PROBLEMY SZYBKIEJ, BEZPOŚREDNIEJ MODULACJI LASERÓW W ŁĄCZACH ŚWIATŁOWODOWYCH O UJEMNEJ DYSPERSJI CHROMATYCZNEJ



Podobne dokumenty
MOŻLIWOŚĆ STOSOWANIA BEZPOŚREDNIO MODULOWANYCH LA- SRÓW W ŁĄCZACH ŚWIATŁOWODOWYCH 10 Gb/s W WARUNKACH ZNA- CZĄCEJ DYSPERSJI CHROMATYCZNEJ

Charakteryzacja telekomunikacyjnego łącza światłowodowego

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH

Transmisja przewodowa

FDM - transmisja z podziałem częstotliwości

Dyspersja światłowodów Kompensacja i pomiary

KOMPUTEROWY TESTER WIELOMODOWYCH TORÓW ŚWIATŁOWODOWYCH

Podstawy Przetwarzania Sygnałów

Wzmacniacze operacyjne

Światłowodowy kanał transmisyjny w paśmie podstawowym

Pomiary w instalacjach światłowodowych.

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

Analiza właściwości filtrów dolnoprzepustowych

A3 : Wzmacniacze operacyjne w układach liniowych

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki

FTF-S1XG-S31L-010D. Moduł SFP+ 10GBase-LR/LW, jednomodowy, 10km, DDMI. Referencja: FTF-S1XG-S31L-010D

ŚWIATŁOWODOWY SYSTEM TRANSMISJI WZORCOWYCH SYGNAŁÓW CZASU I CZĘSTOTLIWOŚCI

WZMACNIACZE OPERACYJNE

1. Nadajnik światłowodowy

Politechnika Warszawska

Analiza właściwości filtra selektywnego

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Optotelekomunikacja 1

Rys. 1. Wzmacniacz odwracający

KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH

NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )

KONWERTER RS-422 TR-43

Wprowadzenie do światłowodowych systemów WDM

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Parametry i technologia światłowodowego systemu CTV

Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

WYBRANE ASPEKTY DOBORU WŁÓKIEN DLA SYSTEMÓW ŚWIATŁOWODOWYCH ZE SZCZEGÓLNYM UWZGLĘDNIENIEM DYSPERSJI CHROMATYCZNEJ

IV. Transmisja. /~bezet

TELEKOMUNIKACJA ŚWIATŁOWODOWA

Zastosowania liniowe wzmacniaczy operacyjnych

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego

Systemy i Sieci Radiowe

Źródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM

Wzmacniacze optyczne ZARYS PODSTAW

Ćwiczenie nr 65. Badanie wzmacniacza mocy

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

KONWERTER RS-232 TR-21.7

Politechnika Białostocka

Tranzystor bipolarny LABORATORIUM 5 i 6

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny

Filtry aktywne filtr środkowoprzepustowy

Badanie widma fali akustycznej

Systemy transmisji o bardzo dużych zasięgach i przepływnościach Wykład 19 SMK

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Solitony i zjawiska nieliniowe we włóknach optycznych

Filtry aktywne filtr górnoprzepustowy

Pomiar drogi koherencji wybranych źródeł światła

Demodulator FM. o~ ~ I I I I I~ V

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

Podstawowe zastosowania wzmacniaczy operacyjnych

LABORATORIUM Sygnałów, Modulacji i Systemów ĆWICZENIE 2: Modulacje analogowe

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ

Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Wzmacniacze, wzmacniacze operacyjne

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Połączenia spawane światłowodów przystosowanych do multipleksacji falowej WDM

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu

Światłowody. Telekomunikacja światłowodowa

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

L ABORATORIUM UKŁADÓW ANALOGOWYCH

lim Np. lim jest wyrażeniem typu /, a

Dobór współczynnika modulacji częstotliwości

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014. Zadania z teleinformatyki na zawody III stopnia

Systemy i Sieci Telekomunikacyjne laboratorium. Modulacja amplitudy

WZMACNIACZ NAPIĘCIOWY RC

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

PL B1. Sposób i układ do modyfikacji widma sygnału ultraszerokopasmowego radia impulsowego. POLITECHNIKA GDAŃSKA, Gdańsk, PL

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów

Parametry elektryczne anteny GigaSektor PRO BOX 17/90 HV w odniesieniu do innych rozwiązań dostępnych obecnie na rynku.

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

Układy transmisji bezprzewodowej w technice scalonej, wybrane zagadnienia

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.

Sposoby opisu i modelowania zakłóceń kanałowych

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

WZMACNIACZ OPERACYJNY

Liniowe układy scalone w technice cyfrowej

Lekcja 20. Temat: Detektory.

MODULACJA. Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji. dr inż. Janusz Dudczyk

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi:

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

U 2 B 1 C 1 =10nF. C 2 =10nF

2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH

Wzmacniacz operacyjny

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Funkcja liniowa - podsumowanie

Transkrypt:

Przemysław Krehlik Akademia Górniczo-Hutnicza, Katedra Elektroniki al. Mickiewicza 3, 3-59 Kraków e-mail: krehlik@agh.edu.pl 26 Poznańskie Warsztaty Telekomunikacyjne Poznań 7-8 grudnia 26 PROBLEMY SZYBKIEJ, BEZPOŚREDNIEJ MODULACJI LASERÓW W ŁĄCZACH ŚWIATŁOWODOWYCH O UJEMNEJ DYSPERSJI CHROMATYCZNEJ Streszczenie: W pracy zbadano perspektywy stosowania bezpośrednio modulowanych laserów w łączach pracujących z prędkością 1 Gb/s, w przypadku wykorzystania światłowodów o ujemnej, przesuniętej dyspersji chromatycznej. Określono wnoszone przez dyspersję ograniczenie dystansu transmisji, a także pożądane parametry migotania lasera oraz wpływ współczynnika ekstynkcji na dyspersyjną degradację sygnału. Badania symulacyjne poparto weryfikacją eksperymentalną. 1. WSTĘP Praktyczna istotność zagadnień związanych z zachowaniem się sygnałów generowanych przez bezpośrednio modulowane lasery w światłowodach o ujemnej dyspersji pojawiła się wobec wprowadzenia do asortymentu dostępnych światłowodów nowego typu włókien z przesuniętą charakterystyką dyspersyjną, charakteryzujących się ujemnym współczynnikiem dyspersji w pasmach C i L (ang. D NZDSF; negative dispersion shifted fiber). Przykładem jest światłowód MetroCor produkowany prze firmę Corning [1-3], którego charakterystyki tłumienia i dyspersji przedstawia rys. 1. tłumienie [db/km],,3,2 Q E S C L 1285 136 16 153 156 1625-1 -2 13 1 15 16 Dł. fali [nm] Rys. 1. Tłumienie i dyspersja włókna MetroCor. dysp. [ps/nmkm] Zasadniczą jego cechą jest przesunięcie punktu zerowej dyspersji chromatycznej powyżej pasma L, w okolicę 163... 16 nm, oraz niewielka ujemna, liniowo nachylona dyspersja w całym zakresie III okna (ok. -7,2 ps/nm*km dla 155 nm). Ponadto na uwagę zasługuje małe tłumienie w punkcie piku wodnego (<, db/km). Producent rekomenduje tego typu włókno jako szczególnie uniwersalne medium transmisyjne dla sieci metropolitalnych; małe tłumienie piku wodnego umożliwia wykorzystanie pełnej skali ekonomicznego zwielokrotnienia falowego CWDM, natomiast niewielka, lecz niezerowa dyspersja w pasmach C i L pozwala na stosowanie bardziej zaawansowanego zwielokrotnienia DWDM, również z wykorzystaniem wzmacniaczy optycznych. Ponadto, i to jest istotna nowość, ujemna dyspersja jest mniej szkodliwa od dodatniej w kontekście migotania (ang. chirp) bezpośrednio modulowanych nadajników laserowych, co umożliwia stosowanie nawet bardzo szybkich modulacji przy stosunkowo dużych dystansach transmisji, bez konieczności kompensacji dyspersji. Zważywszy na komercyjną dostępność stosunkowo niedrogich laserów specyfikowanych na prędkość modulacji do 1 Gb/s oraz niskie koszty multipleksacji CWDM zastosowanie światłowodu D NZDSF zdaje się stwarzać perspektywę wyjątkowo atrakcyjnej ekonomicznie transmisji z łącznymi przepływnościami nawet do 16 Gb/s na włókno. W niniejszej pracy zbadana zostanie degradacja sygnałów obarczonych migotaniem w światłowodzie o ujemnej dyspersji, oraz wpływ parametrów lasera i układu modulującego na osiągalne w tych warunkach zasięgi transmisji. Analizy prowadzone będą dla praktycznie maksymalnej szybkości bezpośredniej modulacji laserów, wynoszącej (obecnie) 1 Gb/s. 2. NARZĘDZIA SYMULACYJNE Przedstawione w następnym rozdziale badania symulacyjne prowadzone były w układzie o strukturze pokazanej na rys. 2. Symulowany tor transmisyjny pobudzany był przez losowe lub konkretnie zdefiniowane sekwencje binarne. Efekt ograniczonej stromości narastania/opadania prądu na wyjściu układu sterującego laser, a także wpływ pasożytniczych reaktancji połączeń układu sterującego z laserem, oraz obudowy z chipem lasera zamodelowano w postaci liniowego filtru dolnoprzepustowego -go rzędu, o częstotliwości granicznej 7 GHz. Generator sekwencji binarnych Model interfejsu elektr. Światłowód Układ odbiorczy Laser wewnętrzny Układ decyzyjny Rys. 2. Układ symulacyjny.

Model lasera składa się z dwu części: pierwsza modeluje dynamikę lasera, pozwalając określić czasowy przebieg mocy optycznej w funkcji prądu sterującego, natomiast druga modeluje migotanie długości fali emitowanego sygnału. Dynamikę lasera zamodelowano standardowym układem różniczkowych równań bilansu (ang. rate equations). Zainteresowanych postacią tych równań i znaczeniem sporej niestety liczby ich parametrów odsyłam do bogatej literatury, np. [, 5]. Migotanie lasera zamodelowano korzystając z zależności []: α 1 dp( ν ( = + Kν P(, (1) π P( dt gdzie ν ( oznacza chwilową dewiację częstotliwości optycznej, α - tzw. współczynnik poszerzenia linii (ang. line enhancement factor), K - współczynnik migotania ν adiabatycznego, wreszcie P ( - chwilową wartość emitowanej mocy optycznej. Pierwszy czynnik sumy w powyższym równaniu opisuje migotanie dynamiczne (ang. transient chirp), drugi migotanie adiabatyczne (ang. adiabatic chirp). W tab. 1 zebrano pomierzone wartości parametrów α i K ν dla kilku laserów MQW DFB pracujących w oknie 1,55 µm. Tab. 1. Parametry migotania laserów. laser typ, producent α K ν nr [Hz/W] 1 PT3563, Photon 2.7 8.*1 12 2 PT3563, Photon 2. 7.9*1 12 3 C15D, Lasermate 3.15.8*1 12 DFBLD-15-5, AOC 9.1 1.5*1 12 5 NLK-1551-SSC, NEL 2.7 2.*1 12 6? 2.2 1.5*1 12 7? 2.2 28.7*1 12 W modelowaniu zniekształceń sygnału powstających w dyspersyjnym światłowodzie posłużono się koncepcją odpowiedzi impulsowej światłowodu dla zespolonej obwiedni sygnału optycznego [6]. Nie modelowano natomiast efektów nieliniowych. Układ odbiorczy zamodelowano transmitancją zgodną z określoną dla odbiornika referencyjnego w zaleceniach ITU [7] oraz IEEE [8], tzn. transmitancją dolnoprzepustową Bessla -go rzędu o częstotliwości granicznej 7,5 GHz. Aby ilościowo określić degradację sygnału wynikającą z dyspersji i migotania (lub innych czynników destrukcyjnych) posłużono się pojęciem pogorszenia budżetu mocy (ang. power penalty). Wyraża ono, o ile silniejszy (mniej stłumiony) musi być docierający do odbiornika sygnał zdegradowany w stosunku do sygnału niezniekształconego, by uzyskać tę samą stopę błędów, np. 1-12. Na poziomie symulacyjnym określenie pogorszenia budżetu mocy wymaga przyjęcia pewnej wartości skutecznej szumu nałożonego na sygnał docierający do układu decyzyjnego, oraz określenia fazy próbkowania sygnału i poziomu komparacji. W przypadku silnie zniekształconych sygnałów, charakteryzujących się mocno zniekształconym wykresem oczkowym (jak np. na rys. 3), trudno jednoznacznie określić, co oznacza np. postulat próbkowania sygnału w połowie czasu trwania symboli. Dlatego przyjęto, że okno czasowe określające pozycję symboli określone jest przez uśrednioną pozycję występowania zboczy sygnału, i nominalna faza próbkowania opóźniona jest o pół czasu trwania symbolu (ang. UI; Unit Interval) w stosunku do tejże średniej pozycji zboczy. Podejście takie symuluje uśredniające właściwości pętli fazowej odtwarzającej przebieg zegarowy, określającej fazę próbkowania sygnału w realnym układzie decyzyjnym. UI próbkowanie Rys. 3. Zdeformowany wykres oczkowy z zaznaczonymi momentami próbkowania. Ponadto, w celu zamodelowania możliwych nieidealności układu rzeczywistego, jak fluktuacja lub stały offset fazy odtworzonego zegara, a także niezerowa apertura układu próbkującego, pogorszenie budżetu mocy wyznaczane jest również dla nieco wcześniejszej i nieco opóźnionej (o,1 UI) fazy próbkowania, i ostatecznie przyjmowany jest wynik najgorszy. (Analizując rys. 3 można przewidzieć, że w tym przypadku będzie to wynik uzyskany dla najwcześniejszej fazy próbkowania.) Jako poziom komparacji przyjęto standardowo wartość średnią sygnału. 3. JAKOŚCIOWA CHARAKTERYSTYKA DYSPERSYJNEJ DEFORMACJI SYGNAŁU Na rys. przedstawiono poglądową ilustrację zniekształceń obarczonego migotaniem sygnału w światłowodzie o ujemnym współczynniku dyspersji chromatycznej. Przyjęto, że długość światłowodu wynosi 1 km, współczynnik dyspersji 7,2 ps/nmkm, laser emitujący na fali 1,55 µm charakteryzuje się współczynnikiem poszerzenia linii α = 3, i współczynnikiem migotania adiabatycznego K ν = 2*1 12 Hz/W. Wszystkie przebiegi ograniczone są pasmowo do 7,5 GHz filtrem dolnoprzepustowym odpowiadającym transmitancji odbiornika referencyjnego. W lewej kolumnie prezentowane są fragmenty ciągu danych 1 Gb/s (sekwencja 1111), w prawej odpowiednie wzory oka. Rys. (a) przedstawia dla odniesienia sytuację wyidealizowaną, w której całkowicie pominięto migotanie lasera. Na wykresie oczkowym widoczne są jedynie niewielkie interferencje międzysymbolowe, wynikające po części z ograniczenia pasma sygnału filtrem dolnoprzepustowym modelującym odbiornik, po części z dyspersji, która oczywiście deformuje też szerokopasmowo modulowany sy-

gnał pozbawiony migotania. Rys. (b) ilustruje wpływ migotania dynamicznego, z pominiętym składnikiem adiabatycznym. Powstałe zniekształcenia można zinterpretować następująco: narastające zbocza sygnału optycznego doznają dodatniego przesunięcia częstotliwości (blue shif, co przy ujemnym współczynniku dyspersji światłowodu powoduje, że energia związana z tym zboczem propaguje się wolniej niż centralna część impulsu. Zatem na końcu światłowodu narastające zbocze jest jakby opóźnione i częściowo nałożone na grzbiet impulsu, przez co powstaje widoczny przerost w sygnale wyjściowym. Analogicznie ujemne przesunięcie częstotliwości (red shif na opadającym zboczu powoduje jego nałożenie się na końcową fazę grzbietu i zbyt wczesne opadanie sygnału. W efekcie zaobserwować można skrócenie czasu trwania impulsu i przerosty na obu jego brzegach. Jeżeli pierwotny impuls był odpowiednio krótki, przerosty związane z narastającym i opadającym zboczem nakładają się na siebie, tworząc jeszcze większy przerzut w stosunku do nominalnej amplitudy sygnału. Sytuacja taka w prezentowanym przykładzie występuje w przypadku izolowanego symbolu 1. sygnału. Stąd możliwe jest ujemne pogorszenie budżetu mocy przy umiarkowanej deformacji sygnału. Jednakże przy rosnącej dyspersji zbocza narastające przesuwają się coraz bardziej w prawo, a opadające w lewo, co prowadzi do poziomego zamknięcia oczka, które oczywiście również uniemożliwia porwaną detekcję sygnału. Z kolei rozpatrując wyłącznie migotanie adiabatyczne (rys. (c)) można stwierdzić, iż kolejne fragmenty zbocza narastającego doznają coraz większego dodatniego przesunięcia częstotliwości, a więc propagują się odpowiednio coraz wolniej, co prowadzi do zmniejszenia stromości narastania tegoż zbocza na wyjściu światłowodu. Analogicznie kolejne fragmenty zbocza opadającego propagują się coraz szybciej, co powoduje zwiększenie stromości opadania sygnału, i ewentualnie przerost w końcowym fragmencie grzbietu impulsu. Wzór oka staje się zatem skośny położenie minimum dla symbolu i maksimum dla 1 nie pokrywają się w czasie, co prowadzi nieuchronnie do pogorszenia budżetu mocy. Łączny wpływ obu składników migotania ilustruje rys. (d), gdzie można odnaleźć cechy związane z obydwoma wcześniej omawianymi przebiegami.. BADNIA SYMULCYJNE (a) (b) W niniejszym rozdziale przedstawiona zostanie analiza wpływu migotania lasera oraz parametrów układu modulującego na pogorszenie budżetu mocy. Na rys. 5 pokazano pogorszenie budżetu mocy w funkcji dystansu transmisji dla szybkości modulacji 1 Gb/s. Przyjęto współczynnik poszerzenia linii α = 3, oraz współczynnik migotania adiabatycznego K ν zmieniający się w przedziale od 1*1 12 Hz/W do 3*1 12 Hz/W. Założono współczynnik dyspersji światłowodu -7.2 ps/nm*km oraz długość fali 1,55 µm. Prądy polaryzacji i modulacji lasera dobrano tak, by współczynnik ekstynkcji (stosunek mocy w stanie wysokim do mocy stanu niskiego; ang. ER; Extinction Ratio) wynosił 6 db. (c) pogorszenie budżetu [db] 1 8 6 2 K ν= 12 3*1 1*1 12 3*1 12 1*1 12 (d) Rys.. Ilustracja zniekształceń sygnału obarczonego migotaniem w światłowodzie o ujemnej dyspersji; (a) sygnał bez migotania, (b) z migotaniem tylko dynamicznym, (c) tylko adiabatycznym, (d) z obydwoma składnikami migotania Odnośnie konsekwencji opisanych zniekształceń na wzór oka można zauważyć, że nie powodują one w zasadzie zmniejszenia jego pionowego rozwarcia, a nawet zwiększają średnią odległość poziomów znamiennych -2 5 1 15 2 dystans transmisji [km] Rys. 5. Zależność dyspersyjnego pogorszenia budżetu mocy od dystansu transmisji. Na wykresach można zauważyć prawidłowość, iż dyspersyjne pogorszenie budżetu mocy ma niewielką lub nawet ujemną wartość do pewnego krytycznego dystansu, po czym gwałtownie wzrasta. Analiza wykresów oczkowych pokazuje, że jest to spowodowane pozio-

mym zamykaniem się oczka (por. uwagi w rozdz. 3). Należy też stwierdzić, że duża wartość współczynnika migotania adiabatycznego wyraźnie redukuje tolerancję dyspersji. Przyjmując 1 db jako maksymalne akceptowalne pogorszenie budżetu, osiągalny dystans transmisji w założonych warunkach wynosi 12 18 km. Na rys. 6 przedstawiono zasięg transmisji, określony 1 db pogorszeniem budżetu mocy, w zależności od współczynnika poszerzenia linii α, przy różnych współczynnikach ekstynkcji sygnału optycznego. (Przyjęto umiarkowaną wartość współczynnika migotania adiabatycznego - 1*1 12 Hz/W.) zasięg [km] 25 2 15 ER= 1 5 1 8.2 6 3 2 6 8 1 α Rys. 6. Dyspersyjne ograniczenie zasięgu transmisji w zależności od współczynnika poszerzenia linii, dla różnych wartości ekstynkcji. Dla dużych wartości współczynnika α zasięg maleje mniej więcej proporcjonalnie do 1 / α, co jest raczej oczywiste ze względu na coraz większe poszerzenie widma sygnału wnoszone przez efekt migotania. Natomiast ciekawsze jest występowanie ewidentnego optimum dla α rzędu,5... 1,5. Wynika ono z pewnego rodzaju kompensacji pomiędzy naturalnym rozmyciem krótkich impulsów w ośrodku dyspersyjnym, wynikającym z poszerzenia widma związanego z szybką modulacją intensywności, a kompresją impulsów obarczonych migotaniem w ośrodku o ujemnej dyspersji [6]. Co prawda tak niskie wartości współczynnika α nie występują raczej w komercyjnie dostępnych laserach, jednakże nawet dla zupełnie realnych wartości rzędu 2... 3 (patrz tab. 1) osiągalny zasięg jest większy, niż dla laserów modulowanych zewnętrznie (tzn. α bliskiego zeru). Można też zauważyć, że zwiększenie tolerancji dyspersji można osiągnąć przez zmniejszenie ekstynkcji lasera, które istotnie zmniejsza migotanie dynamiczne. Jednakże zmniejszanie ekstynkcji zmniejsza też amplitudę modulacji sygnału optycznego, co również redukuje budżet mocy. W celu określenia optymalnej wartości ekstynkcji zasadne jest zatem rozważenie łącznego pogorszenia budżetu mocy, będącego sumą pogorszenia wynikającego z dyspersji oraz z ograniczonej ekstynkcji. Redukcja budżetu mocy wynikająca ze skończonej ekstynkcji określana jest w odniesieniu do wyidealizowanego przypadku całkowitego wygaszania lasera w stanie niskim, kiedy to amplituda modulacji sygnału optycznego jest maksymalna. Rys. 7 przedstawia łączną redukcję budżetu w zależności od przyjętej ekstynkcji, dla różnych dystansów transmisji. Jak widać, w przypadku większych dystansów występuje wyraźne optimum dla małych ekstynkcji, co wynika z większego wpływu dyspersji, natomiast dla zasięgów rzędu 1 km wartości ekstynkcji w przedziale 5... 9 db prowadzą do podobnych rezultatów. pogorszenie budżetu [db] 5 3 2 1 z= 2 km 15 km 1 km 2 6 8 1 ER [db] Rys. 7. Łączne (wynikające z dyspersji i niepełnej ekstynkcji) pogorszenie budżetu mocy w zależności od współczynnika ekstynkcji, wyznaczone dla różnych dystansów transmisji. Na koniec warto jeszcze poruszyć skrótowo dwie kwestie. Po pierwsze należy przypomnieć, że poza zniekształceniami dyspersyjnymi zasięg transmisji ograniczony jest oczywiście tłumieniem światłowodu. Przyjęcie typowych wartości mocy lasera, tłumienia światłowodu i czułości układów odbiorczych prowadzą do stwierdzenia, że tłumienie ogranicza zasięg do rzędu 75 11 km. Zatem w systemach nie stosujących wzmacniaczy optycznych dla laserów o umiarkowanym współczynniku poszerzenia linii limit dyspersyjny wykracza znacznie poza ograniczenie wynikające z tłumienia. Wreszcie należy przypomnieć, że posuwając się w kierunku II okna transmisyjnego (CWDM) należy się liczyć z coraz większym współczynnikiem dyspersji rozważanego typu włókna, co prowadzi do ok. 2,5 krotnego skrócenia dyspersyjnie limitowanego zasięgu dla fali 1,3 µm. (Skądinąd tłumienie jest też wtedy ok. 2 razy większe, co prowadzi do podobnej relacji limitów dyspersyjnego i tłumieniowego.) 5. EKSPERYMENT W celu weryfikacji poprawności zastosowanych narzędzi symulacyjnych na rys. 8 porównano symulowany oraz pomierzony wykres oczkowy. Przebiegi uzyskano dla dyspersji światłowodu 1 ps/nm, co odpowiada 1 km światłowodu o jednostkowej dyspersji -7,2 ps/nm*km. (W rzeczywistości pomiarów dokonywano z wykorzystaniem światłowodu o dużo większej (oczywiście ujemnej) jednostkowej dyspersji.) W układzie nadawczym zastosowano laser typu PT6563. Pomiary wykonano przy użyciu oscyloskopu samplingowego HP838A z głowicą optyczną HP8385B. Można zauważyć, że istotne cechy przebiegów symulowanych i mierzonych są bardzo zbliżone, choć oczywiście sygnały zmierzony obarczone są zauważal-

nym szumem układu pomiarowego. Na przebiegach zniekształconych przez dyspersję (rys. 8(b)) widać wyraźnie zjawiska opisane w rozdz. 3: duże przerzuty wobec wartości ustalonej stanu wysokiego, oraz poziome zawężenie oczka wynikłe ze zbliżania się do siebie narastających i opadających zboczy sygnału. 6. WNIOSKI Przeprowadzone badania pozwalają sformułować następujące wnioski: w światłowodzie o ujemnej, przesuniętej dyspersji (typu MetroCor lub podobnym) przy szybkości modulacji 1 Gb/s zastosowanie bezpośrednio modulowanego lasera prowadzi do dyspersyjnego limitu dystansu transmisji na poziomie 1 2 km. Dla porównania, w standardowym światłowodzie jest to rząd 1 3 km [9]; lasery o umiarkowanym migotaniu pozwalają na osiągnięcie większych zasięgów niż źródła modulowane zewnętrznie; najlepsze rezultaty uzyskuje się stosując lasery o niewielkim migotaniu zarówno dynamicznym jak adiabatycznym, w odróżnieniu od przypadku dodatniej dyspersji światłowodu, kiedy to pożądany jest laser o małym migotaniu dynamicznym, ale dużym adiabatycznym [1]; istotnym czynnikiem wpływającym na tolerancję dyspersji jest współczynnik wygaszania lasera. Im jest on mniejszy, tym mniejsza jest wrażliwość sygnału na dyspersję. (a) (b) Rys. 8. Symulowane (góra) i zmierzone (dół) wykresy oczkowe sygnału 1 Gb/s; (a) na wyjściu lasera, (b) na wyjściu światłowodu o ujemnej dyspersji. SPIS LITERATURY [1] Corning MetroCor Optical Fiber Product Information, www.corning.com [2] Corning MetroCor Fiber and its Application in Metropolitan Networks, www.corning.com [3] US Patent 6,3,36 [] G.P. Agrawal, N.K. Dutta, Long-Wavelength Semiconductor Lasers, Van Nostrand Reinhold, New York, 1993. [5] L.A. Coldren, S.W. Corzine: Diode lasers and photonic integrated circuits, Wiley, New York, 1995 [6] Saleh B.E.A., Teich M.C.: Fundamentals of Photonics. Wiley, 1991. [7] Standard ITU-T G.957 [8] Standard IEEE 82.3ae [9] P. Krehlik: Możliwość stosowania bezpośrednio modulowanych laserów w łączach światłowodowych 1 Gb/s w warunkach znaczącej dyspersji chromatycznej, PWT 25 [1] P. Krehlik: Directly Modulated Lasers in Chromatic Dispersion Limited 1 Gb/s Links; praca w trakcie recenzowania