KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH
|
|
- Błażej Marczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH dr inż. Marek Ratuszek, mgr inż. Zbigniew Zakrzewski, mgr inż. Jacek Majewski, mgr inż. Józef Zalewski, mgr inż. Małgorzata Ratuszek INSTYTUT TELEKOMUNIKACJI ATR BYDGOSZCZ Bydgoszcz ul. Prof. S. Kaliskiego 7 Streszczenie Zaprezentowano wyniki reflektometrycznych pomiarów długości odcinków spawanych telekomunikacyjnych światłowodów jednomodowych. Stwierdzono istotne, rzędu kilku metrów, wydłużenie mierzonych długości odcinków w stosnku do rzeczywistych ich długości jeżeli pomiar wykonywano od reflektometru do spawu oraz skrócenie długości, gdy pomiar wykonywano od spawu do zdarzenia typu odbicie (koniec trasy). Badania wykonano przy użyciu reflektometrów kilku typów w pasmie 1310 nm i 1550 nm. Przedstawiono analizę i możliwe przyczyny błędów pomiarowych oraz sposób korekcji tych błędów. 1. Wprowadzenie Zasadę pracy reflektometru przedstawiono na rys.1. Rys. 1 Reflektometr światłowodowy-zasada pracy. Generator impulsowy steruje laserem półprzewodnikowym (LD), który wstrzykuje ciąg impulsów światła do światłowodu (SW). W czasie propagacji impulsy światła ulegają rozpraszaniu. Część rozpraszanej mocy powraca do reflektometru. Sprzęgacz kierunkowy (SK) separuje falę rozpraszaną od padającej a moc rozpraszana jest kierowana do odbiornika optycznego z fotodiodą PIN lub APD, gdzie jest uśredniana, przetwarzana na sygnał elektryczny i analizowana [1]. 225
2 Wstrzykiwane do światłowodu impulsy optyczne charakteryzuje moc szczytowa P o o wartości 10 mw i więcej, czas trwania t o wartości od kilku nanosekund do kilku mikrosekund oraz częstość powtarzania od 1 khz do 20 khz. Małe częstotliwości repetycji stosuje się do długich światłowodów a duże dla włókien krótkich. Częstotliwość repetycji musi być tak dobrana, aby powracający sygnał ze światłowodu nie zachodził na impuls wstrzykiwany. Impuls optyczny w światłowodzie propaguje z prędkością grupową: Vg co ng = (1) gdzie: c - prędkość światła w próżni, n g - grupowy współczynnik załamania światła w rdzeniu. Wstrzyknięty impuls optyczny zajmuje odcinek światłowodu o długości x= t v g. Analiza mocy rozpraszanej i odbitej, wstrzykiwanych impulsów, w funkcji czasu jest równoważna analizie w funkcji odległości od miejsca pomiaru, przy znanym grupowym współczynniku załamania n g. Moc rozpraszania wstecznego P rw (x) widzianą przez reflektometr, a pochodzącą z odcinka x odległego o x, można przedstawić wzorem [2] : 2αx Prw ( x )= S α s x Po k (2) gdzie: x t v g = 2, t - czas przejścia przez światło drogi 2x, P o - szczytowa moc impulsu wstrzykniętego do światłowodu [mw], S - bezwymiarowy współczynnik rozpraszania wstecznego, α S -współczynnik rozpraszania Rayleigha [1/km], α - tłumienność jednostkowa światłowodu [db/km], k - łączna sprawność sprzęgacza SK i odbiornika APD, x = t v g - długość impulsu, t - czas trwania impulsu. 226
3 Poziom mocy rozpraszanej (1), a zatem mierzonej przez APD (rys.1), jest proporcjonalny do mocy szczytowej impulsu w odległości x od reflektometru i czasu trwania impulsu. Przy obliczaniu poziomu mocy rozpraszanej docierającej do odbiornika należy brać pod uwagę dwukrotne tłumienie w światłowodzie : dla impulsu padającego i dla sygnału rozpraszanego. To samo dotyczy czasu. Zamiana odczytu czasu na długość drogi w światłowodzie odbywa się dzięki znajomości grupowego współczynnika załamania. Analiza rozpraszania wstecznego (1) umożliwia wyznaczenie między innymi: tłumienności, tłumienności jednostkowej, tłumienności wtrąconej (strat) w miejscach zgięć, spawów, zdarzeń odbiciowych, długości światłowodu. 2. Pomiar długości dwóch odcinków spawanych Do badań użyto jednomodowych światłowodów telekomunikacyjnych o następujących parametrach : NA=0.13, MFD 1310 nm = 9.3 ± 0.5 µm, MFD 1550 nm = 10.5 ± 1.0 µm, n g = 1.47 (1310 i 1550nm), α 1310 nm 0.40 db/km, α 1550 nm 0.25 db/km. Przed spawaniem, długość światłowodów mierzono metodą reflektometryczną poprzez pomiar odległości impulsu odbitego od końca światłowodu. Do reflektometrycznych pomiarów długości odcinków spawanych i tłumienności spawów zastosowano metodę LSA (Least Square Approximation). Przykład realizacji metody LSA, czteropunktowej, przedstawiono na rys
4 Rys. 2 Ilustracja metody czteropunktowej. Pomiary przeprowadzano reflektometrami EXFO FCS-100, Siemens K2310, Tektronix TFS3030 FiberMini, dla różnych długości impulsów oraz dla λ = 1310 i 1550 nm. Przyjęto n g =1.47. Stwierdzono, metoda LSA i pomiar automatyczny, znaczne wydłużenie, w stosunku do mierzonych metodą odbiciową, długości odcinków przed spawem l 1 -rys.2 i skrócenie długości odcinków za spawem l 2 -rys.2. Ekstremalne różnice dochodziły do 8 metrów na kilometrowych odcinkach spawanych światłowodów. Natomiast pomiar długości trasy l 1 +l 2 zespawanych światłowodów, mierzony na odbicie, w granicach błędu ±2m, zgadzał się z sumą l 1 i l 2 oddzielnie mierzonych przed spawaniem światłowodów. Zatem pomiar długości odcinków spawanych jest obarczony dużym błędem. Ma to bardzo duże znaczenie przy lokalizacji spawów w istniejących liniach światłowodowych. 228
5 2.1 Wybrane wyniki pomiarów Reflektometr EXFO FCS-100 A. Pomiar l 1 i l 2 przed spawaniem (odbicie) λ = 1310 nm λ = 1550 nm t [ns] l 1 [m] l 2 [m] Średnia wartość sumy l 1 +l 2 =1901m. B. Pomiar l 1 + l 2 (odbicie od końca trasy) po zespawaniu. Dla λ=1310 nm i λ=1550nm oraz różnych t impulsów, długość trasy zmieniała się w zakresie m. Zatem można uznać, że suma l 1 i l 2 z pomiarów cząstkowych (A) jest zgodna z pomiarami całej trasy. C. Pomiar l 1 i l 2 po zespawaniu (metoda LSA). Pomiar długości l 1 wykonywano od strony l 1 a l 2 od strony l 2. λ = 1310 nm λ = 1550 nm t [ns] l 1 [m] * * l 1 [m] 5.15 * * l 2 [m] * l 2 [m] 5.30* * pomiar obarczony dużym błędem l 1 = l 1 (pomiar po spawaniu) - l 1 (pomiar przed spawaniem), l 2 = l 2 (pomiar po spawaniu) - l 2 (pomiar przed spawaniem). 229
6 Porównywalne wydłużenie mierzonych odcinków można uzyskać, gdy zamiast spawu zdarzeniem będzie zgięcie światłowodu. Wydłużenie mierzonych odcinków tych samych światłowodów spawanych, w stosunku do rzeczywistych długości, obserwowano również przy pomiarach innymi typami reflektometrów. 3. Analiza i możliwe przyczyny błędów pomiarowych Reflektometr jest miernikiem mocy rozpraszanej (1) proporcjonalnej do mocy szczytowej impulsu, w odległości x od reflektometru, i czasu trwania impulsu - czyli pola impulsu. Dlatego też długie impulsy stosuje się do pomiarów długich tras mimo strat w rozdzielczości. Impulsy optyczne charakteryzują się czasem narostu i opadania -rys.3. a) b) Rys. 3 Reflektometr EXFO FCS-100. Przykładowe kształty impulsów : a) t=30 ns, b) t=275 ns. Z naszych pomiarów wynika, że czasy narostu dla impulsów 30 ns, 100 ns, 275 ns są dla różnych reflektometrów porównywalne, nieco większy czas narostu obserwuję się dla impulsów 1000 ns. Natomiast regułą jest, dla wszystkich przebadanych przez nas 230
7 reflektometrów, że szerokość rzeczywistych impulsów optycznych przekracza parametry zadane. Długość impulsu, naszym zdaniem, nie wpływa jednak na wydłużenie długości odcinków spawanych (oprócz impulsów 30 ns). Reflektometry charakteryzują się minimalnym poziomem mocy odbieranej, poniżej którego reflektometr nie odróżnia sygnału od szumu. Jest to związane z czułością odbiornika optycznego zastosowanego w reflektometrze. Wydłużenie mierzonych odcinków spawanych jest, naszym zdaniem, związane z wyżej wymienionymi cechami reflektometru. Rys. 4 Schematyczne przedstawienie zmiany mocy rozpraszanej. Moc rozpraszana docierająca do reflektometru, zgodnie z (1), jest proporcjonalna do pola powierzchni impulsu -rys.4a. Reflektometr rejestruje czas wstrzyknięcia impulsu do światłowodu, zapamiętywany jest czas początku impulsu. Jeżeli na trasie impulsu nastąpi zdarzenie typu spaw jest ono widziane przez reflektometr jako zmniejszanie się mocy rozpraszanej P rw (x) pochodzącej od impulsu. Zmniejszanie się mocy rozpraszanej jest rejestrowane od momentu, w którym zmiana mocy rozpraszanej reprezentowanej przez pole II - rys.4b przedstawia poziom mocy możliwy do rejestracji przez reflektometr jako sygnał. Do tego momentu reflektometr nie widzi zdarzenia. Im większa czułość odbiornika optycznego tym mniejsze pole II zauważane jako zmiana. Tego typu odbiór 231
8 powoduje, że czas rejestracji zdarzenia wydłuża się o 2 t 1 -rys 4b. Zatem mierzona długość odcinka spawanego (rys.2) wynosi : 2( t+ t1 ) v g l1 = 2 (3) Wydłużenia nie obserwuje się mierząc całą długość trasy l 1 +l 2 (ze spawem) metodą odbiciową, gdyż poziom mocy odbitej jest o kilkadziesiąt db większy od mocy rozpraszanej. Pole II jest w tym przypadku minimalne. Potwierdzeniem przedstawionej analizy jest fakt większego wydłużenia się mierzonych odcinków spawanych w przypadku pomiarów dłuższych światłowodów. Jest to związane ze zmniejszeniem się mocy szczytowej impulsu na większej odległości x. W takim przypadku pole II -rys.4b dla zachowania tej samej powierzchni musi reprezentować większy czas t Pomiary trasy złożonej z czterech odcinków spawanych Potwierdzeniem wyżej przedstawionej analizy są również pomiary długości czterech odcinków spawanych telekomunikacyjnych światłowodów jednomodowych - rys. 5. Do badań użyto jednomodowych światłowodów telekomunikacyjnych o parametrach przedstawionych w rozdziale 2. Rys. 5 Schematyczne przedstawienie pomiarów długości czterech odcinków spawanych 232
9 4.1 Wybrane wyniki pomiarów Reflektometr EXFO FCS-100 A. Pomiary l 1, l 2, l 3, l 4 przed spawaniem (odbicie) dla λ=1310 nm i długości impulsu t=275 ns : l 1 = 312 m, l 2 = 291 m, l 3 = m, l 4 = 1110 m; l 1 + l 2 + l 3 + l 4 = m B. Pomiary l 1, l 2, l 3, l 4 po zespawaniu jak na rys. 5 dla λ=1310 nm i długości impulsu t=275 ns : l 1 = m, l 2 = m, l 3 = m, l 4 = 1104 m; l 1 + l 2 + l 3 + l 4 = m C. Pomiary odcinków l 5 i l 6 jak na rys. 5 dla λ=1310 nm i długości impulsu t=275 ns są sumą l 5 = l 1 + l 2, l 6 = l 1 + l 2 + l 3 + l 4 (długość l po zespawaniu) Po zespawaniu, pomiary wykazały wydłużenie odcinka l 1, co jest zgodne z analizą przedstawiona w rozdz. 3. Odcinki l 2 i l 3 uległy nieznacznemu wydłużeniu, gdyż znajdują się między dwoma spawami. Pierwszy spaw skraca ich długość a drugi wydłuża. Wydłużenie na drugim spawie jest nieco większe niż skrócenie na pierwszym spawie, gdyż na skutek zwiększenia się x - (2) zmniejsza się P rw (x) co prowadzi do zwiększenia t 1 - rys.4b. Na końcu trasy występuje skrócenie odcinka l 4, gdyż ostatni spaw skraca długość l 4 - rys.5, a na końcu trasy następuje odbicie impulsu optycznego powodując, że pole II - rys.4 jest w tym przypadku minimalne. 233
10 5. Wnioski Zmiany mierzonych długości odcinków spawanych światłowodów zależą od czułości reflektometru, długości odcinków spawanych, tłumienności spawanych światłowodów. Szczegółowa, ilościowa metoda korekcji mierzonych odcinków spawanych różnych typów telekomunikacyjnych światłowodów jednomodowych jest przedmiotem zgłoszenia patentowego. Literatura 1. A. Kowalski, Reflektometry światłowodowe, Przegląd Telekomunikacyjny, No 10, pp , Materia³y firmowe : Hewlett-Packard, Siemens, Exfo, Wandel&Goltermann. 234
Pomiary w instalacjach światłowodowych.
Pomiary w instalacjach światłowodowych. Pomiary metodą transmisyjną Pomiary tłumienności metodą transmisyjną Cel pomiaru: Określenie całkowitego tłumienia linii światłowodowej Przyrządy pomiarowe: źródło
Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych stosowanych w Polsce i pochodzących od różnych producentów
C8.12 Marek Ratuszek, Zbigniew Zakrzewski, Jacek Majewski, Józef Zalewski Instytut Telekomunikacji ATR w Bydgoszczy, Bydgoszcz Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych
Wpływ warunków klimatycznych na proces spawania i parametry spawów światłowodów telekomunikacyjnych
A-8/1.9 Marek Ratuszek, Zbigniew Zakrzewski, Jacek Majewski, Stefan Stróżecki, Józef Zalewski Instytut Telekomunikacji ATR Bydgoszcz Tadeusz Konefał, Witold Kula TP S.A. Tarnobrzeg Wpływ warunków klimatycznych
SPAWANIE RÓŻNYCH TYPÓW TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH STOSOWANYCH W SIECIACH TELEKOMUNIKACYJNYCH
SPAWANIE RÓŻNYCH TYPÓW TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH STOSOWANYCH W SIECIACH TELEKOMUNIKACYJNYCH dr inż. Marek Ratuszek, mgr inż. Zbigniew Zakrzewski, mgr inż. Jacek Majewski, mgr inż.
Pomiary kabli światłowodowych
Pomiary kabli światłowodowych Ver. 1.8 CENTRUM USŁUG INFORMATYCZNYCH W E W R O C Ł A W I U ul. Namysłowska 8; 50-304 Wrocław tel. +48 71 777 90 32; fax. +48 71 777 75 65 cui@cui.wroclaw.pl; www.cui.wroclaw.pl
Optotelekomunikacja. dr inż. Piotr Stępczak 1
Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ
Połączenia spawane światłowodów przystosowanych do multipleksacji falowej WDM
A-8/10.01 Marek Ratuszek, Jacek Majewski, Zbigniew Zakrzewski, Józef Zalewski, Zdzisław Drzycimski Instytut Telekomunikacji ATR Bydgoszcz Połączenia spawane światłowodów przystosowanych do multipleksacji
Pomiary kabli światłowodowych
Pomiary kabli światłowodowych Ver. 1.3 Wydział Informatyki Ul. Świdnicka 53; 50-030 Wrocław Tel. +48 717 77 90 32 Fax. +48 717 77 75 65 win@um.wroc.pl www.wroclaw.pl Historia zmian dokumentu Wersja Data
Reflektometr optyczny OTDR
Reflektometr optyczny OTDR i inne przyrządy pomiarowe w technice światłowodowej W prezentacji wykorzystano fragmenty prac dyplomowych Jacka Stopy, Rafała Dylewicza, Roberta Koniecznego Prezentacja zawiera
Metodologia łączenia i wstępnej certyfikacji. Część 2
Metodologia łączenia i wstępnej certyfikacji Część 2 Time Pulse OTDR Data Link Range Distance Spis treści SŁOWO WSTĘPNE------------------------------------------------------------------------------------------------
Pomiar tłumienności światłowodów włóknistych
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:
Pomiary światłowodów telekomunikacyjnych Laboratorium Eksploatacja Systemów Telekomunikacyjnych
Pomiary światłowodów telekomunikacyjnych Laboratorium Eksploatacja Systemów Telekomunikacyjnych Dr inż. Mirosław Siergiejczyk Mgr inż. Zbigniew Kasprzyk Zalecana literatura Kathryn Booth, Steven Hill Optoelektronika
SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH
Lublin 06.07.2007 r. SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH URZĄDZEŃ BITSTREAM Copyright 2007 BITSTREAM 06.07.2007 1/8 SPIS TREŚCI 1. Wstęp... 2. Moc nadajnika optycznego... 3. Długość fali optycznej...
Ćwiczenie 2. Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. LABORATORIUM OPTOELEKTRONIKI
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 2 Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. Cel ćwiczenia: Zapoznanie studentów ze zjawiskami tłumienności odbiciowej i własnej.
Transmisja w systemach CCTV
Transmisja w systemach CCTV Systemy monitoringu wizyjnego CVBS TVI CVI AHD IP Systemy monitoringu wizyjnego CVBS Maks. rozdzielczość WD1 960 x 576 px Maks. dystans transmisji 300 m (RG-59) Maks. dystans
Reflektometryczne pomiary reflektancji i tłumienności odbiciowej
Reflektometryczne pomiary reflektancji i tłumienności odbiciowej Andrzej Tymecki 1 Reflektancja a tłumienność odbiciowa Reflektancja i tłumienność odbiciowa są dwoma różnymi parametrami, często błędnie
Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu
Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia
Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Typowe parametry włókna MMF-SI
Techniki światłowodowe Standardy telekomunikacyjnych włókien światłowodowych Zbigniew Zakrzewski ver.1.0 N W 1 Typowe parametry włókna MMF-SI Parametr Wartość Średnica rdzenia 50 400 µm Średnica płaszcza
2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )
dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu
Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny
Autokoherentny pomiar widma laserów półprzewodnikowych autorzy: Łukasz Długosz Jacek Konieczny Systemy koherentne wstęp Systemy transmisji światłowodowej wykorzystujące podczas procesu transmisji światło
Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów
Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody
Technika falo- i światłowodowa
Technika falo- i światłowodowa Falowody elementy planarne (płytki, paski) Światłowody elementy cylindryczne (włókna światłowodowe) płytkowy paskowy włókno optyczne Rdzeń o wyższym współczynniku załamania
Źródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM
Sieci i instalacje z tworzyw sztucznych 2005 Wojciech BŁAŻEJEWSKI*, Paweł GĄSIOR*, Anna SANKOWSKA** *Instytut Materiałoznawstwa i Mechaniki Technicznej, Politechnika Wrocławska **Wydział Elektroniki, Fotoniki
Optyczne elementy aktywne
Optyczne elementy aktywne Źródła optyczne Diody elektroluminescencyjne Diody laserowe Odbiorniki optyczne Fotodioda PIN Fotodioda APD Generowanie światła kontakt metalowy typ n GaAs podłoże typ n typ n
1. Technika sprzęgaczy i ich zastosowanie
. Technika sprzęgaczy i ich zastosowanie Sprzęgacze światłowodowe są podstawowymi elementami rozgałęźnych sieci optycznych (lokalnych, komputerowych, telewizyjnych) dowolnej konfiguracji. Spełniają rolę
1. Nadajnik światłowodowy
1. Nadajnik światłowodowy Nadajnik światłowodowy jest jednym z bloków światłowodowego systemu transmisyjnego. Przetwarza sygnał elektryczny na sygnał optyczny. Jakość transmisji w dużej mierze zależy od
POLITECHNIKA POZNAŃSKA
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 6 Temat: Sprzęgacz kierunkowy.
Uniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych
Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Laboratorium Elementów i Systemów Optoelektronicznych Instrukcja do ćwiczenia: BADANIE PARAMETRÓW PASYWNYCH
Załącznik nr 4 do Umowy Ramowej Usługa Dzierżawa Ciemnych Włókien
Załącznik nr 4 do Umowy Ramowej Usługa Dzierżawa Ciemnych Włókien Rozdział 1. POSTANOWIENIA OGÓLNE 1. Niniejszy załącznik określa ramowe warunki współpracy Stron w zakresie Dzierżawy Ciemnych Włókien o
Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych
Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach
Dyspersja światłowodów Kompensacja i pomiary
Dyspersja światłowodów Kompensacja i pomiary Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem
Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.
1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;
Systemy i Sieci Radiowe
Systemy i Sieci Radiowe Wykład 3 Media transmisyjne część 1 Program wykładu transmisja światłowodowa transmisja za pomocą kabli telekomunikacyjnych (DSL) transmisja przez sieć energetyczną transmisja radiowa
Laboratorium Telewizji Cyfrowej
Laboratorium Telewizji Cyfrowej Badanie wybranych elementów sieci TV kablowej Jarosław Marek Gliwiński Robert Sadowski Przemysław Szczerbicki Paweł Urbanek 14 maja 2009 1 Cel ćwiczenia Celem ćwiczenia
Transmisja przewodowa
Warszawa, 16.11.2015 Transmisja przewodowa TRP Ćwiczenie laboratoryjne nr 2. Transmisja światłowodowa - podstawy Autorzy: Ł. Maksymiuk, G. Stępniak, E. Łukowiak 1 1. Teoria zjawiska liniowe Ważnym parametrem
światłowód złącze Rys.1. Schemat blokowy reflektometru światłowodowego.
1. Reflektometr optyczny. Reflektometr jest istotnym narzędziem pomiarowym pozwalającym na określenie tłumienności, niejednorodności włókien, tłumienności złączy, pęknięć oraz długości. Krótkie impulsy
Solitony i zjawiska nieliniowe we włóknach optycznych
Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
OTDR AQ7270. Interlab. Reflekto metr. Najnowsza rodzina reflektometrów optycznych firmy YOKOGAWA (Ando)
OTDR AQ7270 Reflekto metr Najnowsza rodzina reflektometrów optycznych firmy YOKOGAWA (Ando) Reflektometr AQ 7270 dostępny jest w 11 różnych konfiguracjach. Umożliwia pomiary światłowodów jedno i wielomodowych.
KOMPUTEROWY TESTER WIELOMODOWYCH TORÓW ŚWIATŁOWODOWYCH
Krzysztof Holejko, Roman Nowak, Tomasz Czarnecki, Instytut Telekomunikacji PW 00-665 Warszawa, ul. Nowowiejska 15/19 holejko@tele.pw.edu.pl, nowak@tele.pw.edu.pl, ctom@tele.pw.edu.pl KOMPUTEROWY TESTER
2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1
TELEKOMUNIKACJA OPTOFALOWA. Światłowody Spis treści:.1. Wprowadzenie... Światłowody wielo- i jednomodowe..3. Tłumienie światłowodów..4. Dyspersja światłowodów..5. Pobudzanie i łączenie światłowodów..6.
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik telekomunikacji 311[37]
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik telekomunikacji 311[37] 1 2 3 4 5 6 W pracy egzaminacyjnej były oceniane następujące elementy: I. Tytuł pracy egzaminacyjnej II.
Transmisja bezprzewodowa
Sieci komputerowe Wykład 6: Media optyczne Transmisja bezprzewodowa Wykład prowadzony przez dr inż. Mirosława Hajdera dla studentów 3 roku informatyki, opracowany przez Joannę Pliś i Piotra Lasotę, 3 FD.
Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)
Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic
Załącznik nr 4 do Umowy Ramowej. Usługa Dzierżawa Ciemnych Włókien
Załącznik nr 4 do Umowy Ramowej Usługa Dzierżawa Ciemnych Włókien Rozdział 1. POSTANOWIENIA OGÓLNE 1. Niniejszy załącznik określa ramowe warunki współpracy Stron w zakresie Dzierżawy Ciemnych Włókien o
Bilans mocy linii światłowodowej. Sergiusz Patela 2004 Projekt sieci światłowodowej - bilans mocy 1
Bilans mocy linii światłowodowej Sergiusz Patela 2004 Projekt sieci światłowodowej - bilans mocy 1 Bilansowanie mocy linii światłowodowej - możliwości wyboru, zastosowania 1. Rodzaj detektora (określony
Praktyki zawodowe. Program nauczania dla zawodu technik teleinformatyk 351103 o strukturze przedmiotowej
rojekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego raktyki zawodowe 1. Bezpieczeństwo i organizacja pracy podczas wykonywania zadań 2. omiary mediów i torów transmisyjnych
Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów
Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze
Optotelekomunikacja 1
Optotelekomunikacja 1 Zwielokrotnienie optyczne zwielokrotnienie falowe WDM Wave Division Multiplexing zwielokrotnienie czasowe OTDM Optical Time Division Multiplexing 2 WDM multiplekser demultiplekser
2.4.1 Sprawdzenie wykonania traktu światłowodowego... 7 2.4.2 Pomiary optyczne... 8. 2.5 Opis badań przy odbiorze traktu światłowodowego...
Spis treści Strona 1. WSTĘP... 3 2. BADANIA TRAKTU ŚWIATŁOWODOWEGO.... 3 2.1 Ustawy i normy ISO/IEC... 3 2.2 Rekomendacje ITU... 6 2.3 Specyfikacje funkcjonalne PSE S.A.... 7 2.4 Wykaz badań przy odbiorze
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
V n. Profile współczynnika załamania. Rozmycie impulsu spowodowane dyspersją. Impuls biegnący wzdłuż światłowodu. Wejście Wyjście
OPTOELEKTRONIKA dr hab. inż. S.M. Kaczmarek 1. DYSPERSJA 1.1. Dyspersja materiałowa i falowodowa. Dyspersja chromatyczna. 1.2. Dyspersja modowa w światłowodach a). o skokowej zmianie współczynnika załamania
Czujniki światłowodowe
Czujniki światłowodowe Pomiar wielkości fizycznych zaburzających propagację promieniowania Idea pomiaru Dioda System optyczny Odbiornik Wejście pośrednie przez modulator Wielkość mierzona wejście czujnik
BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO
Temat ćwiczenia: BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO 1. Wprowadzenie Ultradźwiękowy bezdotykowy czujnik położenia liniowego działa na zasadzie pomiaru czasu powrotu impulsu ultradźwiękowego,
DIAGNOSTYKA USZKODZEŃ W TELEKOMUNIKACYJNYCH LINIACH ŚWIATŁOWODOWYCH
Materiały XXXVI Międzyuczelnianej Konferencji Metroloów MKM 04 _ Politechnika Łódzka Instytut Elektrotechniki Teoretycznej, Metroloii i Materiałoznawstwa DIAGNOSTYKA USZKODZEŃ W TELEKOMUNIKACYJNYCH LINIACH
OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1
OPTOTELEKOMUNIKACJA dr inż. Piotr Stępczak 1 Optyczne elementy pasywne Złącza światłowodowe Sprzęgacz / rozdzielacz światłowodowy Multiplekser / Demultiplekser falowy Optoizolator i cyrkulator Filtry światłowodowe
Metody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
IV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA
OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki WPROWADZENIE Całkowity
Wzmacniacze optyczne ZARYS PODSTAW
Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny
LEKCJA. TEMAT: Napędy optyczne.
TEMAT: Napędy optyczne. LEKCJA 1. Wymagania dla ucznia: Uczeń po ukończeniu lekcji powinien: umieć omówić budowę i działanie napędu CD/DVD; umieć omówić budowę płyty CD/DVD; umieć omówić specyfikację napędu
- Porównanie reflektometrów optycznych - IDEAL OTDR & Noyes M200 - Kolorowy wyświetlacz dotykowy
- Porównanie reflektometrów optycznych - IDEAL & Noyes - Specyfikacja ogólna Wyświetlacz IDEAL Quad & MM rozdzielczości Kolorowy wyświetlacz dotykowy Wymiary 250 x 125 x 75 mm 230 x 110 x 70 mm Waga z
Zworka amp. C 1 470uF. C2 100pF. Masa. R pom Rysunek 1. Schemat połączenia diod LED. Rysunek 2. Widok płytki drukowanej z diodami LED.
Ćwiczenie. Parametry dynamiczne detektorów i diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi parametrami dynamicznymi diod LED oraz detektorów. Poznanie możliwych do uzyskania
FTF-S1XG-S31L-010D. Moduł SFP+ 10GBase-LR/LW, jednomodowy, 10km, DDMI. Referencja: FTF-S1XG-S31L-010D
FTF-S1XG-S31L-010D Moduł SFP+ 10GBase-LR/LW, jednomodowy, 10km, DDMI Referencja: FTF-S1XG-S31L-010D Opis: Moduł SFP+ FTF-S1XG-S31L-010D to interfejs 10Gb przeznaczony dla urządzeń pracujących w sieciach
INSTRUKCJA OBSŁUGI Generatora impulsów PWM
INSTRUKCJA OBSŁUGI Generatora impulsów PWM Przeznaczeniem generatora jest sterowanie różnymi zaworami lub elementami indukcyjnymi jak przekaźniki, siłowniki i inne elementy wykonawcze sterowane napięciem
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014. Zadania z teleinformatyki na zawody III stopnia
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014 Zadania z teleinformatyki na zawody III stopnia Lp. Zadanie 1. Dla wzmacniacza mikrofalowego o wzmocnieniu
Wyznaczanie prędkości dźwięku w powietrzu
Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania
Kontrola metrologiczna wojskowego sprzętu optoelektronicznego w Centralnym Wojskowym Ośrodku Metrologii
Bi u l e t y n WAT Vo l. LXI, Nr 2, 2012 Kontrola metrologiczna wojskowego sprzętu optoelektronicznego w Centralnym Wojskowym Ośrodku Metrologii Marcin Bociek 1, Andrzej Długaszek 2 1 Centralny Wojskowy
Łączenie włókien światłowodowych spawanie światłowodów. Spawy mechaniczne 0,05 0,2 db Spawanie 0,05 0,1 db
Łączenie włókien światłowodowych spawanie światłowodów Złączki 0,2 1 db Spawy mechaniczne 0,05 0,2 db Spawanie 0,05 0,1 db Spawy mechaniczne 1. Elastomeric Lab Splice. Umożliwia setki połączeń 2. 3M Fibrlok.
INSTRUKCJA DO LABORATORIUM. Spawarka światłowodowa, reflektometr optyczny OTDR (ang. Optical time domain reflectometer), zestaw transmisyjny
INSTRUKCJA DO LABORATORIUM Spawarka światłowodowa, reflektometr optyczny OTDR (ang. Optical time domain reflectometer), zestaw transmisyjny 1. SPAWARKA ŚWIATŁOWODOWA Spawanie światłowodów polega na połączeniu
Ćwiczenie A1 : Linia długa
Ćwiczenie A1 : Linia długa Jacek Grela, Radosław Strzałka 19 kwietnia 2009 1 Wstęp 1.1 Wzory Podstawowe wzory i zależności które wykorzystywaliśmy w trakcie badania linii: 1. Rezystancja falowa Gdzie:
1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego
1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD
PL B1. Aberracyjny czujnik optyczny odległości w procesach technologicznych oraz sposób pomiaru odległości w procesach technologicznych
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229959 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 421970 (22) Data zgłoszenia: 21.06.2017 (51) Int.Cl. G01C 3/00 (2006.01)
Dalmierze elektromagnetyczne
Dalmierze elektromagnetyczne Dalmierze elektromagnetyczne klasyfikacja i zasada działania Klasyfikacja dalmierzy może być dokonywana przy założeniu rozmaitych kryteriów. Zazwyczaj przyjmuje się dwa. 1.
Przenośny reflektometr optyczny z wizualnym lokalizatorem uszkodzeń do sieci jednomodowych i wielomodowych.
Przenośny reflektometr optyczny z wizualnym lokalizatorem uszkodzeń do sieci jednomodowych i wielomodowych. Noyes M200 Reflektometr optyczny Noyes M200 jest poręcznym reflektometrem optycznym pozwalającym
Systemy i Sieci Radiowe
Systemy i Sieci Radiowe Wykład 4 Media transmisyjne część Program wykładu Widmo sygnałów w. cz. Modele i tryby propagacji Anteny Charakterystyka kanału radiowego zjawiska propagacyjne 1 Transmisja radiowa
ELEMENTY SIECI ŚWIATŁOWODOWEJ
ELEMENTY SIECI ŚWIATŁOWODOWEJ MODULATORY bezpośrednia (prąd lasera) niedroga może skutkować chirpem do 1 nm (zmiana długości fali spowodowana zmianami gęstości nośników w obszarze aktywnym) zewnętrzna
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
A- 01 WPROWADZENIE DO TECHNIKI ŚWIATŁOWODOWEJ
A- 01 WPROWADZENIE DO TECHNIKI ŚWIATŁOWODOWEJ INFORMACJE PODSTAWOWE Celem kursu jest przekazanie uczestnikom podstawowej wiedzy w zakresie techniki światłowodowej. SZKOLENIE PRZEZNACZONE DLA: Techników
KONWERTER RS-232 TR-21.7
LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 KONWERTER RS-232 TR-21.7 IO21-7A Marzec 2004 LANEX S.A., ul.ceramiczna 8, 20-150 Lublin serwis: tel. (81) 443 96
Parametry i technologia światłowodowego systemu CTV
Parametry i technologia światłowodowego systemu CTV (Światłowodowe systemy szerokopasmowe) (c) Sergiusz Patela 1998-2002 Sieci optyczne - Parametry i technologia systemu CTV 1 Podstawy optyki swiatlowodowej:
Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach
Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach i ich pomiary Światłowody specjalne Podsumowanie 18/11/2010
C860 / C880. Najnowsze zestawy do automatycznej certyfikacji sieci światłowodowych Tier-1 oraz Tier-2 INTERLAB
Lokalizacja uszkodzeń Certyfikacja Dokumentacja Zestawienie reflektometru oraz zestawu OLTS z funkcją automatycznej certyfikacji pozwala zaoszczędzić czas i pieniądze podczas testów i wykonywania dokumentacji
TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH
TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH Jednym z parametrów opisujących właściwości optyczne światłowodów jest tłumienność. W wyniku zjawiska tłumienia, energia fali elektromagnetycznej niesionej w światłowodzie
Badanie przebiegów falowych w liniach długich
POLITECHNIKA LUBELSKA WYDIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URĄDEŃ ELEKTRYCNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 7 Badanie przebiegów falowych w liniach długich Grupa dziekańska...
ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA
ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA W tym przypadku lasery pozwalają na prowadzenie kontroli stanu sanitarnego Powietrza, Zbiorników wodnych, Powierzchni i pokrycia terenu. Stosowane rodzaje laserów
KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody III stopnia (finałowe) Schemat punktowania zadań
Maksymalna liczba punktów 60 90% = 54pkt KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 200 r. zawody III stopnia (finałowe) Schemat punktowania zadań Uwaga!. Za poprawne rozwiązanie
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna)
Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna) 1 Schemat żyroskopu Wiązki biegnące w przeciwną stronę Nawinięty światłowód optyczny Źródło światła Fotodioda Polaryzator
Wprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Badanie przebiegów falowych w liniach długich
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja
PL B1 (12) OPIS PATENTOWY (19) PL (11) (13) B1. (51) Int.Cl.5: G01R 27/02. (21) Numer zgłoszenia:
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 158969 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 275661 (22) Data zgłoszenia: 04.11.1988 (51) Int.Cl.5: G01R 27/02
3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW.
3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. Przy rozchodzeniu się fal dźwiękowych może dochodzić do częściowego lub całkowitego odbicia oraz przenikania fali przez granice ośrodków. Przeszkody napotykane
Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.
Noyes M210. Przenośny reflektometr certyfikacyjny z miernikiem mocy optycznej oraz wizualnym lokalizatorem uszkodzeń do sieci
Przenośny reflektometr certyfikacyjny z miernikiem mocy optycznej oraz wizualnym lokalizatorem uszkodzeń do sieci jednomodowych i wielomodowych. Noyes M210 Pomiary oraz profesjonalna dokumentacja sieci
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Światłowody telekomunikacyjne
Światłowody telekomunikacyjne Parametry i charakteryzacja światłowodów Kolejny wykład będzie poświęcony metodom pomiarowym Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie
OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1
OPTOTELEKOMUNIKACJA dr inż. Piotr Stępczak 1 Falowa natura światła E H z z ( ) ± jmθ j( ωt βz ) r e e k = E o n 1 z LP 01 = H z ( ) ± jmθ j( ωt βz ) r e e LP 11 k o V = 2πa λ 2π ω = = o λ c λ 0 lim ω ω