PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI"

Transkrypt

1 PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I LICEUM OGÓLNOKSZTAŁCĄCE IM. WŁ. BRONIEWSKIEGO W BEŁCHATOWIE Dorota Herudzińska... Joanna Jarzębska -Wrona... Marlena Komorowska... Barbara Woszczyk...

2 1 CELE PRZEDMIOTOWEGO SYSTEMU OCENIANIA: OBSZARY AKTYWNOŚCI OCENIANIA: OCENY CZĄSTKOWE: KONTRAKT Z UCZNIAMI: CZĘSTOTLIWOŚĆ OCENIANIA: KRYTERIA OCENIANIA: OCENA NIEDOSTATECZNA OCENA DOPUSZCZAJĄCA OCENA DOSTATECZNA OCENA DOBRA OCENA BARDZO DOBRA OCENA CELUJĄCA WIADOMOŚCI I UMIEJĘTNOŚCI POZIOM ROZSZERZONY ZBIÓR LICZB RZECZYWISTYCH RACHUNEK ALGEBRAICZNY LOGIKA I ZBIORY FUNKCJE I ICH WŁASNOŚCI FUNKCJA LINIOWA FUNKCJE TRYGONOMETRYCZNE GEOMETRIA FUNKCJA KWADRATOWA WIELOMIANY FUNKCJE WYMIERNE CIĄGI LICZBOWE ELEMENTY ANALIZY MATEMATYCZNEJ ZWIĄZKI MIAROWE FUNKCJA WYKŁADNICZA, FUNKCJA LOGARYTMICZNA STEREOMETRIA RACHUNEK PRAWDOPODOBIEŃSTWA, STATYSTYKA OPISOWA WIADOMOŚCI I UMIEJĘTNOŚCI POZIOM PODSTAWOWY ZBIÓR LICZB RZECZYWISTYCH RACHUNEK ALGEBRAICZNY LOGIKA I ZBIORY FUNKCJE I ICH WŁASNOŚCI FUNKCJA LINIOWA FUNKCJE TRYGONOMETRYCZNE GEOMETRIA FUNKCJA KWADRATOWA WIELOMIANY FUNKCJE WYMIERNE CIĄGI LICZBOWE FUNKCJA WYKŁADNICZA, WŁASNOŚCI LOGARYTMU STEREOMETRIA RACHUNEK PRAWDOPODOBIEŃSTWA, STATYSTYKA OPISOWA UWAGI KOŃCOWE Strona 2 z 44

3 1 CELE PRZEDMIOTOWEGO SYSTEMU OCENIANIA: Celem przedmiotowego systemu oceniania jest: motywowanie do pracy informowanie ucznia o poziomie jego osiągnięć edukacyjnych i postępach w tym zakresie, informowanie rodziców o postępach, trudnościach i specjalnych uzdolnieniach ucznia, dostarczanie nauczycielowi informacji na temat skuteczności stosowanych metod pracy, umożliwienie nauczycielowi doskonalenia organizacji i metod pracy dydaktyczno-wychowawczych. Uczeń otrzymuje oceny cząstkowe i na ich podstawie dwie noty sumujące: semestralną, końcową. Strona 3 z 44

4 2 OBSZARY AKTYWNOŚCI OCENIANIA: Do obszarów aktywności oceniania na lekcjach matematyki zaliczane są: ustna prezentacja wiedzy ucznia. pisemne prace klasowe (obejmuje pewien dział). pisemne prace (kartkówki obejmujące trzy, cztery ostatnie tematy). zadania domowe. aktywność na lekcjach. rozwiązywanie zadań o podwyższonym stopniu trudności. udział w konkursach matematycznych. projekt opracowany przez ucznia na zadany temat. Strona 4 z 44

5 3 Oceny cząstkowe: Oceny cząstkowe przedstawiają się następująco: 0% - 39% ndst niedostateczny 40% - 54% dop dopuszczający 55% - 74% dst dostateczny 75% - 90% db dobry 91% - 100% bdb bardzo dobry Zestaw może zawierać zadanie dodatkowe na ocenę celującą wykraczające poza materiał realizowany w danej klasie. Jeżeli uczeń uzyskał przynajmniej 50% punktów za to zadanie, to zdobyte punkty dolicza się do ogólnej sumy punktów. Uczeń otrzymuje ocenę celującą jeżeli rozwiązał zadanie dodatkowe i podanej skali uzyskał ocenę bardzo dobrą. Strona 5 z 44

6 4 KONTRAKT Z UCZNIAMI: Na lekcjach matematyki oceniane są wyżej wymienione formy aktywności według skali ocen: celujący, bardzo dobry, dostateczny, dopuszczający, niedostateczny. Prace pisemne obejmujące większy dział materiału zapowiadane są z tygodniowym wyprzedzeniem. Uczeń zostaje poinformowany o typie zadań obowiązujących na sprawdzianie. Krótkie prace pisemne mogą być niezapowiedziane przez nauczyciela (ich czas nie może przekraczać 20 minut). Uczeń powinien pisać przynajmniej 75% zapowiedzianych prac pisemnych. W przeciwnym razie nauczyciel może żądać pisemnego zaliczenia materiału z całego semestru. Nauczyciel może zezwolić na poprawę oceny niedostatecznej z zapowiedzianej pracy pisemnej raz w semestrze. Za nieuzasadniony brak pracy domowej uczeń otrzymuje ocenę niedostateczną. Uczeń powinien zgłosić brak zeszytu przed lekcją. Uczeń wracając do szkoły po dłuższej nieobecności uzgadnia z nauczycielem termin wyrównania braków. Uczeń może być nieprzygotowany do zajęć 1 raz w semestrze. Warunki i tryb uzyskania oceny wyższej niż przewidywana ocena śródroczna, roczna regulują zapisy wewnątrzszkolnego systemu oceniania zawarte w Statucie Szkoły. Strona 6 z 44

7 5 CZĘSTOTLIWOŚĆ OCENIANIA: Odpowiedź ustna co najmniej raz w semestrze Sprawdziany pisemne po zakończeniu działu Kartkówki co najmniej dwa razy w semestrze Zadania domowe co najmniej raz w semestrze Strona 7 z 44

8 6.1 OCENA NIEDOSTATECZNA: 6 KRYTERIA OCENIANIA: Uczeń nie spełnił co najmniej 50% wymagań podstawowych i: nie radzi sobie ze zrozumieniem najprostszych pojęć, algorytmów i twierdzeń; popełnia rażące błędy w rachunkach; nie potrafi (nawet przy pomocy nauczyciela, który między innymi zadaje pytania pomocnicze) wykonać najprostszych ćwiczeń i zadań; nie wykazuje najmniejszych chęci współpracy w celu uzupełnienia braków nabycia podstawowej wiedzy. 6.2 OCENA DOPUSZCZAJĄCA Uczeń spełnił 50% wymagań podstawowych i potrafi: samodzielnie lub z niewielką pomocą nauczyciela wykonywać ćwiczenia i zadania o niewielkim stopniu trudności; wykazać się znajomością i rozumieniem najprostszych pojęć i algorytmów; operować najprostszymi obiektami abstrakcyjnymi (liczbami, zbiorami, zmiennymi i zbudowanymi z nich wyrażeniami). Strona 8 z 44

9 6.3 OCENA DOSTATECZNA Uczeń spełnił 75% wymagań podstawowych, co pozwala mu na: wykazanie się znajomością i rozumieniem podstawowych pojęć i algorytmów; stosowanie poznanych wzorów i twierdzeń w rozwiązywaniu typowych ćwiczeń i zadań; wykonywanie prostych obliczeń i przekształceń matematycznych. 6.4 OCENA DOBRA Uczeń spełnił 75% wymagań podstawowych oraz 50% wymagań ponadpodstawowych, a także potrafi: samodzielnie rozwiązywać typowe zadania; wykazywać się znajomością i rozumieniem poznanych pojęć i twierdzeń oraz algorytmów; posługiwać się językiem matematycznym, który może zawierać jedynie nieliczne błędy i potknięcia; sprawnie rachować; przeprowadzić proste rozumowania dedukcyjne. Strona 9 z 44

10 6.5 OCENA BARDZO DOBRA Uczeń spełnił 75% wymagań podstawowych oraz 75% wymagań ponadpodstawowych, oraz potrafi: sprawnie rachować; samodzielnie rozwiązywać zadania; wykazać się znajomością definicji i twierdzeń oraz umiejętnością ich zastosowania w zadaniach; posługiwać się poprawnym językiem matematycznym; samodzielnie zdobywać wiedzę; przeprowadzać rozmaite rozumowania dedukcyjne. 6.6 OCENA CELUJĄCA Uczeń spełnił wszystkie wymagania na ocenę bardzo dobrą oraz rozwiązał wskazane zadanie wykraczające poza treści programowe i: twórczo rozwija własne uzdolnienia i zainteresowania; uczestniczy w zajęciach pozalekcyjnych; pomysłowo i oryginalnie rozwiązuje nietypowe zadania; bierze udział i osiąga sukcesy w konkursach i olimpiadach matematycznych. Strona 10 z 44

11 7 WIADOMOŚCI I UMIEJĘTNOŚCI - POZIOM ROZSZERZONY 7.1 ZBIÓR LICZB RZECZYWISTYCH - wskazuje liczby naturalne, całkowite, wymierne, niewymierne; - określa wykonalność działań w zbiorach N, C, W, NW, R; - określa wzajemne relacje między zbiorami liczbowymi; - zna i stosuje cechy podzielności w zbiorze liczb całkowitych; - porównuje liczby wymierne; - usuwa niewymierność z mianownika ułamka; - zaznacza liczbę niewymierną na osi liczbowej; wykazuje niewymierność niektórych liczb (np. 2, 3 ); -oblicza średnią arytmetyczną, geometryczną, harmoniczną i kwadratową dwóch trzech, n liczb; -przeprowadza złożone dowody indukcyjne ( np. nierówności ). - zamienia ułamek dziesiętny skończony lub nieskończony okresowy na ułamek zwykły; - porównuje dwie liczby rzeczywiste, liczbę wymierną z liczbą niewymierną, dwie liczby niewymierne; - określa wartość bezwzględną liczby rzeczywistej; - omawia własności wartości bezwzględnej i jej interpretację geometryczną; - stosuje wartość bezwzględną do rozwiązywania równań i nierówności; - zaznacza na osi przedziały liczbowe oraz odczytuje wyniki działań mnogościowych na tych przedziałach; - przeprowadza obliczenia posługując się przybliżeniami liczb ; - określa błąd przybliżenia, - wyjaśnia zasadę indukcji matematycznej; - stosuje zasadę indukcji matematycznej. Strona 11 z 44

12 7.2 RACHUNEK ALGEBRAICZNY - wykonuje działania na ułamkach; - stosuje obliczenia procentowe w zadaniach z życia codziennego (oprocentowania kredytu, oszczędności, obniżki i podwyżki cen itp.); - definiuje potęgę liczby rzeczywistej o wykładniku naturalnym i całkowitym; - oblicza dowolny wyraz w rozwinięciu dwumianu (a+b) n ; - stosuje wzory skróconego mnożenia w obliczaniu wyrażeń algebraicznych. - definiuje pierwiastek arytmetyczny; - podaje własności działań na potęgach i pierwiastkach; - podnosi do potęgi liczby rzeczywiste; - wykonuje działania na potęgach i pierwiastkach; - stosuje wzory skróconego mnożenia do wykonywania obliczeń; - zna pojęcie silni i symbolu Newtona ; - podnosi do dowolnej potęgi sumę a+b oraz posługuje się przy tym trójkątem Pascala. Strona 12 z 44

13 7.3 LOGIKA I ZBIORY - potrafi rozpoznać zdanie logiczne i formę zdaniową; - podaje przykłady zdań w sensie logicznym; - ocenia wartość logiczną zdań; - tworzy zdania złożone i ocenia ich wartości logiczne; - tworzy zaprzeczenia zdań prostych i zdań złożonych; - sprawdza metodą zero-jedynkową tautologiczność wyrażeń; - dowodzi słuszności podanych praw działań na zbiorach, - rysuje wykresy form zdaniowych dwóch zmiennych, - ocenia wartość logiczną zdania z kwantyfikatorem oraz układa jego zaprzeczenie. - podaje określenie formy zdaniowej; - podaje przykłady form zdaniowych i określa ich dziedziny; - określa relacje między zbiorami; - wykonuje działania na zbiorach; - sprawdza słuszność podanych praw działań na zbiorach na diagramach Venne a. Strona 13 z 44

14 7.4 FUNKCJE I ICH WŁASNOŚCI Uczeń : - zna różne sposoby określania funkcji; - wskazuje, które z odwzorowań jest funkcją, a które nie; - podaje podstawowe terminy związane z funkcją; - opisuje za pomocą funkcji zależności występujące w różnych dziedzinach życia; - podaje dziedzinę i zbiór wartości funkcji; - wyznacza punkty charakterystyczne funkcji; - oblicza wartość funkcji w punkcie; - wyznacza liczbę, dla której funkcja przyjmuje określoną wartość; Uczeń : - podaje wartość najmniejszą i największą funkcji określonej w przedziale, na podstawie wzoru lub wykresu funkcji; - stosuje przekształcenia do sporządzania wykresów funkcji y= f( x ), y= f(x) ; - sprawdza, czy funkcja dana wzorem jest różnowartościowa, parzysta, nieparzysta, monotoniczna. - stosuje przekształcenia do sporządzania wykresów funkcji y= f(x-p)+g, y= - f(x),y= f(-x); - sporządza wykresy funkcji i odczytuje z nich własności funkcji. Strona 14 z 44

15 7.5 FUNKCJA LINIOWA - definiuje funkcję liniową; - rozpoznaje funkcję liniową na podstawie wzoru, wykresu; - podaje przykłady funkcji liniowej rosnącej, malejącej, stałej; - umie wykonać wykres funkcji liniowej; - umie wyznaczyć miejsce zerowe funkcji liniowej; - określa znak funkcji liniowej; - określa monotoniczność funkcji liniowej; - znajduje wzór funkcji liniowej na podstawie danych; - umie rozwiązać równanie i nierówność pierwszego stopnia z jedną niewiadomą; - umie rozwiązywać układy równań metodą podstawienia i przeciwnych współczynników; - umie przedstawić graficzną interpretację układu równań z dwiema niewiadomymi; - umie przeprowadzić dyskusję rozwiązalności równania liniowego z parametrami; - umie zastosować równania i nierówności do rozwiązywania zadań tekstowych; - umie zinterpretować geometrycznie równania i nierówności liniowe z dwiema niewiadomymi; - potrafi przeprowadzić dyskusję rozwiązalności układu równań pierwszego stopnia z dwiema niewiadomymi; - potrafi praktycznie zastosować układy równań do rozwiązywania zadań tekstowych; - umie rozwiązywać równania, układy równań z wartością bezwzględną. - potrafi określić typ układu równań. Strona 15 z 44

16 7.6 FUNKCJE TRYGONOMETRYCZNE - określa sinus, cosinus, tangens, cotangens kąta w trójkącie prostokątnym; - zna wartości funkcji trygonometrycznych dla kąta 30, 45, 60 ; - potrafi utożsamiać kąt dowolnej miary stopniowej z kątem o mierze stopniowej z przedziału (0 ;360 ); - określa funkcje trygonometryczne dowolnego kąta; - zamienia miarę łukową na stopniową i odwrotnie; - zna i stosuje wzory redukcyjne do przekształcania wyrażeń trygonometrycznych; - potrafi posługiwać się tablicami wartości funkcji trygonometrycznych; - potrafi z wykresów funkcji trygonometrycznych odczytać ich własności i je omówić; - stosuje wzory na rozwiązanie równań trygonometrycznych elementarnych do rozwiązania równań o większym stopniu złożoności; - posługuje się wykresami funkcji trygonometrycznych w rozwiązywaniu nierówności trygonometrycznych; - potrafi przekształcać wyrażenia stosując poznane własności funkcji trygonometrycznych. - potrafi narysować kąt o danej wartości funkcji trygonometrycznej; - umie obliczyć wartości pozostałych funkcji trygonometrycznych mając informację o jednej z funkcji; - stosuje związki między funkcjami trygonometrycznymi tego samego argumentu; - potrafi naszkicować wykresy funkcji trygonometrycznych; - potrafi rozwiązać proste równanie trygonometryczne. Strona 16 z 44

17 7.7 GEOMETRIA - potrafi wskazać postać kierunkową, ogólną równania prostej; - umie napisać równanie prostej przechodzącej przez dane dwa punkty; - umie napisać równanie prostej równoległej, prostopadłej do danej prostej; - potrafi obliczyć współrzędne wektora; - wykonuje działania na wektorach; - stosuje wektory do rozwiązywania zadań; - potrafi obliczać długość odcinka na płaszczyźnie kartezjańskiej; - określa odległość punktu od prostej; - oblicza odległość punktu od prostej na płaszczyźnie kartezjańskiej; - definiuje koło i okrąg; - wyznacza równanie okręgu, nierówność koła; - umie wyznaczyć środek okręgu (koła) i długość promienia z równania (nierówności) kanonicznego; - określa wzajemne położenie prostej i okręgu; - określa wzajemne położenie dwóch okręgów; - umie określić zależność pomiędzy kątami w kole; - wykorzystuje warunki wpisania, opisania czworokąta na okręgu do rozwiązywania zadań; - stosuje tw. Talesa do zadań z życia codziennego; - zna warunek wpisania czworokąta w okrąg; - zna warunek opisania czworokąta na okręgu; - określa rodzaje czworokątów i ich własności; - wyjaśnia pojęcie iloczynu skalarnego; - potrafi podać postać odcinkową prostej; - zna interpretacje geometryczne współczynników równania prostej w postaci ogólnej, kierunkowej, odcinkowej; - potrafi znaleźć równanie siecznej, stycznej do okręgu przechodzącej przez dany punkt; - wykazuje twierdzenie o istnieniu szczególnych punktów trójkąta; - rozwiązuje zadania na dowodzenie z zastosowaniem tw. Talesa; - zna i stosuje twierdzenie o dwusiecznej kąta w trójkącie; - rozwiązuje zadania z wykorzystaniem elementów geometrii analitycznej; - stosuje iloczyn skalarny do dowodzenia twierdzeń i do rozwiązywania trójkątów; - sprawdza, czy przekształcenie geometryczne ma punkty stałe, czy można je odwrócić; - składa przekształcenia; - stosuje cechy przystawania trójkątów do prostych zadań na dowodzenie; - zna własności iloczynu skalarnego; Strona 17 z 44 - składa obroty wokół tego

18 - oblicza iloczyn skalarny dwóch wektorów; samego punktu; - określa przekształcenia geometryczne i podaje ich przykłady; - wskazuje wśród przekształceń geometrycznych izometrie, otrzymuje obrazy typowych figur geometrycznych w izometrii; - rysuje obraz figury w symetrii osiowej, konstruuje obraz punktu, obraz okręgu, wielokąta w symetrii osiowej; - wskazuje figurę mającą oś symetrii oraz podaje przykłady figur osiowo symetrycznych; - rozpoznaje symetrię środkową, przekształca figurę przez symetrię środkową i rysuje obraz tej figury; - wskazuje figurę mającą środek symetrii oraz podaje przykłady figur środkowo symetrycznych; - omawia obrót i jego własności, wyjaśnia pojęcie kąta skierowanego, bada obraz figury w obrocie; - znajduje obraz figury w translacji, podaje współrzędne obrazu punktu w translacji; - podaje współrzędne wektora translacji mając współrzędne punktu i jego obrazu; - stosuje własności przekształceń izometrycznych w zadaniach konstrukcyjnych; - stosuje cechy przystawania trójkątów do prostych zadań na dowodzenie; - przekształca figurę przez symetrię środkową i rysuje obraz tej figury; - składa obroty wokół tego samego punktu; - wyjaśnia czym jest złożenie dwóch symetrii osiowych w zależności od konfiguracji osi; - stosuje własności przekształceń izometrycznych w zadaniach na dowodzenie; - odnajduje niezmienniki jednokładności; - stosuje zdobyte wiadomości do zagadnień teoretycznych. - rysuje obraz figury w jednokładności, znajduje współrzędne obrazu punktu, mając współrzędne punktu i środka jednokładności; - podaje przykłady figur jednokładnych, konstruuje środki jednokładności pary okręgów. - rozpoznaje oraz rysuje figury podobne, określa własności figur podobnych, podaje przykłady podobieństw; - wskazuje figury podobne, określa podobieństwo trójkątów i wielokątów; - oblicza pola obrazów wielokątów w podobieństwie. - stosuje zdobyte wiadomości do zagadnień praktycznych. Strona 18 z 44

19 7.8 FUNKCJA KWADRATOWA - definiuje jednomian kwadratowy, szkicuje jego wykres i odczytuje własności z wykresu; - definiuje trójmian kwadratowy, sprowadza trójmian kwadratowy do postaci kanonicznej; - sporządza wykres funkcji kwadratowej, przedstawiając ją w postaci kanonicznej, znajdując w ten sposób współrzędne wierzchołka; - wyznacza ekstremum funkcji kwadratowej oraz jej wartość najmniejszą i największą w przedziale; - formułuje twierdzenie o liczbie miejsc zerowych funkcji kwadratowej; zapisuje funkcję kwadratową w postaci iloczynowej; - zna wzory Viete a i stosuje je w zadaniach; - rozwiązuje równania i nierówności kwadratowe z pierwiastkami arytmetycznymi i z wartością bezwzględną; - rysuje wykresy funkcji kwadratowych z wartością bezwzględną; - rozwiązuje trudniejsze równania i nierówności kwadratowe z parametrem. - wyznacza przedziały, w których funkcja kwadratowa jest dodatnia, a w których ujemna; - rozwiązuje zadania z treścią wymagające korzystania z własności funkcji kwadratowej; - rozwiązuje równania kwadratowe, w tym również bez użycia wyróżnika; - rozwiązuje nierówności kwadratowe, w tym również bez użycia wyróżnika; - rozwiązuje proste równania i nierówności prowadzące do równań kwadratowych (równania i nierówności dwukwadratowe); - rozwiązuje zadania z treścią prowadzące do równań i nierówności kwadratowych; - rozwiązuje proste równania i nierówności kwadratowe z parametrem Strona 19 z 44

20 7.9 WIELOMIANY - definiuje wielomian jednej zmiennej; - określa stopień wielomianu; - porównuje dwa wielomiany; - wykonuje działania arytmetyczne na wielomianach; - ustala zależność stopnia sumy i różnicy wielomianów od stopni składników, a iloczynu od stopni czynników; - wykonuje dzielenie wielomianów; Uczeń - rozwiązuje równania i nierówności wielomianowe z wartością bezwzględną; - rysuje wykresy wielomianów z wartością bezwzględną; - rozwiązuje trudniejsze równania i nierówności wielomianowe z parametrem.. - ustala podzielność wielomianu przez wielomian; - dzieli wielomian przez dwumian za pomocą schematu Hornera; - zna pojęcie pierwiastka wielomianu i pojęcie pierwiastka wielokrotnego wielomianu i stosuje je w zadaniach; - formułuje twierdzenie Bezouta i stosuje je w zadaniach; - rozkłada wielomian na czynniki; - wyznacza najmniejszą wspólną wielokrotność oraz największy wspólny dzielnik wielomianów; - rozwiązuje równania wielomianowe; - szkicuje wykresy wielomianów; - rozwiązuje nierówności wielomianowe; - rozwiązuje łatwiejsze równania i nierówności wielomianowe z parametrem Strona 20 z 44

21 7.10 FUNKCJE WYMIERNE - rozpoznaje funkcję wymierną; - wyznacza dziedzinę funkcji wymiernej; - wykonuje działania arytmetyczne na funkcji wymiernej, określając warunki wykonywalności tych działań; - dodaje, odejmuje, mnoży i dzieli wyrażenia wymierne, przyjmując stosowne założenia; - sporządza wykres funkcji homograficznej i odczytuje z niego własności funkcji; - rozwiązuje trudniejsze równania i nierówności wymierne z parametrem. - rozwiązuje równanie wymierne i nierówność wymierną; - rozwiązuje zadania tekstowe prowadzące do prostych równań wymiernych; - rozwiązuje łatwiejsze równania i nierówności wymierne z parametrem Strona 21 z 44

22 7.11 CIĄGI LICZBOWE - określa ciąg, w tym ciąg liczbowy i podaje przykłady ciągów; - wypisuje kolejne wyrazy ciągu, podaje wzór na n ty wyraz ciągu; - definiuje ciąg rosnący, malejący, stały, podaje przykłady ciągów monotonicznych, sprawdza, czy dany ciąg liczbowy jest monotoniczny; - rozpoznaje ciąg arytmetyczny, podaje przykłady ciągów arytmetycznych, bada monotoniczność ciągu arytmetycznego; - oblicza sumę wyrazów ciągu arytmetycznego i wyznacza ciąg arytmetyczny, mając typowe zadanie; - rozwiązuje proste przykłady z ciągiem arytmetycznym; - rozwiązuje zadania tekstowe z różnych dziedzin z ciągiem arytmetycznym i geometrycznym. - wyznacza granice ciągów funkcji, w których wzorach występują pierwiastki. - rozwiązuje trudniejsze zadania z szeregiem geometrycznym - rozpoznaje ciąg geometryczny, podaje przykłady ciągów geometrycznych, bada monotoniczność ciągu geometrycznego; - oblicza sumę wyrazów ciągu geometrycznego, wyznacza ciąg geometryczny, mając typowe zadanie; - rozwiązuje proste przykłady z ciągiem geometrycznym; - posługuje się ciągiem geometrycznym do obliczeń związanych z procentem składanym, z oprocentowaniem kredytów i lokat bankowych; - określa otoczenie danego punktu i rozstrzyga, czy prawie wszystkie wyrazy ciągu nieskończonego mają określoną wartość - rozstrzyga czy dana liczba jest granicą danego ciągu nieskończonego, stosuje twierdzenia do wyznaczania granic ciągów; - wyznacza granice ciągów jako funkcji wymiernej i wielomianów zmiennej naturalnej, - rozstrzyga rozbieżność prostych przykładów ciągów. - rozpoznaje szereg geometryczny, rozstrzyga zbieżność szeregu geometrycznego, oblicza sumę szeregu geometrycznego; - rozwiązuje łatwiejsze zadania z szeregiem geometrycznym. Strona 22 z 44

23 7.12 ELEMENTY ANALIZY MATEMATYCZNEJ - oblicza granicę funkcji wielomianowej, wymiernej w punkcie właściwym i niewłaściwym; - odczytuje z wykresu punkty i przedziały ciągłości oraz punkty i przedziały nieciągłości funkcji; - oblicza iloraz różnicowy funkcji; - oblicza pochodną funkcji wielomianowej, wymiernej; - stosuje wkw istnienia ekstremum funkcji dla funkcji wielomianowej, wymiernej; - określa ciągłość danej funkcji w punkcie i przedziale; - przedstawia interpretację geometryczną pochodnej funkcji w punkcie; - wyznacza równanie stycznej do krzywej w danym punkcie; - rozróżnia pojęcie pochodnej funkcji w punkcie oraz pochodnej jako funkcji; - udowadnia istnienie pochodnej funkcji w danym punkcie; - udowadnia twierdzenia o pochodnych sumy, różnicy, iloczynu i ilorazu funkcji; - rozwiązuje zadania dotyczące równania stycznej do krzywej; - rozwiązuje zadania z parametrem związane z monotonicznością funkcji; - określa liczbę rozwiązań równania f(x) = m; - wykorzystuje badanie zmienności funkcji, rachunek pochodnych, granic do rozwiązywania zadań o treści geometrycznej - określa związek między znakiem pochodnej i monotonicznością funkcji; - bada monotoniczność funkcji wielomianowej i wymiernej z zastosowaniem pochodnej; - wyznacza ekstremum funkcji; - oblicza najmniejszą i największą wartość funkcji wielomianowej i wymiernej w przedziale domkniętym; - bada przebieg zmienności funkcji wielomianowej i wymiernej; - rozwiązuje proste zadania optymalizacyjne. Strona 23 z 44

24 7.13 ZWIĄZKI MIAROWE - formułuje twierdzenie sinusów oraz wyjaśnia jego dowód; - rozwiązuje każdy trójkąt z zastosowaniem twierdzenia sinusów; - dowodzi związków miarowych w trójkącie; - formułuje twierdzenie cosinusów oraz wyjaśnia jego dowód; - stosuje twierdzenie cosinusów w prostych zadaniach rachunkowych; - podaje i stosuje w zadaniach wnioski z twierdzenia cosinusów; - rozwiązuje każdy trójkąt z zastosowaniem twierdzenia cosinusów. Strona 24 z 44

25 7.14 FUNKCJA WYKŁADNICZA, FUNKCJA LOGARYTMICZNA - podaje pojęcie potęgi liczby rzeczywistej o wykładniku całkowitym i wykonuje działania na tych potęgach; - podnosi do potęgi wymiernej.liczbę rzeczywistą, wykonuje działania na potęgach o wykładniku wymiernym i porównuje potęgi o wykładniku wymiernym; - sporządza wykresy funkcji potęgowych i odczytuje własności na podstawie wykresów; - rozwiązuję równania i nierówności potęgowe; - wykonuje działania na potęgach o wykładniku niewymiernym; - porównuje potęgi o wykładnikach niewymiernych; - rozwiązuje równania i nierówności wykładnicze oraz logarytmiczne z parametrem. - sporządza wykresy funkcji wykładniczych i odczytuje własności z tych wykresów; - rozwiązuję równania i nierówności wykładnicze; - wykonuje podstawowe obliczenie przy pomocy logarytmów; - sporządza wykresy funkcji logarytmicznych i odczytuje własności z tych wykresów; - rozwiązuję równania i nierówności logarytmiczne. Strona 25 z 44

26 7.15 STEREOMETRIA - definiuje i rozpoznaje graniastosłup prosty i prawidłowy - oblicza objętość i pole powierzchni całkowitej graniastosłupa - definiuje i rozpoznaje ostrosłup prawidłowy - oblicza objętość i pole powierzchni całkowitej ostrosłupa - oblicza objętość i pole powierzchni całkowitej ostrosłupa ściętego - rozpoznaje wielomiany foremne na podstawie siatek. - wskazuje kąty nachylenia liniowych elementów graniastosłupów i ostrosłupów do płaszczyzny podstawy, kąty miedzy tymi elementami. - wskazuje kąty dwuścienne ściany bocznej i podstawy oraz ścian bocznych. - rozwiązuje zadania z przekrojami płaskimi graniastosłupów i ostrosłupów - rozwiązuje trudniejsze zadania ze stereometrii, posługując się wiedzą z geometrii płaszczyzny i trygonometrii. - rozpoznaje bryły obrotowe i oblicza ich objętość i pole powierzchni całkowitej. - wykonuje siatki brył oraz rozpoznaje bryłę na podstawie siatki - rozwiązuje proste zadania ze stereometrii, posługując się wiedzą z geometrii płaszczyzny i trygonometrii. Strona 26 z 44

27 7.16 RACHUNEK PRAWDOPODOBIEŃSTWA - definiuje permutacje zbioru, kombinacje zbioru oraz wariacje bez powtórzeń i wariacje z powtórzeniami, rozwiązuje zadania kombinatoryczne; - rozumie język rachunku prawdopodobieństwa; zna pojecie zdarzenia i działania na zdarzeniach oraz kojarzy je z pojęciami nauki o zbiorach, podaje przykłady zdarzeń; Uczeń : - określa najbardziej prawdopodobną liczbę sukcesów w schemacie Bernoulliego. - zna pojęcie częstości zdarzenia i jej związek z prawdopodobieństwem; - definiuje prawdopodobieństwo i jego własności; - wykazuje proste własności prawdopodobieństwa; - zna twierdzenie o rozkładzie prawdopodobieństwa; - zna klasyczną definicję prawdopodobieństwa; - oblicza prawdopodobieństwa w skończonych przestrzeniach probabilistycznych; - rozwiązuje proste zadania z zastosowaniem klasycznej definicji prawdopodobieństwa; - definiuje prawdopodobieństwo warunkowe i dowodzi poprawności tej definicji; - stosuje definicje prawdopodobieństwa warunkowego w rozwiązywaniu zadań; - zna twierdzenie na prawdopodobieństwo całkowite i stosuje je w zadaniach; - definiuje niezależność pary zdarzeń oraz n zdarzeń (n>2); - określa schemat Bernoulliego i rozpoznaje go w zadaniach; - wyznacza prawdopodobieństwo interesującej go liczby sukcesów w schemacie Bernoulliego; - definiuje średnią arytmetyczną, średnią ważoną, medianę, wariacje i odchylenie standardowe; - odczytuje dane statystyczne z tabel, diagramów i wykresów; - przedstawia dane empiryczne w postaci tabel, diagramów i wykresów; - przeprowadza analizę ilościową przedstawionych danych; - oblicza średnie danych liczbowych oraz odchylenia od nich; Strona 27 z 44

28 8 WIADOMOŚCI I UMIEJĘTNOŚCI - POZIOM PODSTAWOWY 8.1 ZBIÓR LICZB RZECZYWISTYCH - wskazuje liczby naturalne, całkowite, wymierne, niewymierne; - określa wykonalność działań w zbiorach N, C, W, NW, R; - wykazuje niewymierność niektórych liczb (np. 2, 3 ). - określa wzajemne relacje między zbiorami liczbowymi; - zna i stosuje cechy podzielności w zbiorze liczb całkowitych; - porównuje liczby wymierne; - usuwa niewymierność z mianownika ułamka; - zaznacza liczbę niewymierną na osi liczbowej; - zamienia ułamek dziesiętny skończony lub nieskończony okresowy na ułamek zwykły; - porównuje dwie liczby rzeczywiste, liczbę wymierną z liczbą niewymierną, dwie liczby niewymierne; - określa wartość bezwzględną liczby rzeczywistej; - omawia własności wartości bezwzględnej i jej interpretację geometryczną; - stosuje wartość bezwzględną do rozwiązywania równań i nierówności; - zaznacza na osi przedziały liczbowe oraz odczytuje wyniki działań mnogościowych na tych przedziałach; - przeprowadza obliczenia posługując się przybliżeniami liczb ; - określa błąd przybliżenia. Strona 28 z 44

29 8.2 RACHUNEK ALGEBRAICZNY - wykonuje działania na ułamkach; - stosuje obliczenia procentowe w zadaniach z życia codziennego (oprocentowania kredytu, oszczędności, obniżki i podwyżki cen itp.); - definiuje potęgę liczby rzeczywistej o wykładniku naturalnym i całkowitym; - definiuje pierwiastek arytmetyczny; - podaje własności działań na potęgach i pierwiastkach; - podnosi do potęgi liczby rzeczywiste; - wykonuje działania na potęgach i pierwiastkach; - stosuje wzory skróconego mnożenia do wykonywania obliczeń i przekształceń wyrażeń algebraicznych. Strona 29 z 44

30 8.3 LOGIKA I ZBIORY - potrafi rozpoznać zdanie logiczne i formę zdaniową; - podaje przykłady zdań w sensie logicznym; - ocenia wartość logiczną zdań; - tworzy zdania złożone i ocenia ich wartości logiczne; - tworzy zaprzeczenia zdań prostych i zdań złożonych; - sprawdza metodą zero-jedynkową tautologiczność wyrażeń; - dowodzi słuszności podanych praw działań na zbiorach, - rysuje wykresy form zdaniowych dwóch zmiennych, - ocenia wartość logiczną zdania z kwantyfikatorem oraz układa jego zaprzeczenie. - podaje określenie formy zdaniowej; - podaje przykłady form zdaniowych i określa ich dziedziny; - określa relacje między zbiorami; - wykonuje działania na zbiorach; - sprawdza słuszność podanych praw działań na zbiorach na diagramach Venne a. Strona 30 z 44

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

zna wykresy i własności niektórych funkcji, np. y = x, y =

zna wykresy i własności niektórych funkcji, np. y = x, y = Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Plan wynikowy z matematyki kl.i LO

Plan wynikowy z matematyki kl.i LO Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

IV etap edukacyjny Cele kształcenia wymagania ogólne

IV etap edukacyjny Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy

Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych Nauczyciel: mgr Karolina Bębenek z matematyki dla uczniów klasy I LO poziom podstawowy 1. Wprowadzenie do matematyki.

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony

Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony I. Procedury oceniania osiągnięć uczniów Ocenę celującą otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Dopuszczający Uczeń z potrafi : -zamienić ułamek zwykły na dziesiętny i odwrotnie -rozróżnia liczby wymierne i niewymierne -zna definicję liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Egzamin wstępny z matematyki na kierunek Matematyka będzie przeprowadzony

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM ZAKRES PODSTAWOWY. rok szkolny 2016/2017. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12

WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM ZAKRES PODSTAWOWY. rok szkolny 2016/2017. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM ZAKRES PODSTAWOWY rok szkolny 2016/2017 Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 Wymagania na ocenę dopuszczającą dotyczą zagadnień elementarnych, stanowiących

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum, technikum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry);

Bardziej szczegółowo

Dział I FUNKCJE I ICH WŁASNOŚCI

Dział I FUNKCJE I ICH WŁASNOŚCI MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku C e l e e d u k a c y j n e 1. Przygotowanie do świadomego i

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki

Bardziej szczegółowo

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

1.Funkcja logarytmiczna

1.Funkcja logarytmiczna Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad

Bardziej szczegółowo

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R.

ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R. ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 3 VIII 007 R. Przedstawione poniżej treści obejmujące zakres rozszerzony wyróżnione są pogrubioną

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

Określenie wymagań na poszczególne oceny dla klasy I TI /zakres podstawowy i rozszerzony/

Określenie wymagań na poszczególne oceny dla klasy I TI /zakres podstawowy i rozszerzony/ Określenie wymagań na poszczególne oceny dla klasy I TI /zakres podstawowy i rozszerzony/ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = 111 godz.)

Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = 111 godz.) Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = godz.) Ramowy rozkład materiału I. Podstawowe własności figur geometrycznych na płaszczyźnie, cz. 2...

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA KLASA 1 ZAKRES ROZSZERZONY

PRZEDMIOTOWY SYSTEM OCENIANIA KLASA 1 ZAKRES ROZSZERZONY PRZEDMIOTOWY SYSTEM OCENIANIA KLASA ZAKRES ROZSZERZONY Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program

Bardziej szczegółowo

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2. rok szkolny 2014/2015

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2. rok szkolny 2014/2015 KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2 NAZWA PROGRAMU POZIOMY WYMAGAŃ rok szkolny 2014/2015 Interdyscyplinarny program nauczania dla klas I-III gimnazjum obejmujący skorelowane

Bardziej szczegółowo