WYBRANE ASPEKTY DOBORU WŁÓKIEN DLA SYSTEMÓW ŚWIATŁOWODOWYCH ZE SZCZEGÓLNYM UWZGLĘDNIENIEM DYSPERSJI CHROMATYCZNEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYBRANE ASPEKTY DOBORU WŁÓKIEN DLA SYSTEMÓW ŚWIATŁOWODOWYCH ZE SZCZEGÓLNYM UWZGLĘDNIENIEM DYSPERSJI CHROMATYCZNEJ"

Transkrypt

1 Jan Lamperski Zbigniew Szymański Jakub Lamparski * Politechnika Poznańska Instytut Elektroniki i Telekomunikacji ul. Piotrpwo 3A, Poznań student IET, PP jlamper@et.put.poznan.pl zszyman@et.put.poznan.pl 2005 Poznańskie Warsztaty Telekomunikacyjne Poznań 8-9 grudnia 2005 WYBRANE ASPEKTY DOBORU WŁÓKIEN DLA SYSTEMÓW ŚWIATŁOWODOWYCH ZE SZCZEGÓLNYM UWZGLĘDNIENIEM DYSPERSJI CHROMATYCZNEJ Streszczenie: Prezentowany referat poświęcony jest wybranym problemom doboru i pomiaru włókien ze szczególnym uwzględnieniem dyspersji chromatycznej. Opisano metody pomiaru dyspersji. Przedstawiono typowe charakterystyki dyspersyjne oraz rozrzut parametrów. Przedstawiono metodę pomiaru dyspersji chromatycznej krótkich włókien światłowodowych. 1. WSTĘP Jeszcze niedawno wydawało się, że włókno jednomodowe ma niemal nieograniczone możliwości transmisyjne. Gwałtownie rosnące zapotrzebowanie na przepływność wraz z pojawianiem się możliwości realizacji systemów o coraz to większych przepływnościach (co umożliwiał rozwój technologii w zakresie źródeł, włókien, odbiorników i optyki zintegrowanej) stymulowało konstruowanie nowych systemów. Głównym ograniczeniem ze strony włókien była dyspersja chromatyczna i wysiłki konstruktorów skupiały się na walce z nią. Systemy WDM, z natury ułatwiające podział i zagospodarowanie pasma, można również traktować jako narzędzie ograniczające wpływ dyspersji, znacznie mniejszy w poszczególnych kanałach. Jednak wynikające z sumowania mocy poszczególnych kanałów, duże ponadprogowe gęstości energii propagowane w włóknie oddziaływują z ośrodkiem uaktywniając różne efekty nieliniowe, które mogą w różny sposób degradować jakość transmisji. Historia rozwoju konstrukcji jednomodowych włókien światłowodowych ściśle wiąże się z historią poznawania ograniczeń transmisji we włóknach jednodomowych, a kolejne specyficzne rozwiązania mają na celu odsuwanie tych ograniczeń. Obecnie istnieje wiele rodzajów włókien jednomodowych (np. ITU-T G.652 do 655) różniących się przede wszystkim przebiegiem charakterystyk dyspersji chromatycznej, ale też innymi parametrami. Projektując zaawansowany system światłowodowy, a jednym z elementów tego projektowania jest dobór charakterystyk włókna, trzeba wziąć pod uwagę wszystkie zjawiska, które mogą wpływać na jego pracę i uwzględnić współzależności i możliwości ich wzajemnej kompensacji. Tylko takie podejście może dać satysfakcjonujący wynik. Wybór włókna nie jest więc trywialnym problemem, musi ono być dopasowane do systemu, a do niego z kolei trzeba dopasować elementy i przedsięwzięcia optymalizujące parametry transmisyjne. Zjawiska, które towarzyszą propagacji z dużymi przepływnościami np. w systemach OTDM lub propagacji w systemach wielokanałowych WDM i powinny być uwzględnione w pracach koncepcyjnych to w zakresie propagacji liniowej: dyspersja chromatyczna i polaryzacyjna, przeniki międzykanałowe - mogą być spowodowane nieidealnymi właściwościami wielu elementów systemu, jednak największy wpływ na nie mają nieidealne charakterystyki filtrów WDM, nierównomierność charakterystyki częstotliwościowej włókna i elementów składowych systemu w tym efekty akumulacyjne. w zakresie propagacji nieliniowej: rozpraszanie Ramana - to szerokopasmowe zjawisko i przejawia się poprzez dwa efekty: zmianę natężenia światła w poszczególnych kanałach oraz poprzez międzykanałowy przenik zdalny. Pierwszy z nich można kompensować odpowiednią charakterystyką wzmocnienia, drugi ogranicza wyraźnie maksymalną moc jaką można transmitować w kanale składowym WDM ze względu na pogorszenie stosunku sygnału do szumu i co za tym idzie stopy błędów. Przykładowo, dla przypadku 8 kanałów WDM położonych w odstępach 1nm i linii o długości 1000km, transmisja sygnałów o poziomach mocy 10dBm spowoduje pogorszenie SNR o 0,5dB w stosunku do transmisji o znacznie niższych poziomach mocy. Ze wzrostem długości linii, ograniczenie szybko się zaostrza. rozpraszanie Brillouina - energia rozpraszana jest wstecznie, a więc zjawisko ma szczególne znaczenie w przypadku dwukierunkowej transmisji w jednym włóknie lub w przypadku silnych odbić (niedopasowania). Rozpraszanie Brillouina powstaje przy znacznie niższych mocach niż ramanowskie (praktycznie już powyżej mocy 2,4mW w liniach dłuższych niż 20km). Ponieważ kierunki transmisji w systemach WDM są zwykle dzielone przestrzennie, niekorzystne efekty występuje tylko w przypadku odbić PWT POZNAŃ 8-9 GRUDNIA /5

2 (procesy łączenia włókien powinny być sterowane przy pomocy algorytmów uwzględniających typ włókna) efekt Kerra - opisuje zależność współczynnika załamania światła w szkle kwarcowym od jego natężenia uwzględniając niewielką składową nieliniową tego współczynnika. Efekt ten generuje szereg zjawisk: własną modulację fazy. Jest to konsekwencja wynikająca z istnienia efektu Kerra. Polega ona na tym, że rosnąca moc zwiększa współczynnik załamania co powoduje zmianę fazy, a więc i długości fali sygnału. Przy niedużych odległościach SPM można wykorzystać do kompensacji niewielkiej dodatniej dyspersji. W przypadku systemu WDM efekt ten ma znacznie poważniejsze konsekwencje objawiając się jako: skrośną modulację fazy. W tym przypadku sygnał transmitowany w kanale o długości fali λ 1 wpływając na wartość współczynnika załamania a więc i prędkość propagacji powoduje modulację sygnału w innym kanale pracującym z długością fali λ 2. W kanale tym mogą się zatem pojawić zmieniające się w czasie przesunięcia λ oraz jitter fazy impulsów. mieszanie czterofalowe. Jest także efektem spowodowanym nieliniową charakterystyką współczynnika załamania i powoduje wzbogacanie się widma propagowanego sygnału o nowe składowe wynikające z odpowiednich, spełniających zasadę zachowania energii, kombinacji sum i różnic pierwotnych częstotliwości. Efekt ten występuje tym silniej im bliżej siebie leżą pierwotne kanały składowe i może powodować znaczącą degradację SNR na zasadzie przeników międzykanałowych. Z powyższego przeglądu wynika jednoznacznie, że nie można optymalnie wybrać włókna, nie znając pozostałych elementów systemu. Jest natomiast bardzo wiele możliwości dopasowania systemu do włókna i poprawienia ich łącznych parametrów dodatkowymi środkami. Środków tych jest wiele, wśród najprostszych wymienić można stosowanie włókien transmisyjnych o niewielkiej dodatniej dyspersji chromatycznej, kompensującej SPM, poprzedzielanych krótkimi, a więc nie wprowadzającymi efektów nieliniowych, odcinkami o dużej ujemnej dyspersji (do kompensacji można również stosować elementy skupione np. siatki Bragga), zwiększanie odstępów między kanałami, stosowanie niejednakowych odstępów międzykanałowych, precyzyjny wybór charakterystyk emisyjnych nadajników, właściwy dobór długości fal, praca niezbyt dużymi poziomami mocy (ewent. zastosowanie kodowania), właściwy wybór typów i sposobów zastosowania wzmacniaczy itd. Trzeba jednak podkreślić konieczność przeprowadzania, ze względu na wielość parametrów, oddzielnej optymalizacji dla każdego przypadku. Stosowane obecnie chętnie włókna NZ-DSF dedykowane do zastosowań w szybkich systemach DWDM są projektowane na zasadzie różnych kompromisów, stąd różne charakterystyki w różnych wykonaniach, dopasowane do firmowego sprzętu, dodatkowo nie ułatwiają wyboru. Nie można wykluczyć, że w przypadku małych odległości między kanałami (znaczący FWM) i stosunkowo niedużych przepływności sygnałów składowych, lepszy efekt łatwiej uzyskać dla włókna standardowego (G.652), a dla transmisji w trzecim oknie, dla włókna z zerem dyspersji w tym oknie (G.654). Z powyższych rozważań wynika, że precyzyjna znajomość różnych parametrów włókien jest kluczowa dla podjęcia właściwych decyzji podczas projektowania systemu światłowodowego. Krytyczne parametry decydujące o jakości transmisji mogą być określone poprzez: - pomiar strat połączeń, - pomiar odbić - pomiar mocy i strat, - pomiar dyspersji polaryzacyjnej, - pomiar dyspersji chromatycznej, - pomiar tłumienności spektralnej, - pomiar parametrów DWDM, - pomiar stopy błędu, - pomiar SONET/SDH, Szczególnie istotna jest dokładna znajomość charakterystyki dyspersji chromatycznej. 2. PROBLEMY DYSPERSJI CHROMATYCZNEJ Dyspersja chromatyczna oznacza zależność prędkości propagacji światła w funkcji długości fali. Powoduje zwiększanie szerokości impulsów propagujących się w światłowodzie i w rezultacie może prowadzić do zachodzenia na siebie impulsów i wzrostu stopy błędu. DC jest więc czynnikiem ograniczającym przepływność i zasięg systemu transmisyjnego. Ograniczenie efektów dyspersyjnych polega na zastosowaniu kompensatorów. Efektywna, szerokopasmowa kompensacja wymaga przeprowadzenia dokładnych pomiarów wartości dyspersji chromatycznej oraz jej nachylenia. Wymagania na dokładność kompensacji wzrastają ze wzrostem przepływności (4-ro krotny wzrost przepływności oznacza 16-to krotne obniżenie dopuszczalnej wartości dyspersji). Ponieważ dyspersja chromatyczna współdecyduje o przepustowości włókna, maksymalna jej wartość wynika z wymaganej przepływności binarnej. W tabeli podano przykładowe wartości [1]. Przepływność binarna [GB/s] Maksymalna dyspersja chromatyczna [ps/nm] 2, ,5 Opóźnienie grupowe τ(λ) impulsów propagujących się we włóknie światłowodowym jest proporcjonalne do przebytej drogi L i zależy od długości fali λ. Zależne od czasu opóźnienie oznacza, że impulsy o skończonej szerokości spektralnej będą ulegały dyspersyjnemu PWT POZNAŃ 8-9 GRUDNIA /5

3 poszerzeniu. Dyspersja chromatyczna będąca pochodną opóźnienia grupowego względem czasu jest miarą wzrostu szerokości impulsu o określonej szerokości widma po przebyciu włókna o długości L. Minimum zależności opóźnienia grupowego w funkcji długości fali wyznacza miejsce λ 0, w którym dyspersja uzyskuje wartość równą zeru D(λ 0 )=0. W tym punkcie włókno posiada największe pasmo. Bardzo ważnym parametrem jest nachylenie charakterystyki dyspersyjnej w punkcie λ 0, które pokazuje szybkość wzrostu dyspersji przy odchyleniu od punktu zerowego. Przebiegi dyspersyjne różnych typów włókien opisują jednoznacznie zdefiniowane równania, które stosowane są do interpolacji danych pomiarowych oraz wyznaczenia λ 0 i nachylenia dyspersji. Klasyczna metoda określenia dyspersji zakłada bezpośredni pomiar czasu opóźnienia grupowego metodą przesunięcia fazowego sinusoidalnie zmodulowanego sygnału optycznego [2, 3]: Rys.1. Współczynnik dyspersji, włókno SMF, długość ϕ τ( λ ) = 2 π f Następnie zmierzone wartości opóźnienia dopasowywane są do funkcji opisującej określony typ włókna i w rezultacie wyznaczana jest dyspersja, λ 0 i nachylenie. Tak więc w metodzie tej, przed przeprowadzeniem pomiaru, konieczna jest znajomość typu włókna. Jednakże w pewnych sytuacjach (nowe typy włókien, lub włókna specjalne) informacje te mogą nie być dostępne. Ograniczeń takich nie posiada metoda wykorzystująca różnicowe przesunięcie fazy. Metoda różnicowego przesunięcia fazy [3] polega na pomiarze różnicy czasu opóźnienia grupowego τ dla dwóch blisko siebie λ położonych długości fal λ 1 i λ 2. W rezultacie otrzymujemy wprost wartość dyspersji dla długości fali λ i położonej pomiędzy λ 1 oraz λ 2 : Rys.2. Opóźnienie grupowe, włókno SMF, długość D ( ) τ 1 λ L λ i = To podejście jest poprawne dla wszystkich typów włókien i nie wymaga żadnych założeń dotyczących przebiegu dyspersji. Główną zaletą metody różnicowego przesunięcia fazy jest bezpośredni odczyt dyspersji. 2. PROBLEMY DYSPERSJI CHROMATYCZNEJ W prezentowanej pracy zaprezentowano wyniki pomiarów polowych włókien o długościach od 47 do 120 km. Pomiary wykonane były na standardowych włóknach (SSMF) oraz włóknach z niezerowa, przesuniętą dyspersją (NZDSF). Wykonano próbne pomiary dyspersji chromatycznej bardzo krótkich włókien SSMF o długości 100 m. Przykładowe wyniki pomiarów parametrów dyspersyjnych (współczynnik dyspersji, opóźnienie grupowe, nachylenie charakterystyki dyspersyjnej oraz całkowita dyspwrsja) standardowego SSMF włókna o długości 60,5 km pokazano na rysunkach 1-4. Rys.3. Nachylenie dyspersji, włókno SMF, długość PWT POZNAŃ 8-9 GRUDNIA /5

4 Rozkłady statystyczne rozrzutu dyspersji pokazano na Rys. 7 i 8. W przypadku włókien standardowych rozkłady wyznaczono dla trzech długości fal: 1510nm, 1550nm oraz 1610nm. Rys.4. Dyspersja całkowita, włókno SMF, długość Uzyskane wartości, dla określonych parametrów widma nadajniki, umożliwiają określenie maksymalnej przepływności binarnej lub mogą być wykorzystane do określenia właściwości kompensatora dyspersji. W systemach o dużych przepływnościach, w których kompensacja dyspersji musi być bardzo precyzyjna, uzasadnione jest pytanie o rozrzut paramentów dyspersyjnych w obrębie danego typu włókna. Na rysunkach 5 oraz 6 pokazano wyniki pomiarów dyspersji chromatycznej dla 48 włókien SSMF i 67 włókien NZDSF. Rys.7. Rozkład współczynnika dyspersji włókien SMF, dla trzech długości fal: 1510nm, 1550nm oraz 1610nm Natomiast dla włókien NZDSF rozkłady pokazano dla czterech długości fal: 1440nm, 1510nm, 1550nm oraz 1610nm. Rys.8. Rozkład współczynnika dyspersji włókien NZDSF, dla czterech długości fal: 1440nm, 1510nm, 1550nm oraz 1610nm Rys.5. Współczynnik dyspersji, włókna SMF Rys.6. Współczynnik dyspersji, włókna NZDSF W przypadku długich włókien (2-100 km) uzyskuje się bardzo dobrą powtarzalność pomiarów obarczonych niewielkim błędem pomiarowym. Zupełnie inaczej wygląda sytuacja w przypadku pomiaru bardzo krótkich włókien, dla których mierzone wartości opóźnienia grupowego są na granicy możliwości przyrządów pomiarowych. Generalnie metoda różnicowego przesunięcia fazy, dająca wprost wartości dyspersji pary blisko siebie położonych długości fal nie wymaga dopasowywania wyników do znanego typu charakterystyki dyspersyjnej włókna. Jednakże, gdy wyniki pomiarowe obarczone są dużym błędem znajomość typu dyspersji jest nieoceniona. Problem pomiaru dyspersji krótkich włókien ilustrują rysunki Na Rys. 9 pokazano punkty pomiarowe oraz charakterystykę dyspersyjną włókna SSMF uzyskaną poprzez dopasowanie do pięcioskładnikowej funkcji Sellmeiera. Funkcja Sellmeiera generalnie uważana jest PWT POZNAŃ 8-9 GRUDNIA /5

5 za najbardziej uniwersalną [3], która z powodzeniem stosowana jest dla wszystkich typów przebiegu charakterystyk dyspersyjnych włókien. Jednak, w przypadku wyników obarczonych dużym błędem, elastyczność jest nie jest wskazana. Rys.12. Współczynnik dyspersji, długość włókna 100 m, aproksymacja 3 składnikowa Sellmeiera, wartość średnia trzech pomiarów 3. PODSUMOWANIE Rys.9. Współczynnik dyspersji, długość włókna 100 m, aproksymacja 5 składnikowa Sellmeiera Zdecydowanie lepsze wyniki można uzyskać stosując trójskładnikową funkcji Sellmeiera. Wyniki dla tych samych punktów pomiarowych pokazano na Rys. 10. Rys.10. Współczynnik dyspersji, długość włókna 100 m, aproksymacja 3 składnikowa Sellmeiera Na rysunkach 11 i 12 pokazano analogiczne charakterystyki uzyskane jednak dla uśrednionych wartości trzech cykli pomiarowych. Uśrednianie nie doprowadziło do eliminacji błędu związanego z aproksymacją za pomocą piecio-składnikowej funkcji Sellmeiera. Warto zauważyć, że przytoczone wyniki pomiarów wskazują na stosunkowo duży rozrzut wartości dyspersji poszczególnych włókien. Dla mierzonych włókien maksymalne różnice sięgają 1,2 ps/nm/km co znaczy, że względne rozrzuty są znacznie większe dla włókien NZDSF. Znaczy to również, że nawet jeśli w projekcie przewidziana zostanie kompensacja wartości średniej dyspersji, to i tak niektóre włókna znacząco ograniczą przepływność transmitowanych sygnałów. Przy założeniu typowej w systemach WDM szerokości widma emisyjnego lasera wynoszącej ok. 0,2 nm graniczna przepływność dla odcinka takiego włokna o długości np. 300 km (typowo w warunkach Polski) wyniesie ok. 14 Gb/s. Wynika z tego konieczność przeprowadzenia pomiarów dyspersji już po projektowanym skompensowaniu włókien i wtórne precyzyjne dokompensowanie dyspersji niektórych z nich. W pracy przedstawiono również problemy i metodykę wyznaczenia charakterystyk dyspersyjnych bardzo krótkich odcinków włókien. SPIS LITERATURY [1] The EXFO Application note # 086 [2] K. Perlicki, Pomiary w optycznych systemach telekomunikacyjnych, WKŁ Warszawa 2002 [3] FD400 Series Operators Manual, materiały firmy GN NetTest Rys.11. Współczynnik dyspersji, długość włókna 100 m, aproksymacja 5 składnikowa Sellmeiera, wartość średnia trzech pomiarów PWT POZNAŃ 8-9 GRUDNIA /5

Dyspersja światłowodów Kompensacja i pomiary

Dyspersja światłowodów Kompensacja i pomiary Dyspersja światłowodów Kompensacja i pomiary Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem

Bardziej szczegółowo

Optotelekomunikacja 1

Optotelekomunikacja 1 Optotelekomunikacja 1 Zwielokrotnienie optyczne zwielokrotnienie falowe WDM Wave Division Multiplexing zwielokrotnienie czasowe OTDM Optical Time Division Multiplexing 2 WDM multiplekser demultiplekser

Bardziej szczegółowo

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH Lublin 06.07.2007 r. SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH URZĄDZEŃ BITSTREAM Copyright 2007 BITSTREAM 06.07.2007 1/8 SPIS TREŚCI 1. Wstęp... 2. Moc nadajnika optycznego... 3. Długość fali optycznej...

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej

Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej Dla dużych mocy świetlnych dochodzi do nieliniowego oddziaływania pomiędzy

Bardziej szczegółowo

Charakteryzacja telekomunikacyjnego łącza światłowodowego

Charakteryzacja telekomunikacyjnego łącza światłowodowego Charakteryzacja telekomunikacyjnego łącza światłowodowego Szybkości transmisji współczesnych łączy światłowodowych STM 4 622 Mbps STM 16 2 488 Mbps STM 64 9 953 Mbps Rekomendacje w stadium opracowania

Bardziej szczegółowo

Wprowadzenie do światłowodowych systemów WDM

Wprowadzenie do światłowodowych systemów WDM Wprowadzenie do światłowodowych systemów WDM WDM Wavelength Division Multiplexing CWDM Coarse Wavelength Division Multiplexing DWDM Dense Wavelength Division Multiplexing Współczesny światłowodowy system

Bardziej szczegółowo

Połączenia spawane światłowodów przystosowanych do multipleksacji falowej WDM

Połączenia spawane światłowodów przystosowanych do multipleksacji falowej WDM A-8/10.01 Marek Ratuszek, Jacek Majewski, Zbigniew Zakrzewski, Józef Zalewski, Zdzisław Drzycimski Instytut Telekomunikacji ATR Bydgoszcz Połączenia spawane światłowodów przystosowanych do multipleksacji

Bardziej szczegółowo

Światłowody przystosowane do WDM i ich rozwój

Światłowody przystosowane do WDM i ich rozwój Marek Ratuszek, Zbigniew Zakrzewski, Jacek Majewski, Małgorzata Ratuszek Instytut Telekomunikacji Akademia Techniczno-Rolnicza, Bydgoszcz Światłowody przystosowane do WDM i ich rozwój Przedstawiono wpływ

Bardziej szczegółowo

Pomiary w instalacjach światłowodowych.

Pomiary w instalacjach światłowodowych. Pomiary w instalacjach światłowodowych. Pomiary metodą transmisyjną Pomiary tłumienności metodą transmisyjną Cel pomiaru: Określenie całkowitego tłumienia linii światłowodowej Przyrządy pomiarowe: źródło

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody

Bardziej szczegółowo

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny Autokoherentny pomiar widma laserów półprzewodnikowych autorzy: Łukasz Długosz Jacek Konieczny Systemy koherentne wstęp Systemy transmisji światłowodowej wykorzystujące podczas procesu transmisji światło

Bardziej szczegółowo

Wzmacniacze optyczne ZARYS PODSTAW

Wzmacniacze optyczne ZARYS PODSTAW Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny

Bardziej szczegółowo

KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH

KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH dr inż. Marek Ratuszek, mgr inż. Zbigniew Zakrzewski, mgr inż. Jacek Majewski,

Bardziej szczegółowo

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 ) dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu

Bardziej szczegółowo

Optotelekomunikacja. dr inż. Piotr Stępczak 1

Optotelekomunikacja. dr inż. Piotr Stępczak 1 Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ

Bardziej szczegółowo

Pomiar tłumienności światłowodów włóknistych

Pomiar tłumienności światłowodów włóknistych LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:

Bardziej szczegółowo

Transmisja przewodowa

Transmisja przewodowa Warszawa, 2.04.20 Transmisja przewodowa TRP Ćwiczenie laboratoryjne nr 3. Jakość transmisji optycznej Autorzy: Ł. Maksymiuk, G. Stępniak, E. Łukowiak . Teoria Do podstawowych metod oceny transmisji sygnałów

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej. 1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;

Bardziej szczegółowo

Laboratorium Fotoniki

Laboratorium Fotoniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Fotoniki Obrazowej i Mikrofalowej Laboratorium Fotoniki Badanie zjawiska dyspersji w łączach światłowodowych Prowadzący: dr inż.

Bardziej szczegółowo

MIKROFALOWEJ I OPTOFALOWEJ

MIKROFALOWEJ I OPTOFALOWEJ E-LAB: LABORATORIUM TECHNIKI MIKROFALOWEJ I OPTOFALOWEJ Krzysztof MADZIAR Grzegorz KĘDZIERSKI, Jerzy PIOTROWSKI, Jerzy SKULSKI, Agnieszka SZYMAŃSKA, Piotr WITOŃSKI, Bogdan GALWAS Instytut Mikroelektroniki

Bardziej szczegółowo

Systemy transmisji o bardzo dużych zasięgach i przepływnościach Wykład 19 SMK

Systemy transmisji o bardzo dużych zasięgach i przepływnościach Wykład 19 SMK Systemy transmisji o bardzo dużych zasięgach i przepływnościach Wykład 19 SMK Literatura: J. Siuzdak, Wstęp do telekomunikacji światłowodowej, WKŁ W-wa 1999 W nowoczesnych systemach transmisji (transoceanicznych)

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Parametry i technologia światłowodowego systemu CTV

Parametry i technologia światłowodowego systemu CTV Parametry i technologia światłowodowego systemu CTV (Światłowodowe systemy szerokopasmowe) (c) Sergiusz Patela 1998-2002 Sieci optyczne - Parametry i technologia systemu CTV 1 Podstawy optyki swiatlowodowej:

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Solitony i zjawiska nieliniowe we włóknach optycznych

Solitony i zjawiska nieliniowe we włóknach optycznych Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone

Bardziej szczegółowo

OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1

OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1 OPTOTELEKOMUNIKACJA dr inż. Piotr Stępczak 1 Falowa natura światła E H z z ( ) ± jmθ j( ωt βz ) r e e k = E o n 1 z LP 01 = H z ( ) ± jmθ j( ωt βz ) r e e LP 11 k o V = 2πa λ 2π ω = = o λ c λ 0 lim ω ω

Bardziej szczegółowo

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.09 Określenie procentu modulacji sygnału zmodulowanego AM 1. Określenie procentu modulacji sygnału zmodulowanego

Bardziej szczegółowo

Światłowody telekomunikacyjne

Światłowody telekomunikacyjne Światłowody telekomunikacyjne Parametry i charakteryzacja światłowodów Kolejny wykład będzie poświęcony metodom pomiarowym Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Opracowanie na postawie: Frank Karlsen, Nordic VLSI, Zalecenia projektowe dla tanich systemów, bezprzewodowej transmisji danych cyfrowych, EP

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 00/009 sem.. grupa II Termin: 10 III 009 Nr. ćwiczenia: 1 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta: 6 Nr. albumu: 15101

Bardziej szczegółowo

TELEKOMUNIKACJA ŚWIATŁOWODOWA

TELEKOMUNIKACJA ŚWIATŁOWODOWA TELEKOMUNIKACJA ŚWIATŁOWODOWA ETAPY ROZWOJU TS etap I (1975): światłowody pierwszej generacji: wielomodowe, źródło diody elektroluminescencyjne 0.87μm l etap II (1978): zastosowano światłowody jednomodowe

Bardziej szczegółowo

POMIAR APERTURY NUMERYCZNEJ

POMIAR APERTURY NUMERYCZNEJ ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 4 Media transmisyjne część Program wykładu Widmo sygnałów w. cz. Modele i tryby propagacji Anteny Charakterystyka kanału radiowego zjawiska propagacyjne 1 Transmisja radiowa

Bardziej szczegółowo

Źródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM

Źródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM Sieci i instalacje z tworzyw sztucznych 2005 Wojciech BŁAŻEJEWSKI*, Paweł GĄSIOR*, Anna SANKOWSKA** *Instytut Materiałoznawstwa i Mechaniki Technicznej, Politechnika Wrocławska **Wydział Elektroniki, Fotoniki

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy

Bardziej szczegółowo

Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych stosowanych w Polsce i pochodzących od różnych producentów

Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych stosowanych w Polsce i pochodzących od różnych producentów C8.12 Marek Ratuszek, Zbigniew Zakrzewski, Jacek Majewski, Józef Zalewski Instytut Telekomunikacji ATR w Bydgoszczy, Bydgoszcz Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych

Bardziej szczegółowo

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr

Bardziej szczegółowo

Telekomunikacja światłowodowa

Telekomunikacja światłowodowa KATEDRA OPTOELEKTRONIKI I SYSTEMÓW ELEKTRONICZNYCH Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska 80-233 GDAŃSK, ul.g.narutowicza 11/12, tel.(48)(58) 347 1584, fax.(48)(58) 347

Bardziej szczegółowo

KOMPUTEROWY TESTER WIELOMODOWYCH TORÓW ŚWIATŁOWODOWYCH

KOMPUTEROWY TESTER WIELOMODOWYCH TORÓW ŚWIATŁOWODOWYCH Krzysztof Holejko, Roman Nowak, Tomasz Czarnecki, Instytut Telekomunikacji PW 00-665 Warszawa, ul. Nowowiejska 15/19 holejko@tele.pw.edu.pl, nowak@tele.pw.edu.pl, ctom@tele.pw.edu.pl KOMPUTEROWY TESTER

Bardziej szczegółowo

Projektowanie układów scalonych do systemów komunikacji bezprzewodowej

Projektowanie układów scalonych do systemów komunikacji bezprzewodowej Projektowanie układów scalonych do systemów komunikacji bezprzewodowej Część 1 Dr hab. inż. Grzegorz Blakiewicz Katedra Systemów Mikroelektronicznych Politechnika Gdańska Ogólna charakterystyka Zalety:

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 3 Media transmisyjne część 1 Program wykładu transmisja światłowodowa transmisja za pomocą kabli telekomunikacyjnych (DSL) transmisja przez sieć energetyczną transmisja radiowa

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

Zarządzanie dyspersją

Zarządzanie dyspersją Politechnika Poznańska Instytut Elektroniki i Telekomunikacji Zarządzanie dyspersją Autor: Promotor: Koreferent: Tomasz Mielnicki dr inż. Zbigniew Szymański prof. dr hab. inż. Zdzisław Kachlicki Poznań

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie

Bardziej szczegółowo

Podstawy transmisji sygnałów

Podstawy transmisji sygnałów Podstawy transmisji sygnałów 1 Sygnał elektromagnetyczny Jest funkcją czasu Może być również wyrażony jako funkcja częstotliwości Sygnał składa się ze składowych o róznych częstotliwościach 2 Koncepcja

Bardziej szczegółowo

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW.

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. 3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. Przy rozchodzeniu się fal dźwiękowych może dochodzić do częściowego lub całkowitego odbicia oraz przenikania fali przez granice ośrodków. Przeszkody napotykane

Bardziej szczegółowo

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora

Bardziej szczegółowo

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny

Bardziej szczegółowo

FTF-S1XG-S31L-010D. Moduł SFP+ 10GBase-LR/LW, jednomodowy, 10km, DDMI. Referencja: FTF-S1XG-S31L-010D

FTF-S1XG-S31L-010D. Moduł SFP+ 10GBase-LR/LW, jednomodowy, 10km, DDMI. Referencja: FTF-S1XG-S31L-010D FTF-S1XG-S31L-010D Moduł SFP+ 10GBase-LR/LW, jednomodowy, 10km, DDMI Referencja: FTF-S1XG-S31L-010D Opis: Moduł SFP+ FTF-S1XG-S31L-010D to interfejs 10Gb przeznaczony dla urządzeń pracujących w sieciach

Bardziej szczegółowo

interferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja

interferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja interferencja, dyspersja, dyfrakcja, okna transmisyjne PiOS Interferencja Interferencja to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1

OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1 OPTOTELEKOMUNIKACJA dr inż. Piotr Stępczak 1 Systemy światłowodowy Połączenie punkt punkt TX RX RX Połączenie punkt - wielopunkt TX Mediakonw. Mediakonw. RX RX TX TX RX sprzęgacze TX RX 2 Sieć Ethernet

Bardziej szczegółowo

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008 Detektor Fazowy Marcin Polkowski marcin@polkowski.eu 23 stycznia 2008 Streszczenie Raport z ćwiczenia, którego celem było zapoznanie się z działaniem detektora fazowego umożliwiającego pomiar słabych i

Bardziej szczegółowo

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)

Bardziej szczegółowo

Sieci optoelektroniczne

Sieci optoelektroniczne Sieci optoelektroniczne Wykład 6: Projektowanie systemów transmisji światłowodowej dr inż. Walery Susłow Podstawowe pytania (przed rozpoczęciem prac projektowych) Jaka jest maksymalna odległość transmisji?

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze

Bardziej szczegółowo

1. Technika sprzęgaczy i ich zastosowanie

1. Technika sprzęgaczy i ich zastosowanie . Technika sprzęgaczy i ich zastosowanie Sprzęgacze światłowodowe są podstawowymi elementami rozgałęźnych sieci optycznych (lokalnych, komputerowych, telewizyjnych) dowolnej konfiguracji. Spełniają rolę

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH

2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH 1. WSTĘP Radiofonię cyfrową cechują strumienie danych o dużych przepływnościach danych. Do przesyłania strumienia danych o dużych przepływnościach stosuje się transmisję z wykorzystaniem wielu sygnałów

Bardziej szczegółowo

Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach

Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach i ich pomiary Światłowody specjalne Podsumowanie 18/11/2010

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej

Bardziej szczegółowo

RADIOMETR MIKROFALOWY. RADIOMETR MIKROFALOWY (wybrane zagadnienia) Opracowanie : dr inż. Waldemar Susek dr inż. Adam Konrad Rutkowski

RADIOMETR MIKROFALOWY. RADIOMETR MIKROFALOWY (wybrane zagadnienia) Opracowanie : dr inż. Waldemar Susek dr inż. Adam Konrad Rutkowski RADIOMETR MIKROFALOWY RADIOMETR MIKROFALOWY (wybrane zagadnienia) Opracowanie : dr inż. Waldemar Susek dr inż. Adam Konrad Rutkowski 1 RADIOMETR MIKROFALOWY Wprowadzenie Wszystkie ciała o temperaturze

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości.

Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości. Lekcja 19 Temat: Wzmacniacze pośrednich częstotliwości. Wzmacniacze pośrednich częstotliwości zazwyczaj są trzy- lub czterostopniowe, gdyż sygnał na ich wejściu musi być znacznie wzmocniony niż we wzmacniaczu

Bardziej szczegółowo

VII Wybrane zastosowania. Bernard Ziętek

VII Wybrane zastosowania. Bernard Ziętek VII Wybrane zastosowania Bernard Ziętek 1. Medycyna Oddziaływanie światła z tkanką: 1. Fotochemiczne (fotowzbudzenie, fotorezonans, fotoaktywakcja, fotoablacja, fotochemoterapia, biostymulacja, synteza

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014. Zadania z teleinformatyki na zawody III stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014. Zadania z teleinformatyki na zawody III stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014 Zadania z teleinformatyki na zawody III stopnia Lp. Zadanie 1. Dla wzmacniacza mikrofalowego o wzmocnieniu

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej

Bardziej szczegółowo

Przekształcenia sygnałów losowych w układach

Przekształcenia sygnałów losowych w układach INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Sygnały i kodowanie Przekształcenia sygnałów losowych w układach Warszawa 010r. 1. Cel ćwiczenia: Ocena wpływu charakterystyk

Bardziej szczegółowo

2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1

2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1 TELEKOMUNIKACJA OPTOFALOWA. Światłowody Spis treści:.1. Wprowadzenie... Światłowody wielo- i jednomodowe..3. Tłumienie światłowodów..4. Dyspersja światłowodów..5. Pobudzanie i łączenie światłowodów..6.

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 01/18. SŁAWOMIR CIĘSZCZYK, Chodel, PL PIOTR KISAŁA, Lublin, PL

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 01/18. SŁAWOMIR CIĘSZCZYK, Chodel, PL PIOTR KISAŁA, Lublin, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 230198 (13) B1 (21) Numer zgłoszenia: 420259 (51) Int.Cl. G01N 21/00 (2006.01) G01B 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej P. OTOMAŃSKI Politechnika Poznańska P. ZAZULA Okręgowy Urząd Miar w Poznaniu Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej Seminarium SMART GRID 08 marca

Bardziej szczegółowo

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII

Bardziej szczegółowo

Ćwiczenie A1 : Linia długa

Ćwiczenie A1 : Linia długa Ćwiczenie A1 : Linia długa Jacek Grela, Radosław Strzałka 19 kwietnia 2009 1 Wstęp 1.1 Wzory Podstawowe wzory i zależności które wykorzystywaliśmy w trakcie badania linii: 1. Rezystancja falowa Gdzie:

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

FIZYKA LASERÓW XIII. Zastosowania laserów

FIZYKA LASERÓW XIII. Zastosowania laserów FIZYKA LASERÓW XIII. Zastosowania laserów 1. Grzebień optyczny Częstość światła widzialnego Sekunda to Problemy dokładności pomiaru częstotliwości optycznych Grzebień optyczny linijka częstotliwości Laser

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

LABORATORIUM Pomiar charakterystyki kątowej

LABORATORIUM Pomiar charakterystyki kątowej Ćwiczenie 6 LABORATORIUM Pomiar charakterystyki kątowej Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Opisz budowę złączy światłowodowych. Opisz budowę lasera w tym lasera półprzewodnikowego.

Bardziej szczegółowo

Światłowody. Telekomunikacja światłowodowa

Światłowody. Telekomunikacja światłowodowa Światłowody Telekomunikacja światłowodowa Cechy transmisji światłowodowej Tłumiennośd światłowodu (około 0,20dB/km) Przepustowośd nawet 6,875 Tb/s (2000 r.) Standardy - 10/20/40 Gb/s Odpornośd na działanie

Bardziej szczegółowo

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Instrukcja do ćwiczenia: Badanie parametrów wzmacniacza światłowodowego EDFA Ostatnie dwie dekady to okres niezwykle

Bardziej szczegółowo

INTERFERENCJA WIELOPROMIENIOWA

INTERFERENCJA WIELOPROMIENIOWA INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów

Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów wielkość mierzona wartość wielkości jednostka miary pomiar wzorce miary wynik pomiaru niedokładność pomiaru Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów 1. Pojęcia podstawowe

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

FDM - transmisja z podziałem częstotliwości

FDM - transmisja z podziałem częstotliwości FDM - transmisja z podziałem częstotliwości Model ten pozwala na demonstrację transmisji jednoczesnej dwóch kanałów po jednym światłowodzie z wykorzystaniem metody podziału częstotliwości FDM (frequency

Bardziej szczegółowo