Biologiczne podstawy ewolucji. Informacja genetyczna. Co to jest ewolucja.
Historia } Selekcja w hodowli zwierząt, co najmniej 10 000 lat temu } Sztuczne zapłodnienie (np. drzewa daktylowe) 1000 lat temu } Podobne rodzi podobne 2
Starożytni o dziedziczeniu } Arystoteles: nasienie męskie miesza się z żeńskim } Teofrast (uczeń Arystotelesa): u roślin kwiaty męskie powodują dojrzewanie żeńskich } Hipokrates: nasiona wytwarzane w różnych narządach, mieszają się przy poczęciu } Ajschylos: mężczyzna przekazuje cechy dziedziczne, kobieta jedynie się nimi opiekuje 3
Starożytni o dziedziczeniu } Suśruta (Sushruta) Indie ok. 500 lat p.n.e. } Opisał cukrzycę i podał przyczyny } sanhaja: defekt nasion (bija) rodziców } apathaja: z umiłowania jadła i gnuśnego życia } współczesnym językiem: współdziałanie genotypu i środowiska w tworzeniu fenotypu 4
Czego dawniej nie wiedziano? } Wkład obojga rodziców, czy tylko jednego? } Jak (i czy w ogóle) mieszają się cechy rodziców? } Jak przebiega rozwój? } Dlaczego czasami objawiają się cechy niewidoczne u rodziców, ale widoczne u dziadków (przeskakiwanie pokoleń)? } Co jest fizycznym nośnikiem dziedziczności? 5
Pangeneza } Wychodzi z koncepcji Hipokratesa o nasionach (pangenach) w każdym narządzie } Pangeny przekazywane są do krwi, z krwią do genitaliów, stamtąd do dzieci } Stąd określenia pełnej krwi, arystokratyczna krew czy krewny 6
Anton van Leeuwenhoek (1632-1723) } Odkrył plemniki (animaculae) w nasieniu 7 http://www.ucmp.berkeley.edu/history/leeuwenhoek.html
Preformizm } Plemniki (lub komórki jajowe) zawierają w pełni ukształtowany zarodek (homunculus) } Nie dochodzi do mieszania cech rodziców 8 N. Hartsoecker 1695
Epigeneza } Rozwój następuje przez tworzenie nowych struktur } Przeciwieństwo preformizmu } Prekursor Arystoteles } Caspar F. Wolff (1733-1794) Theoria Generationis 9
Dziedziczenie mieszane } Cechy potomstwa są wypadkową, uśrednieniem cech rodziców X 10
Dziedziczenie Mendlowskie } Każdy z rodziców ma wkład w dziedziczenie } Za dziedziczenie każdej cechy odpowiadają wyodrębnione jednostki (geny), które się nie mieszają i nie zmieniają } Każdy organizm posiada dwie kopie (allele) każdego genu } Każda gameta wytwarzana przez organizm posiada tylko jeden allel z danej pary alleli genu (I prawo Mendla). Rozdział alleli do gamet zachodzi z jednakowym prawdopodobieństwem } Gdy organizm posiada dwa warianty (allele) danego genu, w fenotypie ujawnia się tylko jeden z nich - dominacja 11
Gregor Mendel (1822-1884) } Wybór organizmu modelowego } Starannie zaprojektowane eksperymenty } Statystyczna obróbka danych 12
Mendlowska krzyżówka jednogenowa Roślina wysoka produkuje gamety T Roślina niska produkuje gamety t Roślina F1 to heterozygota, objawia się allel dominujący T Heterozygoty produkują gamety T oraz t (po 50%) Stosunek fenotypów 3:1 Stosunek genotypów 1:2:1 13
Metoda kwadratu Punnetta Gamety è ê T T TT t Tt t Tt tt 14
15 xkcd.com
Zarys biologii molekularnej genu Podstawowe procesy genetyczne } Replikacja powielanie informacji } Ekspresja wyrażanie (realizowanie funkcji) informacji } Konieczna regulacja z udziałem niestabilnego pośrednika - RNA 16
Pionierskie doświadczenia Griffiths Bakterie zawerają czynnik transformujący, zdolny do przekazania informacji z żywych bakterii do martwych Avery, McLeod, McCarthy Czynnikiem transformującym jest DNA 17
Materiał genetyczny } Materiałem genetycznym są kwasy nukleinowe } Materiałem genetycznym organizmów komórkowych jest kwas deoksyrybonukleinowy (DNA) 18
Budowa DNA DNA zbudowany jest z nukleotydów podwójna helisa DNA 19
Zasada komplementarności pozwala na replikację DNA 20 Na podstawie sekwencji jednej nici można jednoznacznie odtworzyć sekwencję nici komplementarnej 5 GATGTACTGATGACATA3 3 CTACATGACTACTGTAT5 5 GATGTACTGATGACATA3 3 CTACATGACTACTGTAT5
Model semikonserwatywny replikacji 21
Istota replikacji } Każda kopia matrycy staje się pełnoprawną matrycą } Nie ma replikacji bez błędów 22
Centralna hipoteza ( dogmat ) DNA RNA BIAŁKO 23
Transkrypcja i translacja 24
Animacja http://www.youtube.com/watch?v=d3foxt4mrom 25
Translacja 26
Kod genetyczny } Trójkowy } 20 aminokwasów } kodony po 3 nukleotydy: 3 4 =64 możliwości (dwa: za mało) } Dowody: badanie mutantów insercyjnych i delecyjnych (3 kolejne insercje lub delecje przywracały funkcje) 27
Kod genetyczny } Nienakładający się } Bezprzecinkowy } Zdegenerowany } 3 kodony STOP, pozostałe 61 kodonów koduje 20 aminokwasów 28
Kod genetyczny 29
Ewolucja } Znaczenie ogólne: zmiany zachodzące stopniowo w czasie } W biologii ewolucja biologiczna } W astronomii i kosmologii ewolucja gwiazd i wszechświata } W naukach społecznych ewolucja wierzeń, poglądów itp. 30
Ewolucja biologiczna } Znaczenie ogólne: } proces zmian w puli alleli populacji organizmów (częstości i rodzaju alleli), } które to zmiany są przekazywane z pokolenia na pokolenie } dotyczy populacji, nie pojedynczego osobnika } dotyczy zmian dziedziczonych 31
Ewolucja biologiczna } Znaczenie ogólne: } proces zmian w puli alleli populacji organizmów (częstości i rodzaju alleli), } które to zmiany są przekazywane z pokolenia na pokolenie } dotyczy populacji, nie pojedynczego osobnika } dotyczy zmian dziedziczonych } Dziedziczenie z modyfikacją 32
Ewolucja biologiczna } Zjawisko (fakt) ewolucji } Łatwy do zaobserwowania w warunkach naturalnych i laboratoryjnych } Teoria wyjaśniająca mechanizmy ewolucji } Darwinizm i neodarwinizm } Wspólne pochodzenie } Historia zmian ewolucyjnych } Dane kopalne } Odtwarzanie filogenezy na podstawie cech współczesnych (w tym molekularnych) } Nieuniknione luki w wiedzy 33
Teoria ewolucji } Populacje (gatunki) zmieniają się w czasie } Różne żyjące organizmy wywodzą się od wspólnych przodków } Mechanizmy zmian ewolucyjnych } Kształtowane przez dobór (naturalny lub sztuczny) } Losowe (dryf) 34
Podstawy ewolucji } Replikacja informacji genetycznej wprowadza zmienność } Losowe błędy w replikacji (nieuniknione) } Procesy wzmacniające zmienność } np. procesy płciowe } Wytworzone przez zmienność warianty nie są równocenne } Różne warianty mają różne dostosowanie (fitness) różne prawdopodobieństwo przekazania informacji kolejnym pokoleniom w danych warunkach środowiska 35
Podstawy ewolucji } Skoro błędy w replikacji są nieuniknione, to wszystkie replikatory mogą podlegać ewolucji } Replikacja jest koniecznym i wystarczającym warunkiem ewolucji } wyjątek w pełni stabilne i jednorodne środowisko, zawsze faworyzujące jeden genotyp 36
Mechanizmy ewolucji } Generujące zmienność } mutacje } rearanżacje genomu } horyzontalny transfer genów } Działające na warianty wytworzone przez zmienność } dobór naturalny } dryf genetyczny } migracje 37
Główne założenie darwinizmu i neodarwinimu } Podstawowym mechanizmem kształtującym proces ewolucji biologicznej jest dobór naturalny } dryf genetyczny i inne zjawiska też mają znaczenie } znaczenie doboru i dryfu jest różne na różnych poziomach zmian ewolucyjnych } na poziomie molekularnym (zmian sekwencji DNA i białek) dryf może być głównym mechanizmem zmian teoria neutralna 38
Główne elementy teorii ewolucji } Organizmy żywe są spokrewnione i połączone relacjami wspólnego pochodzenia (drzewo życia) } Zmiany zachodzą na poziomie populacji, nie osobników } Zmiany mają charakter stopniowy } Głównym mechanizmem ewolucji jest dobór naturalny 39
Nieporozumienia dotyczące ewolucji } Ewolucja nie jest tożsama z postępem czy udoskonalaniem } Problem definicji postępu } Złożoność przyrasta tylko wtedy, gdy jest to korzystne } Częsta ewolucja z redukcją złożoności } Ewolucja nie ma celu } Tempo zmian nie musi być jednakowe } Makroewolucja i mikroewolucja to nie są odrębne mechanizmy 40