowych, z zabezpieczeniem przed zamarzaniem. 76

77 Wentylacja jest często nadmierna lub nieczynna z powodu hałasu i braku nagrzewnic; w obu przypadkach powoduje to pogorszenie warunków pracy. 1. unikanie przeciągów, uszczelnienie okien i drzwi, 2. zamykanie drzwi i bram; zastosowanie samozamykaczy, 3. unikanie nadmiernej wentylacji przez okna; zwykle zbyt duża, 4. wyłączanie wentylacji i klimatyzacji po zakończeniu pracy lub przejście na niskie wydajności, 5. ocena możliwości zastosowania odzysku ciepła (przy centralnych systemach), 6. odciągi miejscowe wyposażyć w czujniki (ruch, temperatura, światło/spawanie) z okresem wybiegu 77

78 Materiały izolacyjne powinny zapewniać możliwość odprowadzania pary wodnej (zapobieganie kondensacji w przegrodzie). Izolacja nie może prowadzić do przegrzania konstrukcji (np. zewnętrzna izolacja po zimnej stronie paleniska lub komina) Ekonomiczna grubość izolacji rośnie wraz z ze wzrostem cen energii i jest wyższa od wymaganej normy (minimalna grubość = średnica rurociągu). 1. izolowanie zarówno ciepłych jak i zimnych rurociągów, 2. izolowanie kołnierzy i armatury (zawory, filtry, osadniki), 3. zabezpieczenie izolacji przed zniszczeniem (wilgoć, mechaniczne - transport, technologia), 4. łączenie remontów przegród, dachów lub obiektów z wykonaniem dodatkowej termoizolacji, 5. wymiana starej izolacji na nową (w trakcie remontów), 6. przykrywanie gorących zbiorników pokrywami izolowanymi, w tym pokrywami pływającymi lub elastycznymi, 7. w miarę możliwości izolowanie od strony gorącej (palenisko, komin), 8. zabezpieczenie przed stratami przez promieniowanie i konwekcję (otwory pomiarowe, wzierniki, pokrywy, rewizje), 9. ograniczenie strat przez promieniowanie: ściany warstwowe, błyszczące powierzchnie. 78

79 Instalacje parowe nagminnie są przewymiarowane co powoduje duże straty ciepła oraz niedotrzymanie parametrów dla odbiorców (również nadmiar kondensatu). Zły dostęp do instalacji i armatury powoduje, że straty nie są zauważane. Straty sprężonego powietrza są bardzo kosztowne. 1. szczególnie unikać nieszczelności w instalacjach, 2. bieżące kontrole i naprawa odwadniaczy, 3. odcięcie nieczynnych odcinków rurociągów, 4. odzysk kondensatu (gdy to możliwe), stosować parę zgodnie z wymaganiami odbiorców, 5. wyłączać zasilanie sprężonym powietrzem podczas braku odbiorców, 6. wymieniać filtry powietrza, 7. regularne serwisy sprężarek (zawory, pierścienie), 8. czyszczenie chłodnicy międzystopniowej sprężarki, 9. czyszczenie łopatek wentylatorów i dmuchaw. 79

80 Sprawdzić sprawność poszczególnych kotłów przy częściowym obciążeniu. Dbać o czystość kanałów spalinowych. Stosować odsalanie i odmulanie z umiarem, ale nie ograniczać. 1. zapewnienie jak najrówniejszego obciążenia kotłów parą, 2. unikanie otwierania zaworów bezpieczeństwa poprzez kontrolę spalania, 3. sprawdzanie automatyki i sond pomiarowych, 4. sprawdzanie poprawności pracy stacji uzdatniania wody, 5. odsalanie i odmulanie, 6. ograniczanie temperatury wody do potrzeb technologicznych, 7. para przegrzana - o stałych parametrach. 80

81 1. wyłączanie niepotrzebnych palników, 2. nadmiar powietrza jest główną przyczyną strat energii, 3. regularne analizy składu spalin, 4. eliminowanie fałszywego powietrza do paleniska, 5. odcinanie przepływu przez nieczynny kocioł, 6. dobieranie odpowiedniego paliwa do palnika (wartość opałowa, temperatura), 7. regularne czyszczenie dysz, 8. nastawy powietrze pierwotne/wtórne, 9. zamykanie drzwi do komór paleniskowych i komór obróbki termicznej, 10. obniżenie masy wózków i innych urządzeń pomocniczych 11. w niektórych przypadkach zmiana na bardziej efektywne palniki, promienniki itp. 81

82 Należy unikać strat ciepła w postaci gorących gazów odlotowych, cieczy lub niespalonego paliwa. Konieczna jest ocena możliwości wykorzystania odzyskanego ciepła do podgrzewu wstępnego powietrza, wody lub wsadu, podgrzania paliwa itp. Konieczne są inwestycje, czasem drogie. 1. źródło ciepła odpadowego musi mieć odpowiednie parametry (temperatura, przepływ, moc), 2. jakość odzyskanej energii musi uzasadniać nakłady, 3. musi być jak największe zapotrzebowanie na ciepło/energię odpadową, 4. przy różnym okresie odzysku i wykorzystania, instalacja zasobników 5. układy wymagają miejsca 82

83 6.1. Egzergia 6.2. Straty egzergii Straty egzergii 6.7. Termoekonomia 6.8. Reguły zmniejszania niedoskonałości term Reguły zmniejszania niedoskonałości term Bilans energii i egzergii w elektrowni parowej Na podstawie: J.Szargut, A.Ziębik, Podstawy energetyki cieplnej, PWN, Warszawa

84 Egzergia miernik jakości energii. Poziom zerowy wyznacza przyroda - skład chemiczny i parametry stanu powszechnie wystę- pujących składników przyrody. (bogactwa naturalne?) Egzergia fizyczna (T, p) inne niż w otoczeniu Egzergia chemiczna bf ( i -iot ) -Tot ( s - sot b b ch W d ) Energia podlega prawu zachowania ma umowne poziomy odniesienia Egzergia nie podlega prawu zachowania poziom odniesienia narzuca otoczenie 84

85 Straty egzergii wewnętrzne (w osłonie bilansowej) związane z nieodwracalnością: B w T ot S Straty egzergii zewnętrzne związane z odprowadzeniem do otoczenia produktów odpadowych z dodatnią egzergią 85

86 Tarcie B T ot 2 1 dq T f T T ot Q f Q f ciepło tarcia T temp. ciała odb. ciepło tarcia 1.Tarcie jest bardziej szkodliwe gdy temp. ciała odbierającego ciepło jest mniejsza. 1 adiabatyczne sprężanie gazu T 2 T ot s 86

87 Nieodwracalny przepływ ciepła B T ot 1 Q T T 1 T ot T1 -T Q T T Q ciepło przekazane T 1, T 2 temp. ciała ciepłego i zimnego 1. Nieodwracalność jest tym bardziej szkodliwa, im niższe są temp. 2. Większe róznice temp. są dopuszczalne dla wysokich temp. 3. Strumienie pojemności cieplnej (G c) powinny być zbliżone. Kiedy można uniknąć strat egzergii? (nieskończona powierzchnia?) 1p 2k T 1k 2p T ot s 87

88 Dławienie izentalpowe Dla gazów doskonałych i półdoskonałych B -G T ot p 2 p 1 v T dp p B G T R ln 1 ot p 2 1. Dla cieczy v mało zależy od temp. więc strata egzergii jest większa dla niskich temp. 2. Dla gazów dosk. i półdosk. zależy tylko od ciśnień. Mieszanie substancji o niejednakowych temp. B T ot ( C 1 ln T T m 1 + C 2 ln T T m 2 ) 88

89 Spalanie 1. Proces obarczony dużą stratą egzergii. 2. Straty egzergii można ograniczyć podgrzaniem substratów spalania, jednak rośnie wtedy strata egzergii związana z nieodwracalnym przepływem ciepła między spalinami a czynnikiem podgrzewanym. (Chyba żeby podnieść średnią temp. czynnika ogrzewanego) 3. Trzeba pamiętać, że podgrzanie substratów podnosi temp. spalania NOx (sprawa palenisk pyłowych NOx) T podgrze w powietrz a s s s 89

90 1. Gałąź analizy egzergetycznej - TERMOEKONOMIA 2. Analiza egzergetyczna informuje tylko o możliwościach udoskonalenia procesów cieplnych 3. Ma raczej pomocnicze zastosowanie w analizie ekonomicznej 90

91 Dopuszczaj do strat egzergii tylko gdy pozwala to ograniczyć nakłady inwestycyjne.(1) W wymienniku: T F B (maleją nakład inwest.) ale T F B B Trzeba zbadać koszty eksploatacyjne. T ot 1 Q T2 Q= k F T 1 - T T 1 ot T1 -T Q T T Unikaj mieszania substancji różniących się temperaturą, ciśnieniem (2) Przy mieszaniu płynów (wymiennik bezprzeponowy) o różnych temp. T > 0 nie służy zmniejszeniu nakładów inwestycyjnych. Przy mieszaniu gazów o różnych ciśnieniach często stosuje się dławienie gdzie B >0. Można rozważyć zastosowanie maszyny przepływowej rozprężającej lub sprężającej. 91

92 Unikaj ochładzania gorącej substancji powietrzem lub wodą chłodzącą. Unikaj podgrzewania zimnej substancji powietrzem lub wodą chłodzącą gdy substancja ma temp. niższą od otoczenia. (3) Substancja gorąca i zimna (o temp. mniejszej od otoczenia) mają dodatnią egzergię ochładzanie lub podgrzewanie czynnikami otoczenia oznacza jej niszczen Procesy przeciwprądowe są zawsze bardziej term. sprawne niż współprądowe. (4) Tu duże B bo T duże T 1p 2p współprąd 1k 2k 1p 2k Przeciwprąd B T ot 1k 2p 1 Q T2 1 - T T 1 ot T1 -T Q T T i 92

93 W wymienniku temp. końcowa jednego strumienia powinna być bliska temp. początkowej drugiego. Problem w sieciach wymienników. (5) Np. metoda pinch. Maksymalizacja regeneracji ciepła. Strumienie pojemności cieplnych (G c) czynników wymieniających ciepło powinny być zbliżone. Przy dużych różnicach rozdziel strumień o dużej pojemności cieplnej na dwa wymienniki. Tzw. strata strukturalna. (6) 1p 1p Nieskończona powierzchnia wymiennika i duża różnica strumieni pojemności cieplnych T 2k 1k 2p 2k 1k 2p Q= k F T 93

94 Unikaj pośredniego nośnika ciepła pomiędzy rozpatrywanymi strumieniami (7) Zawsze rośnie powierzchnia wymiany ciepła. Wyjątek. Może być opłacalne zastosowanie czynnika o dużej objętościowej pojemności cieplnej przy przesyłaniu ciepła na duże odległości (mniejsze nakł. inwestycyjne) Minimalizuj straty egzergii od tarcia hydraulicznego lub nieodwracalnego przepływu ciepła w niskich temp. (szczególnie niższych od temp. ot.) (8) Tarcie hydr. pociąga np. wzrost mocy sprężarek instalacji ziębiącej, równocześnie czynnik ziębiący pochłania ciepło tarcia B T ot 2 1 dq T f T T ot Q f Przy przepływie ciepła straty są większy przy niskich temp. B T ot 1 Q T T 1 T ot T1 -T Q T T

95 Unikaj dławienia gazów i par (9) (dotkliwe dla par i gazów bo duże v) Ziębiarki parowe sprężarkowe dławienie konieczne??? B -G T ot p 2 p 1 v T dp Sprężarki i wentylatory umieszczaj w miejscach o najniższej temperaturze (10) Praca sprężania ~ objętość sprężanego czynnika ~ 1/temperatura 95

96 Czy można wykorzystać ciepło oddawane do otoczenia, np. w skraplaczu. Np. urządzenie do produkcji pracy. Ciepło oddawane w skraplaczu jest bardzo zdewaluowane i możliwości jego wykorzystania są bardzo ograniczone. Ogranicz raczej ilość tego ciepła. Ciepło oddawane powstaje na wskutek nieodwracalnych przemian (w różnych miejscach układu) Więc... Obok zrealizowano pomysł aby wyeliminować straty w skraplaczu przez rekompresję pary... przesunięto tylko miejsce strat do elektrowni ( elektr. napęd sprężarki) Grzejnik rozruchowy Roztwór zagęszczony Wyparka do zatężania roztworu (z rekompresją pary) sprężarka podgrzewacz Roztwór ubogi 96

97 Zmniejszając jakąś stratę egzergii nie zwiększaj innej. Np. w spalaniu: straty egzergii można ograniczyć podgrzaniem substratów spalania, jednak rośnie wtedy strata egzergii związana z nieodwracalnym przepływem ciepła między spalinami a czynnikiem podgrzewanym. Należy równolegle np. podnieść średnią temp. czynnika ogrzewanego Koszt jednostki egzergii zwiększa się w miarę postępu przemian termodynamicznych koszt jedn. egzergii paliwa < koszt jedn. egzergii pary < koszt jedn. egzergii energii elektr. Straty egzergii są bardziej doktliwe w końcu łańcucha przemian. Redukuj straty egzergii gdzie są największe (kocioł parowy) lub tam gdzie koszt jednostki egzergii jest największy (sieć elektroenergetyczna!!!) 97

98 Dlaczego sprawność energii jest taka mała: Bilans energii największe straty energii są w skraplaczu Bilans egzergii niedoskonałość kotła (straty energii w kotle są małe ale występuje tu znaczna dewaluacja energii na skutek nieodwracalności spalania i przepływu ciepła między spalinami a czynnikiem obiegowym. 98

99 7.1. Modelowanie fizyczne 7.2. Modelowanie matematyczne 7.3. Kategorie modelowania matematycznego 7.4. Kategorie modelowania matematycznego 7.5. Kategorie modelowania matematycznego 7.6. Symulatory niestacjonarne (1) 7.7. Symulatory niestacjonarne (2) 7.8. Symulatory niestacjonarne (3) 7.9. Symulator stacjonarny bloku (1) Symulator stacjonarny bloku (2) Diagnostyka bloku (kotła) Diagnostyka (kotła) analiza Zanieczyszczenie pow. kotła 99

100 Modelowanie procesu - poznanie procesu przy pomocy uproszczonego układu, który odzwierciedla wybrane cechy procesu. Modelowanie to np. poszukiwanie sprawności w funkcji wielkości wejściowych Model procesu powinno się weryfikować porównując z pomiarami lub znanymi rozwiązaniami. Modelowanie fizyczne badanie zjawiska poprzez odtwarzanie go w różnych skalach. Modelowanie fizyczne wymaga zachowania stałości kryteriów podobieństwa określających model i obiekt. Stopniowo przechodzi się do co raz większej skali zmieniając odpowiednio wymiary liniowe. Metoda nadaje się jedynie do prostych systemów (np. hydraulicznych, cieplnych, jednofazowych) Można wykorzystać analogię opisu matematycznego różnych zjawisk - maszyny analogowe. Różne procesy są opisane jednakowymi równaniami matematycznymi. Np. wymianę ciepła można wyrazić przy pomocy równań opisujących przepływ prądu, wyniki z maszyny analogowej (zasilanej prądem) będą takie same jak z urządzenia rzeczywistego. Czy wyniki z modelowania fizycznego w mniejszej skali można bezkrytycznie przenosić na obiekty rzeczywiste Problemy modelowania fizycznego urządzeń energetycznych Model kotła pyłowego możliwe modelowanie fizyczne? 100

101 Modelowanie matematyczne gdy proces jest skomplikowany. Modelowanie dyskretne. Modelowanie matematyczne jest znacznie tańsze od fizycznego. Etapy: 1. Budowa modelu matematycznego. Równania różniczkowe, algebraiczne. Model we współrzędnych: - złożonych (t, x, y, z), przestrzennych (x, y, z), - modele 3D (niestacjonarne, stacjonarne) - skupionych - modele 0D (niestacjonarne, stacjonarne) 2. Budowa algorytmu rozwiązania dyskretnego (dla równań różniczkowych) - siatka różnicowa (kartezjańska, ortogonalna, nieortogonalna) - gęstość siatki (liczba węzłów lub liczba objętości kontrolnych np. 4 mln) - metoda różnicowa (metoda przejścia na równania algebraiczne metoda obj. skończonych, metoda elem. skończonych) - metoda rozwiązania układu równań algebraicznych metody iteracyjne: metoda Gausa- Seidla, Jacobiego, 3. Wykonanie obliczeń. Proces iteracyjny. Zbieżność obliczeń - współczynniki relaksacyjne. Problem obliczeń równoległych bo aktualny rozwój komputerów polega przede wszystkim na przyroście liczby rdzeni. 101

102 Makroskopowe (dużej skali) modele we współrzędnych stanu stacjonarne oparte na układzie równań algebraicznych rozwiązanie możliwe w arkuszu (np. MathCad) SH1 RH1 SH3 P G SH4 RH3 RH2 SH2 P K E ECO C O 339 C SH ,5 MPa 539 C LAD20 LAD10 186,7 kg/s 194 C 156 C 312 C 462 C SH2 13,2 MPa 534 C 181,6 kpa 542,4 C 2,60 MPa 2399 kpa 313 C 15,0 MPa ,8 MPa 245 C 3,63 MPa 0,61 MPa 350 C 1,34 MPa 0,43 MPa do NDD C 462 C 0,24 MPa 0,030 MPa 5,51 kpa 188,96 kg/s 12,27 kg/s 10,77 kg/s 336 C 0,100 MPa 0,68 kg/s 34,1 C 275 C z upustu 7 3,01 kg/s 0,71 MPa 5,39 kpa 5,57 kpa 199 C 2,71 MPa 7,00 kg/s 350 C 7,56 kg/s 293 C 3,24 kg/s 4,80 kg/s 0,0 MPa 149,4 kg/s 187 kpa 31,54 C 32,81 C LAD kpa 21,0 C 20,6 C 1,37 MPa 1,37 MPa 1,43 MPa 6,8 kg/s 225 C z kolektora 84,8 C 29,0 C 28,8 C 83,8 C 72 C 30,59 kg/s 16,4 MPa 156 C 152,3 C 547,8 kpa 153,4 C 547,8 kpa 4,02 kg/s 0,00 kg/s do kolektora 0,00 kg/s 151,37 kg/s 133 C 193,04 kg/s 35 t/h SH3 8 t/h 106,35 C 106,64 C SH4 NDD 20 2,81 kg/s 83,4 C 1,26 MPa C NDD 10 0,00 kg/s 82,5 C 72 kpa 57 C LCC30 LCC20 MAW30 LCC11 5,27 kpa 34,9 C 34,6 C MAG kpa 197 C 0,000 kg/s MAG10 1,56 MPa 126 kg/s 0,00 kg/s 226 RH1 RH2 RH3 102

103 Makroskopowe (dużej skali) modele we współrzędnych stanu stacjonarne oparte na układzie równań algebraicznych aplikacja Cycle Tempo The computer program Cycle-Tempo was developed by TU Delft (Delft University of Technology) as a modern tool for the thermodynamic analysis and optimization of systems for the production of electricity, heat and refrigeration. The program is suited to model steam turbine cycles, STAG units, gas turbine cycles, combustion and heat transfer systems, coal and bio mass gasification combined cycles, fuel cell systems, organic Rankine cycles (ORC), refrigeration systems, and heat pumps. 103

104 wysokość komory, m komora dopalania Mikroskopowe (małej skali) modele we współrzędnych przestrzennych stacjonarne COMSTAR, FLUENT, SATURN dysze OFA1 palnik pyłowy dysze OFA temperatura spalin, o C 104

105 ZASTOSOWANIA Trening obsługi Projektowanie procesu Testowanie układu regulacji Dobór nastaw tys$ (Tamm) tys. parametrów (1 sek) Równania różniczkowe, 0 i 1 -wymiarowe 105

106 106

107 rozruch kotła rozruch turbiny programowana zmiana mocy bloku synchronizacja bloku z siecią energetyczną przygotowanie układu gorącej wody sieciowej eksploatacja bloku w stanach awaryjnych 107

108 ZASTOSOWANIA Diagnostyka bloku on-line - walidacja pomiarów Np. 9.8 kj/kwh albo 39% (36,6%) Stopień zanieczyszczenia powierzchni Projektowanie procesu Parametry referencyjne Równania algebraiczne, nieliniowe Około 200 równań. Fortran Lahey. 108

109 186,7 kg/s 13,5 MPa 539 C 13,2 MPa 534 C 15,0 MPa 245 C 225 C 194 C 2,60 MPa 313 C 7 2 2,8 MPa 312 C 3,63 MPa 542,4 C 2399 kpa 0,61 MPa 350 C 1,34 MPa do NDD20 0,43 MPa 243 C 462 C 336 C 188,96 kg/s 10,77 kg/s 12,27 kg/s 350 C LAD30 7,56 kg/s 4,80 kg/s LAD20 LAD C z kolektora 30,59 kg/s 152,3 C 547,8 kpa 193,04 kg/s 3 4 0,00 kg/s 153,4 C 547,8 kpa do kolektora 0,00 kg/s 151,37 kg/s 133 C 5 0,24 MPa 275 C 6,8 kg/s 6 0,030 MPa 0,100 MPa 0,68 kg/s z upustu 7 3,01 kg/s 199 C 2,71 MPa 293 C 3,24 kg/s 0,0 MPa 149,4 kg/s 1,37 MPa 84,8 C 83,4 C NDD 20 2,81 kg/s 1,26 MPa 106,35 C 106,64 C 1,37 MPa 83,8 C 59 C NDD 10 0,00 kg/s 82,5 C 1,43 MPa 72 C 72 kpa 57 C 1 7 5,51 kpa 34,1 C 5,39 kpa 5,57 kpa 31,54 C 32,81 C 34,9 C 21,0 C MAG20 181,6 kpa 180 kpa 29,0 C 5,27 kpa MAG kpa 197 C 0,000 kg/s 34,6 C 187 kpa 20,6 C 28,8 C 1,56 MPa 126 kg/s 0,71 MPa 7,00 kg/s 0,00 kg/s 156 C 16,4 MPa 156 C 4,02 kg/s LCC30 LCC20 MAW30 LCC11 109

110 Biurko specjalisty w el. 4 tygodnie pracy bloku (co 30 sek) ok. 40MB Biurko w I-20 System archiwizacji danych - co 4 sek. wektor pomiarowy do pamięci dyskowej (ok. 700 analogów p, t, kg/s, Nm3/h) - archiwizacja dead-band 186,7 kg/s 13,5 MPa 539 C 13,2 MPa 534 C 542,4 C 2,60 MPa 2399 kpa 313 C ,0 MPa ,8 MPa 245 C 3,63 MPa 0,61 MPa 350 C 1,34 MPa do NDD20 0,43 MPa 243 C 462 C 336 C 188,96 kg/s 10,77 kg/s 12,27 kg/s 350 C LAD30 7,56 kg/s 4,80 kg/s 225 C z kolektora 312 C 0,00 kg/s LAD C 152,3 C 153,4 C 547,8 kpa 547,8 kpa do kolektora 462 C 0,00 kg/s 151,37 kg/s LAD10 30,59 kg/s 133 C 193,04 kg/s 0,24 MPa 0,100 MPa 275 C z upustu C 0,0 MPa 1,37 MPa 6,8 kg/s 84,8 C 181,6 kpa 1 7 5,51 kpa 0,030 MPa 0,68 kg/s 3,01 kg/s 34,1 C 0,71 MPa 5,39 kpa 5,57 kpa 2,71 MPa 7,00 kg/s 293 C 3,24 kg/s 31,54 C 32,81 C 180 kpa 187 kpa 149,4 kg/s 21,0 C 20,6 C 1,37 MPa 1,43 MPa 29,0 C 28,8 C 83,8 C 72 C 5,27 kpa 0,00 kg/s NDD 20 NDD 10 34,9 C 34,6 C 72 kpa 0,00 kg/s MAG20 MAG10 82,5 C 600 kpa 2,81 kg/s 197 C 0,000 kg/s 83,4 C 1,26 MPa 1,56 MPa 126 kg/s 106,35 C 106,64 C 59 C 57 C 156 C 16,4 MPa 156 C 4,02 kg/s LCC30 LCC20 MAW30 LCC11 110

111 C % t/h Ilość pary z kotła Części palne w popiele str P A A A A I podajn-w ęgl N1 I podajn-w ęgl N2 I podajn-w ęgl N3 I podajn-w ęgl N4 T spalin za L2 T spalin za L

112 1,1 1 0,9 0,8 0,7 0,6 0,5 1,5 1,4 1,3 1,2 1,1 1 0,9 0,8 1 I [A] 0,

113 8.1. Wprowadzenie 8.2. Tablice wody i pary do MathCada i Excela 8.3. Tablice wody i pary do MathCada i Excela 8.4. Tablice wody i pary omówienie 8.5. Funkcje dla pary mokrej 8.6. Funkcje dla pary mokrej c.d Instalacja tablic 113

114 Stosowane parametry wody i pary: t temperatura, p ciśnienie, h entalpia właściwa, s entropia właściwa, v objętość właściwa, x stopień suchości Ze względu na szeroki zakres zmienności parametrów (ciśnienia do 100 Mpa, temperatury do 800 o C) obszar wody i pary dzieli się na kilka regionów (8 lub 5) i w każdym z nich sformułowane są oddzielne funkcje aproksymacyjne. W większości regionów parametrami wejściowymi są temperatura i ciśnienie, w pozostałych temperatura i objętość właściwa. Zwykle publikowany jest ograniczony zestaw funkcji aproksymacyjnych, np. h(t,p), s(t,p), v(t,p). W praktyce obliczeniowej czasami pożądane są również funkcje t(p,h) lub t(p,s) te muszą być wyznaczone przez odwracanie. Badaniami własności wody i pary wodnej zajmuje się International Association for the Properties of Water and Steam (IAPWS) Pierwszym standardem były sformułowania IFC-67 (obecnie uznaje się jako przestarzałe) Aktualnie: IAPWS-95 "for general and scientific use" - do obliczeń naukowych (jednofunkcyjne) IAPWS-IF97 industrial do szybkich obliczeń, z podziałem obszaru na 5 regionów (nieciągłości) nie ulegną zmianie przez wiele lat

115 W tabeli zawarto funkcje dla wody i pary w bibliotece dla MathCada (thmcad2008v1.dll) i Excela (ThExcel4.xla). Są to funkcje oparte na standardzie IFC-67. Część funkcji to oryginalne funkcje standardu, pozostałe funkcje odwracające. Zakresy - (0, o C), (0, MPa), dla pary mokrej - (0,01-374,12 o C), (0, ,115 MPa) Tabela h1sat t.x h2sat ( t.x ) ( ) h [kj/kg] s1sat t.x, s2sat t.x s [kj/kgk] ( ) Obszar pary mokrej ( ) 9.13 Wielkość Obliczana Jednostka Obszar pary mokrej Bez obszaru pary mokrej W całym obszarze Ciśnienie Mpa p(t) p(t,v) Temperatura C t(p) t(p,s) t(p,h) Entalpia wł. kj/kg h (t) h (t) h(t,p) h(p,s) h(t,v) Entropia wł. kj/(kg K) s (t) s (t) s(t,p) s(p,h) s(t,v) Objętość wł. m 3 /kg v (t) v (t) v(t,p) v(p,s) v(p,h) St.suchości - x(p,s) x(p,h) Ciepło wł. kj/(kg K) C p (t) C p (t) C p (t,p) Lepkość d. Pa s (t) (t) (t,p) Przew. ciep. W/(m K) (t) (t) (t,p) 115

116 W tabeli nazwy funkcji (MathCad i Excel) bibliotecznych: h1sat t.x h2sat ( t.x ) ( ) h [kj/kg] Obszar pary mokrej Tabela 2. Implementacja funkcji z Tabeli 1 w MathCadzie i Excelu s1sat t.x, s2sat t.x s [kj/kgk] ( ) ( ) 9.13 Wielkość Obliczana Jednostk a Obszar pary mokrej Bez obszaru pary mokrej W całym obszarze Ciśnienie Mpa psat(t) p_tv(t,v) Temperatura C tsat(p) t_ps(p,s) t_ph(p,h) Entalpia wł. kj/kg h1sat(t) h2sat(t) h_tp(t,p) h_ps(p,s) h_tv(t,v) Entropia wł. kj/(kg K) s1sat(t) s2sat(t) s_tp(t,p) s_ph(p,h) s_tv(t,v) Objętość wł. m 3 /kg v1sat(t) v2sat(t) v_tp(t,p) v_ps(p,s) v_ph(p,h) St.suchości - x_ps(p,s) x_ph(p,h) Ciepło wł. kj/(kg K) Cp1Sat(t) Cp2Sat(t) Cp(t,p) Lepkość d. Pa s Visc1Sat(t) Visc2Sat(t) Visc(t,p) Przew. ciep. W/(m K) Lambda1Sat(t) Lambda2Sat(t) Lambda(t,p) 116

117 Funkcje dla wody i pary można podzielić na następujące kategorie: 1. Przeliczniki (temperatura nasycenia ciśnienie nasycenia) t = t(p); p = p(t) MathCad t = tsat(p); p = psat(t) 2. Funkcje na krzywych granicznych (wykres h-s) np. h = h (t); h = h (t) MathCad h = h1sat(t); h = h2sat(t) gdzie h (t) entalpia wody w temp. nasycenia krzywa graniczna 1 (x=0) na wykresie h-s h (t) entalpia pary w temp. nasycenia krzywa graniczna 2 (x=1) na wykresie h-s 3. Funkcje dwu-parametrowe obowiązujące dla wody, pary przegrzanej i pary mokrej np. funkcje na h h=h(p,s) MathCad h = h_ps(p,s) h=h(t,v) MathCad h = h_tv(p,s) w całym obszarze wykresu h-s krzywe (p,s) oraz (t,v) przecinają się w jednym punkcie więc istnieją odpowiednio jednoznaczne funkcje h(p,s) oraz h(t,v) 4. Funkcje dwu-parametrowe obowiązujące dla wody i pary przegrzanej np. funkcje na h h=h(t,p) MathCad h = h_tp(t,p) krzywe (t,p) przecinają się w jednym punkcie tylko dla wody i pary przegrzanej. Dla pary mokrej krzywe te pokrywają się i w tym obszarze nie ma jednoznacznej funkcji h(t,p). Parametry pary mokrej wyznaczamy przy pomocy funkcji na krzywych granicznych 117

118 W obszarze pary mokrej można stosować ogólne funkcje h(p,s) lub h(t,v) ale w praktyce dane wejściowe w tym regionie to (t,x) lub (p,x). Entalpia właściwa pary mokrej dla tych danych dane: (t,x) h=h (t)*(1-x)+h (t)*x MathCad h = h1sat(t)*(1-x)+h2sat(t)*x dane: (p,x) t=t(p) h=h (t)*(1-x)+h (t)*x MathCad t=tsat(p) h = h1sat(t)*(1-x)+h2sat(t)*x Objętość właściwa dane: (t,x) v=v (t)*(1-x)+v (t)*x MathCad v = v1sat(t)*(1-x)+v2sat(t)*x dane: (p,x) t=t(p) v=v (t)*(1-x)+v (t)*x MathCad t=tsat(p) v = v1sat(t)*(1-x)+v2sat(t)*x Entropia właściwa dane: (t,x) s=s (t)*(1-x)+s (t)*x MathCad s = s1sat(t)*(1-x)+s2sat(t)*x dane: (p,x) t=t(p) s=s (t)*(1-x)+s (t)*x MathCad t=tsat(p) s = s1sat(t)*(1-x)+s2sat(t)*x 118

119 Należy unikać jawnego stosowania funkcji h(t,p) (również s(t,p), v(t,p), ) jeśli czynnik może być parą mokrą wtedy entalpię liczymy przecież z wzoru: h=h (t)*(1-x)+h (t)*x O możliwych problemach świadczy poniższy przykład: Przykład 1 Oblicz temperaturę czynnika t 3 za schładzaczem jeśli: D 1 3 kg sek - 1 t C p 1 6 MPa D kg sek - 1 t C p MPa D 1, t 1, p 1 D 2, t 2, p 2 t 3, p 3 I sposób rozwiązujemy równanie: t C giv en t 3 f ind t 3 D 1 h_tp t 1, p 1 ( ) D 2 h( t 2, p 2 ) D 1 h t 1, p 1 ( ) D 2 h_tp( t 2, p 2 ) ( ) C p MPa ( ) h( t 3, p 3 ) + = D 1 + D 2 + = D 1 + D 2 ( ) h_tp( t 3, p 3 ) II sposób rozwiązujemy równanie: ( ) D 2 h( t 2, p 2 ) D 1 h t 1, p 1 ( ) D 2 h_tp( t 2, p 2 ) D 1 h_tp t 1, p 1 + i 3 D 1 + D 2 t 3 t_ph p 3, i 3 ( ) C ( ) i 3 + = D 1 + D 2 x 3 x_ph p 3, i 3 ( ) Gdyby w rurociągu 3 czynnik był wodą lub parą przegrzaną I sposób byłby skuteczny, ale 119

120 Pliki ze strony Instalacja w MathCadzie. thmcad2008v1.dll - biblioteka kilkuset funkcji (m.innymi tablice) napisana w języku C++. Należy ją umieścić w katalogu...\mathcad\userefi. Podczas uruchamiania MathCad przegląda ten katalog i ładuje wszystkie biblioteki *.dll (dynamic-link library) user_en.xml - plik opisujący funkcje. Należy umieścić (nadpisać) go w katalogu...\mathcad\doc\funcdoc Plik nie jest bezwzględnie potrzebny, dzięki niemu funkcje są widoczne w oknie (menu) InsertFunction Function Category Instalacja w Excelu ThExcel4.xla - plik typu dodatek napisany w VBA. Należy go umieść w dowolnym katalogu, ale najlepiej niech to będzie: C:\Program Files (x86)\microsoft Office\Office12\Library (Excel 2007) C:\Windows\Dane aplikacji\microsoft\addins (Excel 97) Trzeba go uaktywnić przy pomocy menu: Dodatki 120

121 9.1. Arkusz kalkulacyjny czy pakiet obliczeniowy 9.2. MathCad - cechy 9.3. MathCad - funkcje 9.4. MathCad funkcje 9.5. Excel 9.6. Excel programowanie w VBA 9.7. Excel programowanie w VBA 9.8. Excel przykład aplikacji. Analiza pomiarów Excel przykład aplikacji 121

122 Przyczyny dużej popularności arkuszy kalkulacyjnych wśród inżynierów energetyków: procesy energetyczne obejmują dyscypliny, które charakteryzują się wciąż niedomkniętymi modelami: mechanika płynów niepewny opis turbulencji; spalanie dla gazów uznane modele tylko dla prostych węglowodorów (CH4) ; stąd np. brak w pełni wiarygodnych pakietów obliczeniowych 3-D. istnieje duża liczba rozwijanych od lat formuł empirycznych (np. wymiany ciepła), które łatwo można wykorzystać w arkuszu kalkulacyjnym; wykorzystanie pakietów obliczeniowych 3-D do takich zagadnień jak np. przepływ ze spalaniem w kotle energetycznym lub pakietów 0-D do symulacji bloku energetycznego jest niezwykle skomplikowane i wykonywane raczej w ośrodkach akademickich; znaczny koszt licencji komercyjnej popularnych pakietów (np. Fluent) Nieco inna sytuacja jest w mechanice dysponującej równaniami teorii sprężystości i algorytmami MES. Tu szeroko stosowane są pakiety obliczeniowe (np. COSMOS/M) 122

123 Główne cechy: arkusz kalkulacyjny (WYSIWYG) w arkuszu można umieszczać: - tekst, - równania matematyczne, - grafikę. możliwość korzystania z funkcji: - wewnętrznych MathCada, - własnych, zdefiniowanych w MathCadzie, - własnych, przygotowanych w C procedury rozwiązania układu równań nieliniowych Przykład 1 Oblicz moc cieplną grzejnika pokojowego dla danych: strumień wody: D 0.05 kg sek - 1 parametry wlotowe: t 1 65 C p MPa parametry wylotowe: t 2 55 C p MPa Rozwiązanie: Q = D i 1 - i 2 ( ) ( (, ) - h_tp( t 2, p 2 )) 2.09 kw Q D h_tp t 1 p 1 biblioteka funkcji na własności wody i gazów w pliku thmcad2008v1.dll 123

124 Funkcje własne w MathCadzie - hermetyzacja kodu A r W r 10 C r H r 3.8 O r N r 1 S r a un d ash 10 ( ) V C r S r V O2 ( ) ( - 1) V 0 V N2 ( ) V N r ( ) V CO2 ( ) C r S r H r O r V H2O ( ) H r W r V 0 V sp ( ) V N2 ( ) + V H2O ( ) + V CO2 ( ) + V O2 ( ) r H2O ( ) V H2O ( ) V sp ( ) r CO2 ( ) V CO2 ( ) V sp ( ) ash ( ) 0.0 1A r a un A r V 0 ( ) sp, 1.1, 4.5, ( ) ( sp 1.3) sp,, s, d ash T r r H2O ( ) + r CO2 ( ) r H2O ( ) k gas rs 4300 sp k ash ash ( ) 3 T 2 2 d ash ( ) 1 - exp - k gas + k ash s T - r

125 rozwiązywanie układu równań nieliniowych Given f(x,y) = 0 g(x,y) = 0 (x,y)=find(x,y) metoda Levenberg-Marquardt Conjugate-Gradient Quasi-Newton własna metoda iteracyjna, współczynniki relaksacji rozwiązywanie równań różniczkowych zwyczajnych 125

126 Dodatek (biblioteka funkcji własnych): ThExcel4.xla ( Excel 2003), ThExcel5.xlam (Excel 2007) Instalacja dodatku. Umieścić bibliotekę w podkatalogu C:\Documents and Settings \zm\dane Aplikacji\Microsoft\Dodatki lub C:\Program Files\Microsoft Office\Office12\Library\ Aktywować przy pomocy: Przycisk Office Opcje Programu Excel Dodatki Przejdź ThExcel5 Po aktywacji bibliotek funkcje (np. h_tp(t,p) ) są dostępne z poziomu arkusza Złożone zagadnienia obliczeniowe lepiej zakodować w VBA (Visual Basic for Applications), który jest składnikiem Excel a. Dana aplikacja (w naszym przypadku Excel) jest środowiskiem uruchomieniowym dla Basic a. Kod programu napisanego w VBA zawsze zawarty jest w dokumencie utworzonym w Excelu. VBA nie pozwala na tworzenie samodzielnych skompilowanych aplikacji typu EXE. VBA pozwala w wielu przypadkach napisać aplikację nie ustępującą pod względem funkcjonalności programom napisanym przy pomocy takich narzędzi jak Delphi czy C++Builder. 126

127 Napisać aplikację w VBA obliczającą entalpię wody dla danych: t [ o C] i p [Mpa] Wykorzystać funkcję biblioteczną h_tp(t,p) 1. Upewnij się czy jest widoczna karta Deweloper na wstążce. 2. Jeśli nie - Przycisk Office Opcje Programu Excel Popularne Pokaż kartę Deweloper na Wstążce 3. Na arkuszu wstaw tekst temp1, press1, enth1. 4. W komórkach z prawej zdefiniuj nazwy (najlepiej takie same jak tekst obok) wykorzystaj do tego przycisk na karcie Formuły. Operowanie nazwą komórki zamiast jej adresu jest wygodniejsze przy pisaniu kodu 5. Załącz tryb projektowania i wstaw na arkusz przycisk (formant ActiveX) 6. Wywołaj edytor VBA do napisania procedury, która zostanie wykonana po naciśnięciu przycisku. wywołanie edytora VBA wstawianie formantu AciveX karta Deweloper edytor VBA wstążka przycisk komórki tekstowe komórki danych komórki wyników 127

128 1. W edytorze VBA utwórz moduł, Insert Module 2. Wypełnij moduł procedurą o nazwie np. MainProc(). 3. Opis procedury Option Explicit - obowiązkowe deklarowanie zmiennych, Option Base 1 - indeksowanie tablic zaczyna się od 1 Public Sub MainProc() - nagłówek funkcji będziedostępna w innych modułach Dim - deklaracje zmiennych... temp1 = Worksheets("Arkusz1").Range("temp1").Value - odczytanie wartosci z komórki o nazwie temp1 znajdującej się na arkuszu o nazwie Arkusz1... enth1 = h_tp(temp1,press1) obliczenie entalpii przy pomocy funkcji bibliotecznej... Worksheets("Arkusz1").Range("temp1").Value = enth1 zapisanie wartosci w komórce o nazwie temp1 znajdującej się na arkuszu o nazwie Arkusz1 4. Należy utworzyć odwołanie do dodatku w którym są funkcje biblioteczne: Tools References ThExcel5. 5. Jak wywołać funkcję MainProc po naciśnięciu przycisku wstawionego na arkusz z listy formantów: - aktywny tryb projektowania - wykonujemy doubleclick na przycisku edytor tworzy automatycznie zręby procedury CommandButton1_Click() (technologia rapid application development) 6. wpisujemy wywołanie Call MainProc 128

129 129

130 130

131 10.1. Nadmiar informacji Nadmiar równań Uogólniona metoda uzgadniania Uogólniona metoda uzgadniania Uogólniona metoda uzgadniania Uogólniona metoda uzgadniania Algorytm Algorytm c.d Algorytm c.d Przykład. Formułowanie równań bilansowych Przykład. Formułowanie równań bilansowych. c.d Przykład. Wstępne oszacowanie niewiadomej i niedokładności Przykład. Poszukiwanie poprawek na pomiary i obliczenia Przykład. Poprawione pomiary i obliczenia. Literatura: J.Szargut, A. Ziębik, Podstawy energetyki cieplnej, 1998,2000 (str.82) 131

132 Validacja pomiarów Pomiary bezpośrednie odczytujemy z przyrządu pomiarowego Niektóre wielkości są niemożliwe (lub trudne) do zmierzenia najczęściej obliczamy je za pomocą pomocą równań bilansowych (pomiary pośrednie). Problem pojawia się kiedy istnieje kilka równań, z których można wyznaczyć poszukiwaną wielkość. Zwykle wartości tej wielkości otrzymane z każdego z równań różnią się. Wynika to z niepewności pomiarowych jakimi obarczone są pomiary bezpośrednie. Możemy mówić tu o nadmiarze informacji 132

133 F p2 i p2 F p1 i p1 F k i 3 i 2 i 1 i s2 i s1 F S Przykład: układ z podgrzewaczami regeneracyjnymi. Z powodów konstrukcyjnych nie można często dokonać bezpośredniego pomiaru strumieni pary upustowej Fp1, Fp2 trzeba je obliczyć z równań bilansowych. Mamy niestety aż trzy równania. Jeśli obliczymy je z dwóch pierwszych raczej na pewno nie spełnią trzeciego. F P1 - i 3 2 FP2 Fk i P2 - i S2 Fk ( i2 - i1 ) - FP 2( is 2 - is1) i - i P1 S1 F P1 + F i P2 F S (1) (2) (3) 133

134 W pewnym układzie możemy zmierzyć bezpośrednio wielkości x 1, x 2, x 3. Zmierzone wartości wynoszą: l 1, l 2, l 3. Niedokładności pomiarów wynoszą: m 1, m 2, m 3,. Poszukujemy wartości l 4 wielkości x 4 Załózmy, że dla układu możemy sformułować dwa równania bilansowe: F ( x F ( x, x 1 2, x 2, x 3, x, x 3 4, x 4 ) 0 ) 0 (1) (2) Kolejno wyznaczymy nieznaną wartość l 4 i niepewność m 4 z równania (1) i (2). Do dalszych obliczeń przzyjmiemy wartość l 4 o mniejszej niepewności m 4 Równanie bilansowe wykorzystane do obliczenia l 4 będzie spełnione, ale pozostałe nie. Ogólnie możemy zapisać, że F1 ( l1, l2, l3, l4) w1 F2 ( l1, l2, l3, l4) w2 (3) (4) 134

135 135 Postulujemy aby odszukać poprawki h i pomiarów bezpośrednich i pośrednich ; ; ; ; 4 4 ' ' ' ' 1 h l l h l l h l l h l l aby spełnione były równania bilansowe: (6) 0 ),,, ( (5) 0 ),,, ( ' 4 ' 3 ' 2 ' 1 2 ' 4 ' 3 ' 2 ' 1 1 l l l l F l l l l F... ),,, ( ),,, ( ),,, ( ),,, ( ),,, ( ),,, ( ' 4 ' 3 ' 2 ' h l l l l x F h l l l l x F h l l l l x F h l l l l x F l l l l F l l l l F równania na poprawki można otrzymać rozwijając równania (5,6) w szereg Taylora:

136 Odrzucając człony wyższego rzędu i korzystając z (5,6) otrzymujemy dwa równania na poprawki: 4 j1 a kj h j -w k ; k 1,2 gdzie: w k F k ( l1, l2, l3, l4) a kj F x k j ( 4 l1, l2, l3, l ); j 1,...,4 W naszym przykładzie do obliczenia czterech poprawek mamy tylko dwa równania. Z wielu możliwych rozwiązań będziemy poszukiwać takich (funkcja celu) aby: h2 h3 h m2 m3 m4 h m min 136

137 Podsumowanie procedury W pierwszym kroku oszacujemy niepewności wyznaczenia l 4 z równania (1) i (2) i do wyznaczenia l 4 wykorzystamy to dla którego niepewność jest mniejsza. W drugim kroku odszukujemy poprawki h 1, h 2, h 3, h 4 W trzecim kroku obliczamy nowe wartości l 1, l 2, l 3, l 4 137

138 138 Dane: pomiary bezpośrednie: x 1, x 2, x 3. Zmierzone wartości wynoszą: l 1, l 2, l 3. Niedokładność pomiarów jest jednakowa (dla uproszczenia) i wynosi m. Poszukujemy wartości l 4 wielkości x 4 1. Formułujemy równania bilansowe. Tutaj podajemy tylko dwa ale może być ich więcej. (2) 0 ),,, ( (1) 0 ),,, ( x x x x F x x x x F 2. Z każdego z równań wyznaczamy wartość l m x f m x f m x f m + + Do dalszych obliczeń przyjmujemy niepewność m 4 mniejszą i odpowiadającą wartość l 4.. (4) ),, ( (3) ),, ( '' ' 4 l l l f l l l l f l i niepewność pomiarową m 4. Korzystamy tu z prawa przenoszenia błędu:

139 3. Wyznaczamy - macierz A wartości pochodnych równań bilansowych : a kj F x k j ( 4 l1, l2, l3, l ); j 1,...,4 k 1,2 - wektor w błędów równań bilansowych : w k F k ( 4 l1, l2, l3, l ); k 1,2 - macierz diagonalną M kwadratów niedokładności : m jj m 2 j ; j 1,...,4 - macierz pomocniczą F : F AM T A 139

140 4. Wyznaczamy wektor poprawek h h M A T F -1 w 5. Obliczamy poprawione wartości pomiarów bezpośrednich i pośrednich l ' j l j + h j ; j 1,...,4 140

141 Zadanie 601. Zmierzyć składniki spalin suchych przed zasuwą i za zasuwą. Obliczyć ilość powietrza wnikającego do spalin przez nieszczelności zasuwy. CO2 1 : l kmol / kmol sp. suchych O2 1 : l CO2 2 : l O2 2 : l " " " " " " : l 5 =? " " zakładamy niedokładność bezwzględną jednakową dla wszystkich p omiarów: m a Formułowanie równań bilansowych. Wyjaśnienie 1 kmol spalin + kmol pow. => (1+) kmol spalin udziały molowe przed zasuwą za zasuwą czyli: = ( ) CO2 2 (1) = ( + ) O2 2 (2) = ( + ) N2 2 (3) = (4) CO O N CO2 1 + O2 1 + N2 1 1 CO2 2 + O2 2 + N2 2 1 = (5) CO2 1 O2 1 N2 1 CO O N CO2 1 CO2 2 = + 1 O O2 2 = + 1 N N2 2 =

142 Z (3) eliminujemy N2 wykorzystując (4) i (5) CO2 1 - ( 1 + ) CO2 2 = 0 (6) O2 1 - ( 1 + ) O = 0 (7) CO2 1 - ( 1 + ) CO2 2 + O2 1 - ( 1 + ) O = 0 (8) równanie (8) odrzucamy bo jest sumą : (6)+(7) Mamy zatem następujący układ równań bilansowych: CO2 1 - ( 1 + ) CO2 2 = 0 (9) O2 1 - ( 1 + ) O = 0 (10) czyli: F 1 ( CO2 1, O2 1, CO2 2, O2 2, ) CO2 1 - ( 1 + ) CO2 2 ( ) O2 1 ( 1 + ) O2 2 F 2 CO2 1, O2 1, CO2 2, O2 2,

143 2. Wstę pne oszacowanie nie wiadomej i niedok ładności Z równania (9) mamy:. l 1 - l 3 l' 5 l' l d l 1 - l 3 d l 1 - l 3 m' 5 m a + dl l 1 3 dl l m' Z równania (10) mamy:. l 4 - l 2 l'' 5 l'' l d l 4 - l 2 d l 4 - l 2 m'' 5 m a + dl l 2 4 dl l m'' Ponieważ niedokładność oszacowania l 5 z równania (10) jest mniejsza przyjmujemy: l 5 l'' 5 m 5 m'' 5 143

144 3. Poszuk iwanie poprawe k na pomiary i obliczenia - macierz wartości pochodnych równań bilansowych: ( ) ( ) d d A F 1, 1 1 l 1, l 2, l 3, l 4, l 5 A F dl 1 2, 1 2 l 1, l 2, l 3, l 4, l 5 CO2 1 = l 1 + h 1 dl 1 ( ) ( ) d d A F 1, 2 1 l 1, l 2, l 3, l 4, l 5 A F dl 2, 2 2 l 1, l 2, l 3, l 4, l 5 O2 1 = l 2 + h 2 2 dl 2 ( ) ( ) d d A F 1, 3 1 l 1, l 2, l 3, l 4, l 5 A F dl 3 2, 3 2 l 1, l 2, l 3, l 4, l 5 CO2 2 = l 3 + h 3 dl 3 ( ) ( ) d d A F 1, 4 1 l 1, l 2, l 3, l 4, l 5 A F dl 4 2, 4 2 l 1, l 2, l 3, l 4, l 5 O2 2 = l 4 + h 5 dl 4 ( ) ( ) d d A F 1, 5 1 l 1, l 2, l 3, l 4, l 5 A F dl 5 2, 5 2 l 1, l 2, l 3, l 4, l 5 = l 5 + h 5 dl 5 - wektor błędów równań bilansowych: ( ) (, ) w -F 1 1 l 1, l 2, l 3, l 4, l 5 w -F 2 2 l 1, l 2, l 3, l 4 l 5 - macierz diagonalna kwadratów niedokładności: M m 1, 1 a M m 2, 2 a M m 3, 3 a M m 4, 4 a M m 5, macierz pomocnicza: F AM A T - wektor poprawek: h 1 h 2 h 3 h 4 h 5 MA T F -1 w

145 4. Poprawione pomiary i obliczenia stare CO2 1 O2 1 CO2 2 O2 2 l' 1 l' 2 l' 3 l' 4 l' 5 l 1 + h 1 l 2 + h 2 l 3 + h 3 l 4 + h 4 l 5 + h l 1 l 2 l 3 l 4 l

146 11.1. Elektrownie kondensacyjne. Blok 220 MW Elektrownie kondensacyjne. Blok 220 MW Podstawowe zależności Moc wewnętrzna turbiny Rozprężanie Straty w rurociągach Praca pompy wody zasilającej Praca pompy wody zasilającej w obiegu Rankine a Przegrzew pary Sprawności, wskaźniki Sprawności, wskaźniki Elektrociepłownia z turbiną przeciwprężną Zadanie Zadanie Elementy obiegów cieplnych 146

147 13,5 MPa 539 C 186,7 kg/s 13,2 MPa 534 C 280 C 0,00 kg/s 312 C MIĘDZYBLOKOWY 197 C 1,19 MPa 0,00 kg/s 0,4 kg/s BLOKOWY 248 C 1,20 MPa 15,0 MPa 245 C 225 C 194 C 2,60 MPa 313 C 7 2 2,8 MPa 312 C 3,63 MPa 542,4 C 2399 kpa 0,61 MPa 350 C 1,34 MPa do NDD20 0,43 MPa 243 C 462 C 336 C 188,96 kg/s 10,77 kg/s 12,27 kg/s 350 C LAD30 7,56 kg/s 4,80 kg/s LAD20 LAD C z kolektora 30,59 kg/s 152,3 C 547,8 kpa 193,04 kg/s 3 4 0,00 kg/s 153,4 C 547,8 kpa do kolektora 0,00 kg/s 151,37 kg/s 133 C 5 0,24 MPa 275 C 6,8 kg/s 6 0,100 MPa 199 C 1,37 MPa 84,8 C 83,4 C 1,26 MPa NDD20 106,35 C 106,64 C 0,68 kg/s z upustu 7 3,01 kg/s 2,71 MPa 3,24 kg/s 293 C 0,0 MPa 2,81 kg/s 0,65 MW 0,64 MW 1,37 MPa 83,8 C 59 C NDD10 0,00 kg/s 82,5 C 7,35 MW 7,61 MW 149,4 kg/s 1,43 MPa 72 C 72 kpa 57 C 0,030 MPa 5,51 kpa 34,1 C 5,39 kpa 5,57 kpa 31,54 C 32,81 C 34,9 C 71 21,0 C MAG20 181,6 kpa 180 kpa 29,0 C 5,27 kpa 600 kpa 197 C 0,000 kg/s MAG10 34,6 C 0,71 MPa 7,00 kg/s 187 kpa 20,6 C 28,8 C 1,56 MPa 126 kg/s 0,00 kg/s 156 C 16,4 MPa 156 C 4,02 kg/s 16,2 MPa 157 C LCC30 LCC11 LCC20 MAW30 LCC12 147

148 13,5 MPa 539 C 186,7 kg/s 13,2 MPa 534 C 280 C 0,00 kg/s 312 C MIĘDZYBLOKOWY 197 C 1,19 MPa 0,00 kg/s 0,4 kg/s BLOKOWY 248 C 1,20 MPa 15,0 MPa 245 C 225 C 194 C 2,60 MPa 313 C 7 2 2,8 MPa 312 C 3,63 MPa 542,4 C 2399 kpa 0,61 MPa 350 C 1,34 MPa do NDD20 0,43 MPa 243 C 462 C 336 C 188,96 kg/s 10,77 kg/s 12,27 kg/s 350 C LAD30 7,56 kg/s 4,80 kg/s LAD20 LAD C z kolektora 30,59 kg/s 152,3 C 547,8 kpa 193,04 kg/s 3 4 0,00 kg/s 153,4 C 547,8 kpa do kolektora 0,00 kg/s 151,37 kg/s 133 C 5 0,24 MPa 275 C 6,8 kg/s 6 0,100 MPa 199 C 1,37 MPa 84,8 C 83,4 C 1,26 MPa NDD20 106,35 C 106,64 C 0,68 kg/s z upustu 7 3,01 kg/s 2,71 MPa 3,24 kg/s 293 C 0,0 MPa 2,81 kg/s 0,65 MW 0,64 MW 1,37 MPa 83,8 C 59 C NDD10 0,00 kg/s 82,5 C 7,35 MW 7,61 MW 149,4 kg/s 1,43 MPa 72 C 72 kpa 57 C 0,030 MPa 5,51 kpa 34,1 C 5,39 kpa 5,57 kpa 31,54 C 32,81 C 34,9 C 71 21,0 C MAG20 181,6 kpa 180 kpa 29,0 C 5,27 kpa 600 kpa 197 C 0,000 kg/s MAG10 34,6 C 0,71 MPa 7,00 kg/s 187 kpa 20,6 C 28,8 C 1,56 MPa 126 kg/s 0,00 kg/s 156 C 16,4 MPa 156 C 4,02 kg/s 16,2 MPa 157 C LCC30 LCC11 LCC20 MAW30 LCC12 148

149 Q B Q D D( i 1 -i 5 ) B Q wr P B g Q wr Q D Q B k td m k g N N N N ( i -i ) + D ( i ) w Du 1 3 k 1 -i2 w Q D w Q D td t w t Q D t Nt Du 1 3s k 1-2s ( i -i ) + D ( i i ) N N u ( pomiar) P g (pomiar ) P (pomiar ) u N w m P g N u g P pw P g e tr P k 1 D td N w m N u g P Q B Q D 5 D u 3 2 tw G 2 w tw 1 G g Q c G ( t -t 1) skr w w w2 w tr 4 D k 149

150 N ( i -i ) + D ( i ) w Du 1 3 k 1 -i2 N ( i -i ) + D ( i ) w D 1 3 k 3 -i2 albo tak 1 D D k N w 1 D D D k N w D u D u 3 2 D D - k D u D u 3 2 D D - k D u

151 i 1 i 2 i 2a 151

152 Q B Q D( i ) Q D D( i 1 -i 5 ) B Q wr Q T k -i 5 T Q B k Q D Q T r N N ( i -i ) + D ( i ) w Du 1 3 k 1 -i2 w Q D td N u N w Nu m P Pg g N u g P B g Q wr k r td m g P pw P g e tr P k k td 1 D N w N u r m g P Q B Q T 5 Q D D u 3 2 tw G 2 w tw 1 G g Q c G ( t -t 1) skr w w w2 w tr 4 D k 152

153 Q B Q D( i - ) B Q wr Q D 1 i wz D Q B k N N ( i -i ) + D ( i ) w Du 1 3 k 1 -i2 w Q D td Nu N u N w m Pg P g N u g P B g Q wr k td m g P pw P g e tr P k 1 D td N w m N u g P Q B wz Q D 5 D u D k tw G 2 w tw 1 G g Q c G ( t -t 1) skr w w w2 w tr 153

154 154 wz s t CR i i i i D G Q D N t sk 2 t wz Q skr Bez pracy pompy wody zasil.: Dokładniej: wz 1 sk wz 2s 1 wz 1 sk 2s wz 1 D skr D t i i ) i (i ) i (i i i ) i (i ) i (i Q Q Q albo: wz 1 sk wz 2s 1 D p t t i i ) i (i ) i (i Q L N

155 Q B QD D( i1 -iwz ) + D( i3 -i2 ) B Q wr N ( i -i ) + D( i -i ) + D ( i ) w D k 4 -i5 Nu Pg P B g Q wr Q D Q B k td m k g N w Q D P td pw P g e tr N u N w m P P g N u g k 1 D td N w m N u g G P g tr Q B 3 2 Q D 5 4 D u D k tw G 2 w Q skr tw 1 wz

156 Q P B B Q wr B g Q wr Q k D Q B Sprawność bloku brutto td m g k bb P g BQ N wr w Q D bb td k td N m u N w g m P g N u Pomiary on-line : Pg [MW] łatwy B [kg/s] - problemy Qwr [MJ/kg] - problemy g k 1 D td N w m N u g G P g Q B 3 2 Q D 5 4 D u D k tw G 2 w Q skr tw 1 wz

157 Q P Q B B B Q wr B g Q wr jednostkowe zużycie pary przez turbinę k Q k td d t m D P g D Q B g 1 D 3 2 k jednostkowe zużycie ciepła przez turbozespół Q D td 4 D u N N w 5 w Q D m D k Q qt P D g td N u tw G 2 w g G tw 1 N u N w P g Q skr m P g N u jednostkowy wskaźnik zużycia energii chemicznej przez blok b b BQ P g wr g 1 bb wz

158 SRS podstawowe źródło zasilania odb. pary (szczyt. wymienniki ciepła) - szczytowe - do rezerwowania turbiny w przyp. jej odstawienia ( schładzacz po stronie zredukowanej) Sprawność termodynamiczna obiegu -współczynnik ekwiwalencji energii cieplnej (0 1) td Nw + Q Q D c P 1 D P w Q B Q D G D R SRS D S G N w P g 4 Q CS Q CT 2 D k 3 Q C Q c 158

159 Dane: - sprawność: kotła k =0.87, mechaniczna turb. m =0.98, generatora g = wewnętrzna części niskociśnieniowej turbiny wn =0.78, Oblicz: - zużycie paliwa B [kg/s] - sprawność rurociągów zasilających r - natężenia przepływu w up. bloku D 2, D 3, D 5 [kg/s] - temperaturę pary zasilającej odgazowywacz - szybkość przepływu w. chł. w kanale dopr. (F=3 m 2 ) P 170 kg/s P w BQ wr k Q wr =8200 kj/kg z R , G w G P g 157,4 MW tw 2 t k = 4 Cels. tw 1 20 Cels ,

160 k Dp D m +D wtr Oblicz: - Jednostkowe zużycie ciepła przez turbozespół w warunkach pomiaru - sprawności części WP i SP. - sprawność obiegu D m +D wtr -D III -D IV -D V -D VI D m =D p -D I -D II 1 2 I III IV II V VI 17 dl VII D m +D wtr -D III -D IV -D V -D VI -D VII PWC-1 D I 4 25 cm D III 18 D I 16 D pg D dl 5 D m +D wtr -D III -D IV -D V -D VI PWC-2 D II 30 D m +D wtr -D pg D VII 25 cm D I +D II 12 D IV PNC-4 11 D V PNC-5 D VI PNC-6 6 PWC-3 27 cm D III -D pg 14 D p D p +D wtr cm 24 cm cm D III -D pg +D IV D III -D pg D III -D pg +D IV +D V 9 PN cm 8 PNC-7 7 z odgazowywacza wtryski przegrz. m.st. Dwtr 20 D III -D pg +D IV +D V +D VI do skraplacza 160

161 2 w 1 od sk OG 161

162 12.1. Proste obiegi cieplne (Excel - Solver) Proste obiegi cieplne (MathCad) Proste obiegi cieplne (MathCad) Proste obiegi cieplne (MathCad) Mała elektrociepłownia - schemat Mała elektrociepłownia dane wejściowe Mała elektrociepłownia algorytm obliczeń Blok kondensacyjny Blok kondensacyjny - algorytm Wymienniki ciepła 162

163 Zadanie 1. Obiegi cieplne W obiegu Rankine'a zastosowano podgrzew regeneracyjny, gdzie kondensat jest podgrzewany do temperatury nasycenia. Parametry czynnika: - przed turbiną (4 MPa, 480 C), - w upuście (0.5 MPa),- w skraplaczu (6 kpa). Obliczyć sprawność teoretyczną obiegu z regeneracją i bez. Przy pomocy procedury (dodatku) Solver znajdź optymalne ciśnienie upustu. Dane: t 1 = 480 [C] p 1 = 4 [Mpa] p u = 0.5 [Mpa] p sk = [Mpa] Rozwiązanie: skropliny przed podgrz.: t sk = t(p sk ) = [C] i sk = h1(t sk ) = [kj/kg] woda za podgrz.: t wz = t(p u ) = [C] i wz = h1(t wz ) = [kj/kg] para przed turbiną: s 1 =s(t 1,p 1 ) = 7.03 [kj/kgc] i 1 = h(t 1, p 1 ) = [kj/kg] para w upuście: s ua = s 1 = 7.03 [kj/kgc] i ua = h(p u, s ua ) = [kj/kg] para za turbiną: s 2a = s 1 = 7.03 [kj/kgc] i 2a = h(p sk, s 2a ) = [kj/kg] z bilansu w mieszalniku: u = (i wz - i sk ) / (i ua - i sk ) = spr. teor. ob. bez regeneracji: h t = (i 1 - i 2a ) / (i 1 - i sk ) = spr. teor. ob. z regeneracją: h tr = [(1-u) (i 1 - i 2a ) + u(i 1 - i ua )] / (i 1 - i wz ) =

164 Rysunek przedstawia blok energetyczny z regeneracyjnym podgrzewaczem mieszankowym. Dla następujących danych: - zużycie paliwa B=95 kg/s - wartość opałowa paliwa (węgiel) Q wr =8100 kj/kg - parametry czynnika: p 1 =12 MPa, t 1 =480 o C, p 2 =0.005 MPa, p 3 =1.1 MPa - przyrost temp. wody chłodzącej w skraplaczu t=t w2 -t w1 =15 o C - sprawności: k =0.87, w =0.8, m =0.98, g = względna moc potrzeb własnych e w =0.08 Obliczyć: - sprawność termodynamiczną obiegu td - moc elektryczną brutto i netto bloku Pg i P - krotność chłodzenia n=g w /D k Przyjmij: - (zpr) założenie pełnej regeneracji ciepła przepływ Du jest tak dobrany, że w pkt. 5 występuje woda wrząca (linia 1) - (bp) w skraplaczu jest brak przechłodzenia skroplin w pkt. 4 występuje woda wrząca (linia 1) - pomijamy pracę pomp Odp.: 0.368, MW, MW, BQ wr 5 D D u P w G P P g 2 tw 2 G w tw D 1 k 164

165 B 95 Q wr 8100 p 1 12 t P p p k 0.87 w 0.8 m 0.98 g 0.98 tr 0.98 e w 0.08 t 15 Rozwiązanie: 1. Obliczenie entalpii w poszczególnych punktach układu: ( ) (, ) (, ) ( ) ( ) ( ) ( - ) ( - ) ( ) ( ) s 1 s_tp t 1, p 1 i 1 h_tp t 1, p 1 i 2s h_ps p 2 s 1 i 2 i 1 - w i 1 i 2s i 3s h_ps p 3 s 1 i 3 i 1 - w i 1 i 3s t 4 tsat p 2 i 4 h1sat t 4 t 5 tsat p 3 i 5 h1sat t 5 Brak przechłodzenia Założenie pełnej regeneracji BQ wr 5 D D u P w G P g 2 tw 2 G w tw D 1 k 2. Obliczenie strumieni czynnika: ( ) D i 1 - i 5 k B Q wr D D u + D k D k i 4 + D u i 3 D i 5 sprawność kotła bilans mocy ciepła dla podgrzewacz reg. D u D k B Q wr D kg i 1 - i 5 s ( ) i 5 - i i 4 D u D 63.5 kg 5 - i kg i 3 - i 4 s i 3 - i 4 s D k D - D u kg s ( ) ( ) ( ) D k i 1 - i 2 + D u i 1 - i 3 tdr D i 1 - i 5 165

166 3. sprawność termodynamiczna obiegu z regeneracją: tdr 4. moc elektryczna brutto i netto ( ) ( ) ( ) N w D k i 1 - i 2 + D u i 1 - i 3 Q tdr D D i 1 - i 5 P g B Q wr k tdr m g 236.6MW ( ) tr P P g - e w P g 213.4MW D k D - D u kg s natężenie przepływu wody chłodzącej: G w c w ( ) D k i 2 - i 4 t D k ( i 2 - i 4 ) G w Cp1Sat( 20) t ton s 6. wskaźniki zużycia pary, ciepła ( ) D d t kg D i 1 - i 5 q P g MJ T P g MJ MJ 7. sprawność bloku brutto: P g bb B Q wr % 166

167 Obok energii elektrycznej elektrociepłownia wytwarza: ciepło dla odbiorcy miejskiego (wyprowadzane przy pomocy gorącej wody sieciowej) parę technologiczną dla pobliskiego zakładu włókienniczego. Konieczne jest uzupełnianie układu chemicznie oczyszczoną wodą (zakład zwraca tylko część skroplin (60%), brak jest układu wykorzystania odmulin, niewielką ilością pary zasila się inne urządzenia) kocioł 2 - turbina ( 2 upusty regulowane i 2 upusty nieregulowane) 3 - skraplacz 4 - odgazowywacz 5 - Podgrzewacz regeneracyjny wysokiego ciśnienia 6 - Podgrzewacz regeneracyjny niskiego ciśnienia 7 Podgrzewacz wstępny (chłodnica pary ze smoczków) 8 szczytowy wymiennik ciepła do ogrzewania wody sieciowej 9 podstawowy wymiennik ciepła do ogrzewania wody sieciowej 10 chłodnica skroplin 11 odbiorniki ciepła wody sieciowej 12 odbiorniki pary technologicznej

168 Oblicz strumienie: - wody sieciowej: W s, kg/s - pary do wymiennika szczytowego: D ps, kg/s - pary do wymiennika podstawowego: D pp, kg/s - wody zasilającej do kotła: W z, kg/s - pary do podgrzewacza regeneracyjnego wysokiego ciśn.:d 1u, kg/s - wody uzupełniającej: D uz, kg/s - kondensatu do odgazowywacza: D k, kg/s - pary do odgazowywacza: D g, kg/s - pary do podgrzewacza regeneracyjnego niskiego ciśn.: D 2u, kg/s - moc wewnętrzną turbiny N i, kw - orientacyjną moc elektryczną turbozespołu: P g, kw - sprawności części wyso- i niskoprężnej turbiny D sm 0.1 n1 0.7 n D 2 20 D str 0.3 p t D odm 0.6 t z 152 p 1r 1.0 t 1r 305 p z 4.5 p 1r' 0.9 D 1u p 1u 0.6 t 1u 262 p 2r' 0.11 D ps p odg 0.12 * Q s t s4 130 D t 5.5 t s3 95 D pp p 2r 0.12 t 2r 126 W z 0.6D t t D s2 sk t t 80 D g W s t k 60 D 2u p 2u 0.03 t s 80 p t s MPa t uz 40 D sm t sm 100 D uz t sk 31 D k 168

169 Wymienniki wody sieciowej Q s W s i s4 - i s1 i s4 - i s3 D ps W s i 1r - h1p p 1r ( ) ( - ) - W s i s4 i s1 D ps i 1r - i s D pp i 2r - i s Regeneracja wysokoprężna Odgazowywacz ( ) W z D 2 + D odm + D sm + D str W z i z - i odg D 1u i 1u - h1p p 1u ( ) ( ) Równania bilansu mocy i masy w odgazowywaczu Regeneracja niskoprężna D k ( h1 ( t k ) - h1 ( t sk )) - D sm i 2 - h1 ( 100 ) D ( ) 2u i 2u - h1p ( p 2u ) D sm 0.1 n1 0.7 n D 2 20 D str 0.3 p t D odm 0.6 t z 152 p 1r 1.0 t 1r 305 p z 4.5 p 1r' 0.9 D 1u p 1u 0.6 t 1u 262 p 2r' 0.11 D ps p odg 0.12 * Q s t s4 130 D t 5.5 t s3 95 D pp p 2r 0.12 t 2r 126 W z 0.6D t t D s2 sk t t 80 D g W s t k 60 D 2u p 2u 0.03 t s 80 p t s MPa Moc wewnętrzna turbiny D uz N w D 2 ( i 2 - i 1r) N s ( D 2 - D t - D ps ) ( i 1r - i 1u ) + ( D 2 - D t - D ps - D ) 1u ( i 1u - i 2r) N n ( D 2 - D t - D ps - D 1u - D pp - D ) g ( i 2r - i 2u ) + ( D 2 - D t - D ps - D 1u - D pp - D g - D ) 2u ( i 2u - i 3) N i N w + N s + N n N i t uz 40 D sm t sm 100 D k t sk

170 Oblicz: - Jednostkowe zużycie ciepła przez turbozespół w warunkach pomiaru - sprawności części WP i SP. - sprawność obiegu k Dp D m =D p -D I -D II 1 D m +D wtr 2 D m +D wtr -D III -D IV -D V -D VI I III IV II V VI 17 dl VII D m +D wtr -D III -D IV -D V -D VI -D VII PWC-1 D I 4 25 cm D III D I D pg D dl PWC-2 D II 30 D m +D wtr -D pg D 25 cm I +D II D IV D V D VI PNC-4 PNC-5 PNC PWC-3 D III -D pg 27 cm D p 14 wtryski przegrz. m.st. Dwtr 27 cm 24 cm cm D p +D wtr D III -D pg +D IV D III -D pg D III -D pg +D IV +D V 20 D III -D pg +D IV +D V +D VI 9 PN D VII PNC cm D m +D wtr -D III -D IV -D V -D VI 6 z odgazowywacza do skraplacza Turbina: Upusty: Skraplacz kondensat: skropliny: D p p p I 4.21 p t p p t t I 378 para: p p t 6 32 P g t t p II 2.82 t II 350 t p m 0.97 p t 9 72 p p t kondensat: p t 8 72 Dane pomiarow e t t g 0.98 p III 1.29 t 5 31 p p t III 445 t t p p D wtr 5 p IV 0.52 woda chłodząca: t t p p p wtr 4 t IV 368 t w t t p p p V 0.3 t w t t t V 266 p p p p VI 0.15 t t t t VI 158 p p p VII t t

171 1. Numeracja układu 2. Oznaczenie strumieni czynnika 3. Obliczenia entalpii w punktach układu 4. Bilanse mocy cieplnej (i masy) PNC-6 PNC-5 PNC-4 Odgazowywacz PWC-3 PWC-2 PWC-1 5. Obliczenie strumieni przez zastosowanie solvera dla równań bilansu mocy cieplnej (Given... Find) 6. Obliczenie sprawności części WP i SP 7. Problem obliczenia sprawności NP. 8. Problem szacowania zanieczyszczeń podgrzewaczy regeneracyjnych 9. Podwyższanie sprawności bloku D I 18 Dp D m +D wtr k D m +D -D wtr III -D IV -D V -D VI D m =D p -D I -D II 2 1 I III IV II V VI VII 17 dl PWC-1 4 D I 25 cm D III 16 D pg D dl PWC-2 D II 30 D m +D wtr -D pg D VII D 25 cm I +D II D IV D V D VI PNC-4 PNC-5 PNC PWC-3 D III -D pg 27 cm D p 14 wtryski przegrz. m.st. Dwtr 27 cm 24 cm cm D p +D wtr PN-100 D 8 PNC-7 7 III -D pg +D IV 28 cm D III -D pg D III -D pg +D IV +D V 20 D III -D pg +D IV +D V +D VI D m +D wtr -D III -D IV -D V -D VI -D VII 5 D m +D wtr -D III -D IV -D V -D VI 6 z odgazowywacza do skraplacza 171

172 Obliczenia mocy cieplnej rurowego podgrzewacza powietrza danych: powierzchnia obliczeniowa wymiany ciepł a H 3500 m 2 strumień powietrza V p um 3 godz 1 strumień spalin V s um 3 godz 1 temperatura wlotowa powietrza: tp 1 20 C temperatura wlotowa spalin: ts C globalny współ czynnik przenikania ciepł a: k 14 W m 2-1 K sk ł ad spalin CO H2O 0.24 O N funkcje na entalpie spalin i powietrza: ( ) Is( t) ( CO2 CpCO2( t) + H2O CpH2O( t) + O2 CpO2( t) + N2 CpN2( t) ) t kj/ um3 Ip( t) CpAir ( t) t kj/ m3 przybliżenia w stępne: ts 2 ts tp 2 tp Q V p Ip tp 2 rozwiązanie uk ł adu równań: Given Q k H ( ts 1 - tp 2 ) - ts 2 - tp 1 ln ts 1 - tp 2 ts 2 - tp 1 Q V s ( Is( ts 1 ) - Is( ts 2 )) Q V p ( Ip( tp 2 ) - Is( tp 1 )) ( Q ts 2 tp 2 ) Find( Q, ts 2, tp 2 ) T Q MW ( ) ( ( ) - Is( tp 1 )) 172

173 13.1. Definicje Wsparcie kogeneracji Realizacja wsparcia kogeneracji Oszczędność energii pierwotnej Obowiązek zakupu energii elektrycznej wytwarzanej w skojarzeniu Straty i potrzeby własne elektrociepłowni Jednostkowy koszt produkcji Koszty eksploatacji elektrociepłowni Podział kosztów między produkcję ciepła i elektryczności Systemy ciepłownicze 173

174 Wytwarzanie skojarzone lub kogeneracja - wytwarzanie w jednym zakładzie energii cieplnej jako produktu głównego i energii elektrycznej jako produktu ubocznego Gospodarka rozdzielona Kogeneracja w rozproszeniu Wskaźnik skojarzenia 174

2.1. Projekt Inteligentna Energia dla Europy 2.2. Rozwój gospodarczy PKB 2.3. Zużycie i ceny energii 2.4. Zużycie i ceny energii c.d. 2.5.

2.1. Projekt Inteligentna Energia dla Europy 2.2. Rozwój gospodarczy PKB 2.3. Zużycie i ceny energii 2.4. Zużycie i ceny energii c.d. 2.5. 2.1. Projekt Inteligentna Energia dla Europy 2.2. Rozwój gospodarczy PKB 2.3. Zużycie i ceny energii 2.4. Zużycie i ceny energii c.d. 2.5. Zużycie i ceny energii c.d. 2.6. Wskaźniki makroekonomiczne 2.7.

Bardziej szczegółowo

Wydział Mechaniczno-Energetyczny Kierunek ENERGETYKA. Zbigniew Modlioski Wrocław 2011

Wydział Mechaniczno-Energetyczny Kierunek ENERGETYKA. Zbigniew Modlioski Wrocław 2011 Wydział Mechaniczno-Energetyczny Kierunek ENERGETYKA Zbigniew Modlioski Wrocław 2011 1 Zbigniew Modlioski, dr inż. Zakład Kotłów i Turbin pok. 305, A-4 tel. 71 320 23 24 http://fluid.itcmp.pwr.wroc.pl/~zmodl/

Bardziej szczegółowo

4.1. Określanie charakterystyk energetycznych procesów 4.2. Zużycie energii od produkcji 4.3. Zużycie energii od produkcji c.d. 4.4.

4.1. Określanie charakterystyk energetycznych procesów 4.2. Zużycie energii od produkcji 4.3. Zużycie energii od produkcji c.d. 4.4. 4.1. Określanie charakterystyk energetycznych procesów 4.2. Zużycie energii od produkcji 4.3. Zużycie energii od produkcji c.d. 4.4. Zużycie energii od czasu 4.5. Kontrola zużycia energii 4.6. Kontrola

Bardziej szczegółowo

1.1. Definicje 1.2. Gospodarka energetyczna w gminie lub instytucji 1.3. Tworzenie gospodarki energetycznej 1.4. Tworzenie gospodarki energetycznej

1.1. Definicje 1.2. Gospodarka energetyczna w gminie lub instytucji 1.3. Tworzenie gospodarki energetycznej 1.4. Tworzenie gospodarki energetycznej 1.1. Definicje 1.2. Gospodarka energetyczna w gminie lub instytucji 1.3. Tworzenie gospodarki energetycznej 1.4. Tworzenie gospodarki energetycznej c.d. 1.5. Tworzenie gospodarki energetycznej c.d. 1.6.

Bardziej szczegółowo

3.1. Źródła ustawy 3.2. Ustawa o efektywności energetycznej Krajowy cel w zakresie oszczędnego gospodarowania energią 3.4.

3.1. Źródła ustawy 3.2. Ustawa o efektywności energetycznej Krajowy cel w zakresie oszczędnego gospodarowania energią 3.4. 3.1. Źródła ustawy 3.2. Ustawa o efektywności energetycznej. 3.3. Krajowy cel w zakresie oszczędnego gospodarowania energią 3.4. Zadania jednostek sektora publicznego 3.5. Zasady uzyskania i umorzenia

Bardziej szczegółowo

do ustawy z dnia 22 grudnia 215 r. o zmianie ustawy o efektywności energetycznej (druk nr 55)

do ustawy z dnia 22 grudnia 215 r. o zmianie ustawy o efektywności energetycznej (druk nr 55) BIURO LEGISLACYJNE/ Materiał porównawczy M A T E R I A Ł P O R Ó W N AW C Z Y do ustawy z dnia 22 grudnia 215 r. o zmianie ustawy o efektywności energetycznej (druk nr 55) U S T A W A z dnia 15 kwietnia

Bardziej szczegółowo

Pytanie do dr inż. Elżbiety Niewiedział

Pytanie do dr inż. Elżbiety Niewiedział Pytanie do dr inż. Elżbiety Niewiedział W jaki sposób sporządza się świadectwa efektywności energetycznej - białe certyfikaty oraz w jakich przypadkach są one wymagane zgodnie z ustawą o efektywności energetycznej?

Bardziej szczegółowo

Efektywność energetyczna kluczowym narzędziem wzrostu gospodarczego i ochrony środowiska

Efektywność energetyczna kluczowym narzędziem wzrostu gospodarczego i ochrony środowiska Efektywność energetyczna kluczowym narzędziem wzrostu gospodarczego i ochrony środowiska Instrumenty poprawy efektywności energetycznej polskiej gospodarki MINISTERSTWO GOSPODARKI Andrzej Guzowski, Departament

Bardziej szczegółowo

Polski system wspierania efektywności energetycznej i białe certyfikaty

Polski system wspierania efektywności energetycznej i białe certyfikaty Polski system wspierania efektywności energetycznej i białe certyfikaty Magdalena Rogulska Szwedzko-Polska Platforma Zrównoważonej Energetyki POLEKO, 8 października 2013 r. Cele polityki energetycznej

Bardziej szczegółowo

Efektywność energetyczna Uwarunkowania prawne i wpływ na rynek pracy

Efektywność energetyczna Uwarunkowania prawne i wpływ na rynek pracy Efektywność energetyczna Uwarunkowania prawne i wpływ na rynek pracy Departament Rozwoju Gospodarczego Dąbie, 12 czerwca 2013 1 Ustawa z dnia 15 kwietnia 2011 r. o efektywności energetycznej Podpisana

Bardziej szczegółowo

Efektywność energetyczna trwałym elementem polityki energetycznej Polski

Efektywność energetyczna trwałym elementem polityki energetycznej Polski Efektywność energetyczna trwałym elementem polityki energetycznej Polski Edward Słoma, Zastępca Dyrektora Departamentu Energetyki MINISTERSTWO GOSPODARKI Polityka energetyczna Polski do 2030 r. Priorytet

Bardziej szczegółowo

Efektywność energetyczna w Polsce w świetle Polityki energetycznej Polski do 2030 r. MINISTERSTWO GOSPODARKI Departament Energetyki

Efektywność energetyczna w Polsce w świetle Polityki energetycznej Polski do 2030 r. MINISTERSTWO GOSPODARKI Departament Energetyki Efektywność energetyczna w Polsce w świetle Polityki energetycznej Polski do 2030 r. MINISTERSTWO GOSPODARKI Departament Energetyki Priorytety PEP 2030 Poprawa efektywności energetycznej Wzrost bezpieczeństwa

Bardziej szczegółowo

Identyfikacja potencjału oszczędności energii jako podstawa w procesie poprawy efektywności energetycznej przedsiębiorstwa

Identyfikacja potencjału oszczędności energii jako podstawa w procesie poprawy efektywności energetycznej przedsiębiorstwa Identyfikacja potencjału oszczędności energii jako podstawa w procesie poprawy efektywności energetycznej przedsiębiorstwa TOMASZ SŁUPIK Konferencja techniczna Jak obniżać koszty remontów i utrzymania

Bardziej szczegółowo

USTAWA O EFEKTYWNOŚCI ENERGETYCZNEJ. z dnia 15 kwietnia 2011 r. ZADANIA PREZESA URE

USTAWA O EFEKTYWNOŚCI ENERGETYCZNEJ. z dnia 15 kwietnia 2011 r. ZADANIA PREZESA URE USTAWA O EFEKTYWNOŚCI z dnia 15 kwietnia 2011 r. ZADANIA PREZESA URE Wrocław, luty 2012 Ustawa określa: USTAWA z dnia 15 kwietnia 2011 r. O EFEKTYWNOŚCI krajowy cel w zakresie oszczędnego gospodarowania

Bardziej szczegółowo

OBOWIAZKI PREZESA URZĘDU REGULACJI ENERGETYKI W ŚWIETLE USTAWY O EFEKTYWNOŚCI ENERGETYCZNEJ

OBOWIAZKI PREZESA URZĘDU REGULACJI ENERGETYKI W ŚWIETLE USTAWY O EFEKTYWNOŚCI ENERGETYCZNEJ OBOWIAZKI PREZESA URZĘDU REGULACJI ENERGETYKI W ŚWIETLE USTAWY O EFEKTYWNOŚCI ENERGETYCZNEJ Mirosława Szatybełko-Połom dyrektor Północnego Oddziału Terenowego Urzędu Regulacji Energetyki z/s w Gdańsku

Bardziej szczegółowo

Białe Certyfikaty system wsparcia efektywności energetycznej w Polsce

Białe Certyfikaty system wsparcia efektywności energetycznej w Polsce Białe Certyfikaty system wsparcia efektywności energetycznej w Polsce Pierwsze doświadczenia Urząd Regulacji Energetyki Departament Systemów Wsparcia Warszawa, 14 maja 2013 r. Białe e certyfikaty źródła

Bardziej szczegółowo

Audyt przemysłowy Warszawa, 26 lutego 2015 Krajowa Agencja Poszanowania Energii S.A.

Audyt przemysłowy Warszawa, 26 lutego 2015 Krajowa Agencja Poszanowania Energii S.A. . Audyt przemysłowy Warszawa, 26 lutego 2015 Adam Dominiak +48 609 198 732 Krajowa Agencja Poszanowania Energii S.A. Plan prezentacji Uwarunkowania formalno-prawne dotyczące efektywności energetycznej,

Bardziej szczegółowo

Wydział Mechaniczno-Energetyczny Kierunek ENERGETYKA. Zbigniew Modlioski Wrocław 2011 GOSPODARKA ENERGIĄ

Wydział Mechaniczno-Energetyczny Kierunek ENERGETYKA. Zbigniew Modlioski Wrocław 2011 GOSPODARKA ENERGIĄ Wydział Mechaniczno-Energetyczny Kierunek ENERGETYKA Zbigniew Modlioski Wrocław 2011 GOSPODARKA ENERGIĄ 1 KONTAKT Zbigniew Modlioski, dr inż. Zakład Kotłów i Turbin pok. 305, A-4 tel. 71 320 23 24 http://fluid.itcmp.pwr.wroc.pl/~zmodl/

Bardziej szczegółowo

Instalacje grzewcze, technologiczne i przesyłowe. Wentylacja, wentylacja technologiczna, wyciągi spalin.

Instalacje grzewcze, technologiczne i przesyłowe. Wentylacja, wentylacja technologiczna, wyciągi spalin. Zakres tematyczny: Moduł I Efektywność energetyczna praktyczne sposoby zmniejszania zużycia energii w przedsiębiorstwie. Praktyczne zmniejszenia zużycia energii w budynkach i halach przemysłowych. Instalacje

Bardziej szczegółowo

GŁÓWNY URZĄD STATYSTYCZNY Departament Produkcji. Notatka Informacyjna. Efektywność wykorzystania energii w latach 2002-2012

GŁÓWNY URZĄD STATYSTYCZNY Departament Produkcji. Notatka Informacyjna. Efektywność wykorzystania energii w latach 2002-2012 Materiał na konferencję prasową w dniu 23 lipca 2014 r. GŁÓWNY URZĄD STATYSTYCZNY Departament Produkcji Notatka Informacyjna Efektywność wykorzystania energii w latach 2002-2012 Efektywność energetyczna

Bardziej szczegółowo

Drugi Krajowy Plan Działań dot. efektywności energetycznej dla Polski. Andrzej Guzowski, Departament Energetyki

Drugi Krajowy Plan Działań dot. efektywności energetycznej dla Polski. Andrzej Guzowski, Departament Energetyki Drugi Krajowy Plan Działań dot. efektywności energetycznej dla Polski Andrzej Guzowski, Departament Energetyki Polityka energetyczna Polski do 2030 r. Główne cele to: konsekwentne zmniejszanie energochłonności

Bardziej szczegółowo

Realizacja Ustawy o efektywności energetycznej

Realizacja Ustawy o efektywności energetycznej Realizacja Ustawy o efektywności energetycznej RYSZARD FRANCUZ VIII KONFERENCJA ENERGETYKA PRZYGRANICZA POLSKI I NIEMIEC DOŚWIADCZENIA I PERSPEKTYWY Sulechów, 18 listopada 2011 r. 1 I. Geneza ustawy o

Bardziej szczegółowo

Wzrost efektywności energetycznej: uwarunkowania prawno-regulacyjne oraz mechanizmy wsparcia inwestycji.

Wzrost efektywności energetycznej: uwarunkowania prawno-regulacyjne oraz mechanizmy wsparcia inwestycji. Wzrost efektywności energetycznej: uwarunkowania prawno-regulacyjne oraz mechanizmy wsparcia inwestycji. Seminarium "Bezpieczna Chemia Warszawa, 5 listopada 2014 roku Pan Zbigniew Szpak, Prezes KAPE S.A.

Bardziej szczegółowo

Zestawienie potencjalnych przesłanek odrzucenia oferty.

Zestawienie potencjalnych przesłanek odrzucenia oferty. Zestawienie potencjalnych przesłanek odrzucenia oferty. I. WSTĘP Przepisy ustawy z dnia 15 kwietnia 2011 r. o efektywności energetycznej (Dz. U. z 2011 r., Nr 94, poz. 551 z późn. zm. dalej: ustawa ) przewidują

Bardziej szczegółowo

G S O P S O P D O A D R A K R I K NI N SK S O K E O M

G S O P S O P D O A D R A K R I K NI N SK S O K E O M PLAN GOSPODARKI NISKOEMISYJNEJ MIASTA CHOJNICE na lata 2015 2020 2020 17.10.2015 2015-10-07 1 Spis treści 1. Wstęp 2. Założenia polityki energetycznej na szczeblu międzynarodowym i krajowym 3. Charakterystyka

Bardziej szczegółowo

Doświadczenia audytora efektywności energetycznej w procesach optymalizacji gospodarki energetycznej w przedsiębiorstwach

Doświadczenia audytora efektywności energetycznej w procesach optymalizacji gospodarki energetycznej w przedsiębiorstwach Doświadczenia audytora efektywności energetycznej w procesach optymalizacji gospodarki energetycznej w przedsiębiorstwach Odbiorcy na Rynku Energii 2013 XI Konferencja Naukowo-Techniczna Czeladź 14-15.

Bardziej szczegółowo

Nadzieje związane z nowym obszarem rynku energii Ustawa o efektywności energetycznej

Nadzieje związane z nowym obszarem rynku energii Ustawa o efektywności energetycznej Nadzieje związane z nowym obszarem rynku energii Ustawa o efektywności energetycznej Roman Warchoł, TAURON Sprzedaż Forum Polska Efektywna Energetycznie, Gdańsk, 6 marca 2012r. Unijne cele 3x20% Unia Europejska

Bardziej szczegółowo

Mechanizmy wsparcia inwestycji energooszczędnych w Polsce. Andrzej Guzowski, Ministerstwo Gospodarki Warszawa, 27 października 2011 r.

Mechanizmy wsparcia inwestycji energooszczędnych w Polsce. Andrzej Guzowski, Ministerstwo Gospodarki Warszawa, 27 października 2011 r. Mechanizmy wsparcia inwestycji energooszczędnych w Polsce Andrzej Guzowski, Ministerstwo Gospodarki Warszawa, 27 października 2011 r. 2 Mechanizmy wsparcia efektywności energetycznej- kontekst Dyrektywa

Bardziej szczegółowo

Przemysłowy audyt energetyczny

Przemysłowy audyt energetyczny Przemysłowy audyt energetyczny Roman Kołodziej Energopomiar Sp. z o.o. Dyrektywa 2006/32/WE Efektywność energetyczna: Stosunek uzyskanych wyników, usług, towarów lub energii do wkładu energii. Poprawa

Bardziej szczegółowo

Nadzieje związane z nowym obszarem rynku energii Ustawa o efektywności energetycznej

Nadzieje związane z nowym obszarem rynku energii Ustawa o efektywności energetycznej Nadzieje związane z nowym obszarem rynku energii Ustawa o efektywności energetycznej Rafał Soja, TAURON Sprzedaż Forum Polska Efektywna Energetycznie, Wrocław, 22 luty 2012r. Unijne cele 3x20% Unia Europejska

Bardziej szczegółowo

Białe certyfikaty formą wsparcia finansowego projektów zamiany sposobu pozyskiwania ciepłej wody użytkowej Dofinansowanie do zwiększenia sprzedaży

Białe certyfikaty formą wsparcia finansowego projektów zamiany sposobu pozyskiwania ciepłej wody użytkowej Dofinansowanie do zwiększenia sprzedaży Białe certyfikaty formą wsparcia finansowego projektów zamiany sposobu pozyskiwania ciepłej wody użytkowej Dofinansowanie do zwiększenia sprzedaży IV KONFERENCJA WYTWÓRCÓW ENERGII ELEKTRYCZNEJ I CIEPLNEJ

Bardziej szczegółowo

Audyt energetyczny w MŚP

Audyt energetyczny w MŚP Audyt energetyczny w MŚP obszary problemowe, narzędzia i przykłady Kontekst ogólny, kierunki działań, inspiracje Marek Amrozy, mamrozy@nape.pl SPIS TREŚCI Efektywność energetyczna - aspekty ogólne Aspekty

Bardziej szczegółowo

Założenia nowego rozporządzenia Ministra Energii w sprawie audytu efektywności energetycznej

Założenia nowego rozporządzenia Ministra Energii w sprawie audytu efektywności energetycznej Założenia nowego rozporządzenia Ministra Energii w sprawie audytu efektywności energetycznej MINISTERSTWO ENERGII, DEPARTAMENT ENERGETYKI Warszawa, 25 kwietnia 2017 r. 2 Ustawa z dnia 20 maja 2016 r. o

Bardziej szczegółowo

5.5. Możliwości wpływu na zużycie energii w fazie wznoszenia

5.5. Możliwości wpływu na zużycie energii w fazie wznoszenia SPIS TREŚCI Przedmowa... 11 Podstawowe określenia... 13 Podstawowe oznaczenia... 18 1. WSTĘP... 23 1.1. Wprowadzenie... 23 1.2. Energia w obiektach budowlanych... 24 1.3. Obszary wpływu na zużycie energii

Bardziej szczegółowo

EFEKTYWNOŚĆ ENERGETYCZNA W ASPEKCIE BEZPIECZEŃSTWA DOSTAW ENERGII I BEZPIECZEŃSTWA EKOLOGICZNEGO

EFEKTYWNOŚĆ ENERGETYCZNA W ASPEKCIE BEZPIECZEŃSTWA DOSTAW ENERGII I BEZPIECZEŃSTWA EKOLOGICZNEGO EFEKTYWNOŚĆ ENERGETYCZNA W ASPEKCIE BEZPIECZEŃSTWA DOSTAW ENERGII I BEZPIECZEŃSTWA EKOLOGICZNEGO Dr inż. Waldemar DOŁĘGA Instytut Energoelektryki Politechnika Wrocławska 50-370 Wrocław, ul. Wybrzeże Wyspiańskiego

Bardziej szczegółowo

Energetyka komunalna teraźniejszość i wyzwania przyszłości Jak obniżyć koszty energii w przedsiębiorstwie i energetyce komunalnej

Energetyka komunalna teraźniejszość i wyzwania przyszłości Jak obniżyć koszty energii w przedsiębiorstwie i energetyce komunalnej Konferencja Energetyka komunalna teraźniejszość i wyzwania przyszłości Jak obniżyć koszty energii w przedsiębiorstwie i energetyce komunalnej 2016.04.08 Uniwersytet Zielonogórski, Instytut Inżynierii Środowiska

Bardziej szczegółowo

efficiency be promoted in the Polish economy workshop 2011-02 - 01 Warszawa

efficiency be promoted in the Polish economy workshop 2011-02 - 01 Warszawa efficiency be promoted in the Polish economy workshop 2011-02 - 01 Warszawa Racjonalizacja zużycia energii w przemyśle, bariery, instrumenty promowana i wsparcia 2011-02 - 01 Warszawa mgr inż. Mirosław

Bardziej szczegółowo

Wykorzystanie ciepła odpadowego w firmie POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ W MAŁYCH I ŚREDNICH PRZEDSIĘBIORSTWACH. Przewodnik przedsiębiorcy

Wykorzystanie ciepła odpadowego w firmie POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ W MAŁYCH I ŚREDNICH PRZEDSIĘBIORSTWACH. Przewodnik przedsiębiorcy Wykorzystanie ciepła odpadowego w firmie POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ W MAŁYCH I ŚREDNICH PRZEDSIĘBIORSTWACH Przewodnik przedsiębiorcy Na czym polega wykorzystanie ciepła odpadowego? Wykorzystanie

Bardziej szczegółowo

Kogo dotyczy obowiązek przeprowadzenia audytu energetycznego przedsiębiorstwa? Dyrektywa Unii Europejskiej 2012/27/UE

Kogo dotyczy obowiązek przeprowadzenia audytu energetycznego przedsiębiorstwa? Dyrektywa Unii Europejskiej 2012/27/UE Kogo dotyczy obowiązek przeprowadzenia audytu energetycznego przedsiębiorstwa? Dyrektywa Unii Europejskiej 2012/27/UE oraz Ustawa o efektywności energetycznej obligują przedsiębiorstwa: - zatrudniające

Bardziej szczegółowo

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 22 grudnia 2015 r. Poz. 2167 OBWIESZCZENIE MARSZAŁKA SEJMU RZECZYPOSPOLITEJ POLSKIEJ z dnia 27 listopada 2015 r. w sprawie ogłoszenia jednolitego

Bardziej szczegółowo

Efektywność energetyczna -

Efektywność energetyczna - Efektywność energetyczna - czyste powietrze i przyjazna gospodarka Warszawa, 14.11.2017 Jacek Janas, Stanisław Tokarski Konkluzje BAT IED i kolejne nowe wymagania Kolejne modernizacje jednostek Zmniejszenie

Bardziej szczegółowo

Ustawa o efektywności energetycznej cele i mechanizmy

Ustawa o efektywności energetycznej cele i mechanizmy Ministerstwo Gospodarki Departament Energetyki Ustawa o efektywności energetycznej cele i mechanizmy Warszawa, 9 grudnia 2009 r. Podstawowe wskaźniki efektywności energetycznej 0,9 0,8 62% kgoe/euro00

Bardziej szczegółowo

BIAŁE CERTYFIKATY. jako premia za efektywność energetyczną w przedsiębiorstwie. Aleksandra Małecka

BIAŁE CERTYFIKATY. jako premia za efektywność energetyczną w przedsiębiorstwie. Aleksandra Małecka BIAŁE CERTYFIKATY jako premia za efektywność energetyczną w przedsiębiorstwie Aleksandra Małecka CZAS NA OSZCZĘDZANIE ENERGII PAKIET KLIMATYCZNO-ENERGETYCZNY (tzw. 3 x 20%) redukcja emisji CO2 o 20% w

Bardziej szczegółowo

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1. Rozdział 1 Przepisy ogólne

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1. Rozdział 1 Przepisy ogólne Efektywność energetyczna. Dz.U.2011.94.551 z dnia 2011.05.10 Status: Akt obowiązujący Wersja od: 14 sierpnia 2015 r. USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1 Art. 1. Ustawa określa:

Bardziej szczegółowo

Znaczenie audytów efektywności energetycznej w optymalizacji procesów energetycznych

Znaczenie audytów efektywności energetycznej w optymalizacji procesów energetycznych Znaczenie audytów efektywności energetycznej w optymalizacji Utrzymanie Ruchu w Przemyśle Spożywczym V Konferencja Naukowo-Techniczna Bielsko-Biała 18-19. 03.2013r. Tomasz Słupik Poprawa efektywności energetycznej

Bardziej szczegółowo

WYMAGANIA USTAWOWE DOTYCZĄCE DEŁ CIEPŁA

WYMAGANIA USTAWOWE DOTYCZĄCE DEŁ CIEPŁA WYMAGANIA USTAWOWE DOTYCZĄCE CE ŹRÓDE DEŁ CIEPŁA MTP INSTALACJE 2012 Poprawa parametrów energetyczno-ekologicznych źródeł ciepła w budownictwie prof. Edward Szczechowiak Wydział Budownictwa i Inżynierii

Bardziej szczegółowo

Trendy efektywności energetycznej polskiej gospodarki z wykorzystaniem narzędzi ODYSSEE

Trendy efektywności energetycznej polskiej gospodarki z wykorzystaniem narzędzi ODYSSEE Trendy efektywności energetycznej polskiej gospodarki z wykorzystaniem narzędzi ODYSSEE Grażyna Berent-Kowalska, Szymon Peryt Efektywność energetyczna konieczność i szansa polskiej gospodarki Warszawa,

Bardziej szczegółowo

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) Rozdział 1. Przepisy ogólne

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) Rozdział 1. Przepisy ogólne Kancelaria Sejmu s. 1/32 USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) Rozdział 1 Opracowano na podstawie: Dz. U. z 2011 r. Nr 94, poz. 551, z 2012 r. poz. 951, 1203, 1397, z 2015 r.

Bardziej szczegółowo

13.1. Definicje Wsparcie kogeneracji Realizacja wsparcia kogeneracji Oszczędność energii pierwotnej Obowiązek zakupu energii

13.1. Definicje Wsparcie kogeneracji Realizacja wsparcia kogeneracji Oszczędność energii pierwotnej Obowiązek zakupu energii 13.1. Definicje 13.2. Wsparcie kogeneracji 13.3. Realizacja wsparcia kogeneracji 13.4. Oszczędność energii pierwotnej 13.5. Obowiązek zakupu energii elektrycznej wytwarzanej w skojarzeniu. 13.6. Straty

Bardziej szczegółowo

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej. (T.j. Dz. U. z 2015 r. poz. 2167; zm.: Dz. U. z 2015 r. poz

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej. (T.j. Dz. U. z 2015 r. poz. 2167; zm.: Dz. U. z 2015 r. poz USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej (T.j. Dz. U. z 2015 r. poz. 2167; zm.: Dz. U. z 2015 r. poz. 2359.) Rozdział 1 Przepisy ogólne Art. 1. Ustawa określa: 1) krajowy cel w zakresie

Bardziej szczegółowo

USTAWA z dnia 15 kwietnia 2011 r. Rozdział 1 Przepisy ogólne. Art. 1.

USTAWA z dnia 15 kwietnia 2011 r. Rozdział 1 Przepisy ogólne. Art. 1. Kancelaria Sejmu s. 1/23 USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) Rozdział 1 Przepisy ogólne Opracowano na podstawie Dz. U. z 2011 r. Nr 94, poz. 551, z 2012 r. poz. 951, 1203,

Bardziej szczegółowo

Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe miasta Kościerzyna. Projekt. Prezentacja r.

Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe miasta Kościerzyna. Projekt. Prezentacja r. Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe miasta Kościerzyna Projekt Prezentacja 22.08.2012 r. Bałtycka Agencja Poszanowania Energii S.A. 1 Założenia do planu. Zgodność

Bardziej szczegółowo

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) Rozdział 1. Przepisy ogólne

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) Rozdział 1. Przepisy ogólne Kancelaria Sejmu s. 1/32 USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) Rozdział 1 Opracowano na podstawie: Dz. U. z 2011 r. Nr 94, poz. 551, z 2012 r. poz. 951, 1203, 1397, z 2015 r.

Bardziej szczegółowo

Efektywnośćenergetyczna. najwięcej!

Efektywnośćenergetyczna. najwięcej! Efektywnośćenergetyczna Niepodjęcie działańbędzie kosztować najwięcej! Jak przemysłmoże do 2015 r. skorzystaćz ustawy o efektywności energetycznej dr Zdzisław Muras Biuro Prawne Jachranka 27 września 2012

Bardziej szczegółowo

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1. (Dz. U. Nr 94, poz. 551) Rozdział 1. Przepisy ogólne

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1. (Dz. U. Nr 94, poz. 551) Rozdział 1. Przepisy ogólne Stan prawny na dzień 30 listopada 2012 r. USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1 (Dz. U. Nr 94, poz. 551) Rozdział 1 Przepisy ogólne Art. 1. Ustawa określa: 1) krajowy cel w zakresie

Bardziej szczegółowo

OBOWIAZKI PREZESA URZĘDU REGULACJI ENERGETYKI W ŚWIETLE USTAWY O EFEKTYWNOŚCI ENERGETYCZNEJ. Szczecin, 11 maja 2012 r.

OBOWIAZKI PREZESA URZĘDU REGULACJI ENERGETYKI W ŚWIETLE USTAWY O EFEKTYWNOŚCI ENERGETYCZNEJ. Szczecin, 11 maja 2012 r. OBOWIAZKI PREZESA URZĘDU REGULACJI ENERGETYKI W ŚWIETLE USTAWY O EFEKTYWNOŚCI ENERGETYCZNEJ Szczecin, 11 maja 2012 r. USTAWA PRAWO ENERGETYCZNE - cele Zapewnienie bezpieczeństwa energetycznego Zasady oszczędnego

Bardziej szczegółowo

PRIORYTETY ENERGETYCZNE W PROGRAMIE OPERACYJNYM INFRASTRUKTURA I ŚRODOWISKO

PRIORYTETY ENERGETYCZNE W PROGRAMIE OPERACYJNYM INFRASTRUKTURA I ŚRODOWISKO PRIORYTETY ENERGETYCZNE W PROGRAMIE OPERACYJNYM INFRASTRUKTURA I ŚRODOWISKO Strategia Działania dotyczące energetyki są zgodne z załoŝeniami odnowionej Strategii Lizbońskiej UE i Narodowej Strategii Spójności

Bardziej szczegółowo

Przyszłość ciepłownictwa systemowego w Polsce

Przyszłość ciepłownictwa systemowego w Polsce Przyszłość ciepłownictwa systemowego w Polsce Bogusław Regulski Wiceprezes Zarządu Olsztyn, 22 lutego 2016r. Struktura paliw w ciepłownictwie systemowym w Polsce na tle kilku krajów UE 100% 90% 80% 70%

Bardziej szczegółowo

Grupa G.C.E. PROFITIA Management Consultants. Możliwości współpracy zwiększanie efektywności energetycznej

Grupa G.C.E. PROFITIA Management Consultants. Możliwości współpracy zwiększanie efektywności energetycznej Grupa G.C.E. PROFITIA Management Consultants Możliwości współpracy zwiększanie efektywności energetycznej Agenda Prezentacja GCE jako partnera w zakresie efektywności energetycznej Potrzeba zwiększania

Bardziej szczegółowo

prawne w zakresie zrównoważonej

prawne w zakresie zrównoważonej Europejskie i krajowe rozwiązania prawne w zakresie zrównoważonej polityki energetycznej mgr Urszula Ajersz Dyrektor ds. Marketingu i PR w KAPE S.A. 2012-07-19 Krajowa Agencja Poszanowania Energii S.A.

Bardziej szczegółowo

Lokalny Plan Działań dotyczący efektywności energetycznej. Plan działań na rzecz zrównoważonej energii

Lokalny Plan Działań dotyczący efektywności energetycznej. Plan działań na rzecz zrównoważonej energii Lokalny Plan Działań dotyczący efektywności energetycznej oraz Plan działań na rzecz zrównoważonej energii jako elementy planowania energetycznego w gminie Łukasz Polakowski 1 SEAP Sustainable Energy Action

Bardziej szczegółowo

Audyt energetyczny jako wsparcie Systemów Zarządzania Energią (ISO 50001)

Audyt energetyczny jako wsparcie Systemów Zarządzania Energią (ISO 50001) Audyt energetyczny jako wsparcie Systemów Zarządzania Energią (ISO 50001) ROMAN KOŁODZIEJ IV Konferencja Naukowo-Techniczna,,Utrzymanie ruchu w przemyśle spożywczym Szczyrk, 26 kwietnia 2012 r. 1 PLAN

Bardziej szczegółowo

Sala Konferencyjna, Inkubator Nowych Technologii IN-TECH 2 w Mielcu, ul. Wojska Polskiego 3.

Sala Konferencyjna, Inkubator Nowych Technologii IN-TECH 2 w Mielcu, ul. Wojska Polskiego 3. S Z K O L E N I E EFEKTYWNOŚĆ ENERGETYCZNA W PRAKTYCE Sala Konferencyjna, Inkubator Nowych Technologii IN-TECH 2 w Mielcu, ul. Wojska Polskiego 3. Dzień 1 : 21 styczeń 2013r. MODUŁ 4 -Metody oszczędzania

Bardziej szczegółowo

Projekt założeń do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe gminy miejskiej Mielec Piotr Stańczuk

Projekt założeń do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe gminy miejskiej Mielec Piotr Stańczuk Projekt założeń do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe gminy miejskiej Mielec Piotr Stańczuk Małopolska Agencja Energii i Środowiska sp. z o.o. ul. Łukasiewicza 1, 31 429 Kraków

Bardziej szczegółowo

Podstawowe definicje

Podstawowe definicje Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Krajowe i międzynarodowe regulacje prawne i organizacyjne dotyczące

Bardziej szczegółowo

System Zarządzania Energią według wymagań normy ISO 50001

System Zarządzania Energią według wymagań normy ISO 50001 System Zarządzania Energią według wymagań normy ISO 50001 Informacje ogólne ISO 50001 to standard umożliwiający ustanowienie systemu i procesów niezbędnych do osiągnięcia poprawy efektywności energetycznej.

Bardziej szczegółowo

Efektywność energetyczna jako temat ważny politycznie (cz.1)

Efektywność energetyczna jako temat ważny politycznie (cz.1) Efektywność energetyczna jako temat ważny politycznie (cz.1) Przygotowała: Ilona Jędrasik Sekretariat Koalicji Klimatycznej Polski Klub Ekologiczny Okręg Mazowiecki Efektywność energetyczna w Polsce W

Bardziej szczegółowo

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej. Stan prawny na r. (Dz.U ze zm.)

USTAWA. z dnia 15 kwietnia 2011 r. o efektywności energetycznej. Stan prawny na r. (Dz.U ze zm.) USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej. Stan prawny na 07.03.2012r. (Dz.U.2011.94.551 ze zm.) Rozdział 1 Przepisy ogólne Art. 1. Ustawa określa: 1) krajowy cel w zakresie oszczędnego

Bardziej szczegółowo

Efektywność energetyczna w Polsce i Europie - wybrane zagadnienia -

Efektywność energetyczna w Polsce i Europie - wybrane zagadnienia - Efektywność energetyczna w Polsce i Europie - wybrane zagadnienia - Forum Polska Efektywna Energetycznie Wrocław, 22 lutego 2012 r. 2012-02-22 Krajowa Agencja Poszanowania Energii S.A. 1 Co to jest efektywność

Bardziej szczegółowo

Szanse dla przedsiębiorstw wynikających z Ustawy o efektywności energetycznej

Szanse dla przedsiębiorstw wynikających z Ustawy o efektywności energetycznej Szanse dla przedsiębiorstw wynikających z Ustawy o efektywności energetycznej System Białych Certyfikatów Dr inż. Arkadiusz Węglarz 1 Podstawowe zasady systemu Białych Certyfikatów w Polsce 1 System Białych

Bardziej szczegółowo

USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) Rozdział 1 Przepisy ogólne. Art. 1.

USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) Rozdział 1 Przepisy ogólne. Art. 1. Kancelaria Sejmu s. 1/26 USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) Opracowano na podstawie Dz. U. z 2011 r. Nr 94, poz. 551, 951. Rozdział 1 Przepisy ogólne Ustawa określa: Art.

Bardziej szczegółowo

Narzędzia realizacji poprawy efektywności energetycznej w zakładzie przemysłowym

Narzędzia realizacji poprawy efektywności energetycznej w zakładzie przemysłowym I Konferencja Naukowo-Techniczna: Efektywność energetyczna Niższe koszty energii w przemyśle Gospodarka mediami w przemyśle spożywczym 17-18 maja 2010, Zakopane Narzędzia realizacji poprawy efektywności

Bardziej szczegółowo

szansą dla samorządu terytorialnego

szansą dla samorządu terytorialnego Udział w systemie białych certyfikatów szansą dla samorządu terytorialnego dr inż. Arkadiusz Węglarz Dyrektor ds. Zrównoważonego Rozwoju w KAPE S.A. 2012-07-19 Krajowa Agencja Poszanowania Energii S.A.

Bardziej szczegółowo

DOFINANSOWANIE DZIAŁAŃ ZWIĄZANYCH

DOFINANSOWANIE DZIAŁAŃ ZWIĄZANYCH DOFINANSOWANIE DZIAŁAŃ ZWIĄZANYCH Z EFEKTYWNOŚCIĄ ENERGETYCZNĄ ZE ŚRODKÓW ZEWNĘTRZNYCH Poziom krajowy Program Operacyjny Infrastruktura i Środowisko (PO IiŚ) 1.2 Promowanie efektywności energetycznej i

Bardziej szczegółowo

Możliwości poprawiania efektywności energetycznej w polskich zakładach

Możliwości poprawiania efektywności energetycznej w polskich zakładach Polsko Japońskie Możliwości poprawiania efektywności energetycznej w polskich zakładach Na podstawie wstępnych audytów energetycznych 18. 10. 2007 Jerzy Tumiłowicz Specjalista ds. efektywności energetycznej

Bardziej szczegółowo

Możliwości obniżania kosztów eksploatacji budynków w świetle wchodzącej w życie dyrektywy w sprawie charakterystyki energetycznej budynków

Możliwości obniżania kosztów eksploatacji budynków w świetle wchodzącej w życie dyrektywy w sprawie charakterystyki energetycznej budynków Możliwości obniżania kosztów eksploatacji budynków w świetle wchodzącej w życie dyrektywy w sprawie charakterystyki energetycznej budynków Zmiany cen surowców 2007 Survey of energy sources Alternatywne

Bardziej szczegółowo

WDRAŻANIE BUDYNKÓW NIEMAL ZERO-ENERGETYCZNYCH W POLSCE

WDRAŻANIE BUDYNKÓW NIEMAL ZERO-ENERGETYCZNYCH W POLSCE WDRAŻANIE BUDYNKÓW NIEMAL ZERO-ENERGETYCZNYCH W POLSCE Prof. Edward Szczechowiak Politechnika Poznańska Wydział Budownictwa i Inżynierii Środowiska Styczeń 2013 Poznań, 31. stycznia 2013 1 Zakres Kierunki

Bardziej szczegółowo

db energy Audyt efektywności energetycznej jako podstawa ubiegania się o dofinansowanie i białe certyfikaty PIOTR DANIELSKI

db energy Audyt efektywności energetycznej jako podstawa ubiegania się o dofinansowanie i białe certyfikaty PIOTR DANIELSKI Audyt efektywności energetycznej jako podstawa ubiegania się o dofinansowanie i białe certyfikaty PIOTR DANIELSKI Wiceprezes zarządu +48 516 172 480 piotr.danielski@dbenergy.pl ODBIORCY NA RYNKU ENERGII

Bardziej szczegółowo

Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań

Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań 24-25.04. 2012r EC oddział Opole Podstawowe dane Produkcja roczna energii cieplnej

Bardziej szczegółowo

Obowiązki jednostki sektora publicznego wynikające z ustawy z dnia 15 kwietnia 2011 r. o efektywności energetycznej

Obowiązki jednostki sektora publicznego wynikające z ustawy z dnia 15 kwietnia 2011 r. o efektywności energetycznej Obowiązki jednostki sektora publicznego wynikające z ustawy z dnia 15 kwietnia 2011 r. o efektywności energetycznej Departament Energetyki Warszawa, 20 listopada 2014 r. 2 Polityka energetyczna Polski

Bardziej szczegółowo

Poprawa efektywności energetycznej w przemyśle: zadanie dla Herkulesa czy praca Syzyfa?

Poprawa efektywności energetycznej w przemyśle: zadanie dla Herkulesa czy praca Syzyfa? Poprawa efektywności energetycznej w przemyśle: zadanie dla Herkulesa czy praca Syzyfa? 14-15.03. 2013 Czeladź Mirosław Semczuk Agencja Rozwoju Przemysłu S.A. miroslaw.semczuk@arp.com.pl Podstawowy warunek:

Bardziej szczegółowo

OBJAŚNIENIA PODSTAWOWYCH POJĘĆ. Energia pierwotna energia czerpana w postaci nieodnawialnej i odnawialnej

OBJAŚNIENIA PODSTAWOWYCH POJĘĆ. Energia pierwotna energia czerpana w postaci nieodnawialnej i odnawialnej OBJAŚNIENIA PODSTAWOWYCH POJĘĆ Energia pierwotna energia czerpana w postaci nieodnawialnej i odnawialnej Energia nieodnawialna energia chemiczna paliw stałych, ciekłych i gazowych oraz energia paliw rozszczepialnych

Bardziej szczegółowo

Zasady przygotowania SEAP z przykładami. Andrzej Szajner Bałtycka Agencja Poszanowania Energii SA

Zasady przygotowania SEAP z przykładami. Andrzej Szajner Bałtycka Agencja Poszanowania Energii SA Zasady przygotowania SEAP z przykładami Andrzej Szajner Bałtycka Agencja Poszanowania Energii SA aszajner@bape.com.pl Przygotowanie SEAP Plan działań na rzecz zrównoważonej energii (SEAP) dla liderów podejmujących

Bardziej szczegółowo

Opinia do ustawy o efektywności energetycznej (druk nr 1141)

Opinia do ustawy o efektywności energetycznej (druk nr 1141) Warszawa, dnia 23 marca 2011 r. Opinia do ustawy o efektywności energetycznej (druk nr 1141) I. Cel i przedmiot ustawy Celem opiniowanej ustawy jest ustanowienie systemu promującego i wspierającego uzyskiwanie

Bardziej szczegółowo

Sprawozdanie roczne opracowane zgodnie z częścią 1 Załącznika XIV dyrektywy 2012/27/UE w sprawie efektywności energetycznej

Sprawozdanie roczne opracowane zgodnie z częścią 1 Załącznika XIV dyrektywy 2012/27/UE w sprawie efektywności energetycznej Ministerstwo Energii Sprawozdanie roczne opracowane zgodnie z częścią 1 Załącznika XIV dyrektywy 2012/27/UE w sprawie efektywności energetycznej Warszawa, maj 2017 r. 1 Spis treści 1. Wstęp..3 2. Dane

Bardziej szczegółowo

Modernizacje energetyczne w przedsiębiorstwach ze zwrotem nakładów inwestycyjnych z oszczędności energii

Modernizacje energetyczne w przedsiębiorstwach ze zwrotem nakładów inwestycyjnych z oszczędności energii Modernizacje energetyczne w przedsiębiorstwach ze zwrotem nakładów inwestycyjnych z oszczędności energii Zygmunt Jaczkowski Prezes Zarządu Izby Przemysłowo- Handlowej w Toruniu 1 Celem audytu w przedsiębiorstwach

Bardziej szczegółowo

USTAWA z dnia 15 kwietnia 2011 r. Rozdział 1. Przepisy ogólne

USTAWA z dnia 15 kwietnia 2011 r. Rozdział 1. Przepisy ogólne 1 Opracowanie FEWE na podstawie: t.j. Dz.U. 2015 poz. 2167 oraz Dz.U. 2015 poz. 2359 (USTAWA z dnia 29 grudnia 2015 r o zmianie ustawy o efektywności energetycznej). USTAWA z dnia 15 kwietnia 2011 r. o

Bardziej szczegółowo

Efektywność zużycia energii

Efektywność zużycia energii Efektywność zużycia energii Zmiany indeksów cen energii i cen nośników energii oraz inflacji Struktura finalnego zużycia energii w Polsce wg nośników Krajowe zużycie energii elektrycznej [GWh] w latach

Bardziej szczegółowo

liwości poprawiania efektywności energetycznej w polskich zakładach

liwości poprawiania efektywności energetycznej w polskich zakładach Polsko Możliwo liwości poprawiania efektywności energetycznej w polskich zakładach adach Na podstawie wstępnych audytów w energetycznych 23. 01. 2008 Jerzy Tumiłowicz Specjalista ds. efektywności energetycznej

Bardziej szczegółowo

Audyt energetyczny w. Centrum Efektywności Energetycznej. Marek Pawełoszek Specjalista ds. efektywności energetycznej.

Audyt energetyczny w. Centrum Efektywności Energetycznej. Marek Pawełoszek Specjalista ds. efektywności energetycznej. Polsko Japońskie Centrum Efektywności Energetycznej Audyt energetyczny w zakładzie adzie przemysłowym Marek Pawełoszek Specjalista ds. efektywności energetycznej przy wsparciu Krajowa Agencja Poszanowania

Bardziej szczegółowo

Prawne modele finansowania inwestycji energooszczędnych gmin i spółek komunalnych na podstawie ustawy o efektywności energetycznej

Prawne modele finansowania inwestycji energooszczędnych gmin i spółek komunalnych na podstawie ustawy o efektywności energetycznej Prawne modele finansowania inwestycji energooszczędnych gmin i spółek komunalnych na podstawie ustawy o efektywności energetycznej Autor: Dr Robert Zajdler Zasady działania systemu Ustawa z dnia 15 kwietnia

Bardziej szczegółowo

WFOŚiGW w Katowicach jako instrument wspierania efektywności energetycznej oraz wdrażania odnawialnych źródeł energii. Katowice, 16 grudnia 2014 roku

WFOŚiGW w Katowicach jako instrument wspierania efektywności energetycznej oraz wdrażania odnawialnych źródeł energii. Katowice, 16 grudnia 2014 roku WFOŚiGW w Katowicach jako instrument wspierania efektywności energetycznej oraz wdrażania odnawialnych źródeł energii Katowice, 16 grudnia 2014 roku Wojewódzki Fundusz Wojewódzki Fundusz Ochrony Środowiska

Bardziej szczegółowo

Raport z inwentaryzacji emisji wraz z bilansem emisji CO2 z obszaru Gminy Miasto Płońsk

Raport z inwentaryzacji emisji wraz z bilansem emisji CO2 z obszaru Gminy Miasto Płońsk Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Spójności w ramach Programu Operacyjnego Infrastruktura i Środowisko 2007-2013 Raport z inwentaryzacji emisji wraz z bilansem

Bardziej szczegółowo

ANALIZA MOŻLIWOŚCI WYKORZYSTANIA WYSOKOEFEKTYWNYCH SYSTEMÓW ALTERNATYWNYCH ZAOPATRZENIA W ENERGIĘ I CIEPŁO

ANALIZA MOŻLIWOŚCI WYKORZYSTANIA WYSOKOEFEKTYWNYCH SYSTEMÓW ALTERNATYWNYCH ZAOPATRZENIA W ENERGIĘ I CIEPŁO ANALIZA MOŻLIWOŚCI WYKORZYSTANIA WYSOKOEFEKTYWNYCH SYSTEMÓW ALTERNATYWNYCH ZAOPATRZENIA W ENERGIĘ I CIEPŁO NAZWA PROJEKTU BUDOWA BUDYNKU SZATNIOWEGO WRAZ Z NIEZBĘDNĄ INFRASTRUKTURĄ TECHNICZNĄ PROJEKTANT

Bardziej szczegółowo

USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) (Dz. U. z dnia 10 maja 2011 r.)

USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) (Dz. U. z dnia 10 maja 2011 r.) Dz.U.2011.94.551 USTAWA z dnia 15 kwietnia 2011 r. o efektywności energetycznej 1) (Dz. U. z dnia 10 maja 2011 r.) Rozdział 1 Przepisy ogólne Art. 1. Ustawa określa: 1) krajowy cel w zakresie oszczędnego

Bardziej szczegółowo

Jerzy Żurawski Wrocław, ul. Pełczyńska 11, tel. 071-321-13-43,www.cieplej.pl

Jerzy Żurawski Wrocław, ul. Pełczyńska 11, tel. 071-321-13-43,www.cieplej.pl OCENA ENERGETYCZNA BUDYNKÓW Jerzy Żurawski Wrocław, ul. Pełczyńska 11, tel. 071-321-13-43,www.cieplej.pl SYSTEM GRZEWCZY A JAKOŚĆ ENERGETYCZNA BUDNKU Zapotrzebowanie na ciepło dla tego samego budynku ogrzewanego

Bardziej szczegółowo

G 10.3 Sprawozdanie o mocy i produkcji energii elektrycznej i ciepła elektrowni (elektrociepłowni) przemysłowej

G 10.3 Sprawozdanie o mocy i produkcji energii elektrycznej i ciepła elektrowni (elektrociepłowni) przemysłowej MINISTERSTWO GOSPODARKI, pl. Trzech KrzyŜy 3/5, 00-507 Warszawa Nazwa i adres jednostki sprawozdawczej G 10.3 Sprawozdanie o mocy i produkcji energii elektrycznej i ciepła elektrowni (elektrociepłowni)

Bardziej szczegółowo

Finansowanie infrastruktury energetycznej w Programie Operacyjnym Infrastruktura i Środowisko

Finansowanie infrastruktury energetycznej w Programie Operacyjnym Infrastruktura i Środowisko Głównym celem tego programu jest wzrost atrakcyjności inwestycyjnej Polski i jej regionów poprzez rozwój infrastruktury technicznej przy równoczesnej ochronie i poprawie stanu środowiska, zdrowia społeczeństwa,

Bardziej szczegółowo

Efektywność energetyczna, podstawy prawne i zachęty prawno- ekonomiczne przygotowane przez polski rząd

Efektywność energetyczna, podstawy prawne i zachęty prawno- ekonomiczne przygotowane przez polski rząd Efektywność energetyczna, podstawy prawne i zachęty prawno- ekonomiczne przygotowane przez polski rząd dr inż. Arkadiusz Węglarz Dyrektor ds. Zrównoważonego Rozwoju w KAPE S.A. 2012-11-10 Krajowa Agencja

Bardziej szczegółowo

Konferencja Inteligentny Zakład Rozlewniczy 25-27.11.2015

Konferencja Inteligentny Zakład Rozlewniczy 25-27.11.2015 . Konferencja Inteligentny Zakład Rozlewniczy 25-27.11.2015 OBSZARY EFEKTYWNOŚCI I BEZPIECZEŃSTWA KOMÓRKA DS. GOSPODARKI ENERGETYCZNEJ/MEDIAMI EFEKTYWNOŚĆ STRATEGIA EFEKTYWNOŚCI ENERGETYCZNEJ KONTROLING

Bardziej szczegółowo