POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW SZYBKOŚĆ REAKCI ONOWYCH W ZALEŻNOŚCI OD SIŁY ONOWE ROZTWORU Opiekun: Krzysztof Kozieł Miejsce ćwiczenia: Czerwona Chemia, sala 210 LABORATORIUM Z CHEMII FIZYCZNE
I. CEL ĆWICZENIA Celem ćwiczenia jest określenie wpływu siły jonowej na szybkość reakcji zachodzących w roztworze. II. WSTĘP TEORETYCZNY Rozważmy reakcję dwucząsteczkową: R Y Z (1) w której reagenty R i Y są jonami, a Y występuje w tak dużym nadmiarze, że stężenie c y praktycznie nie zmienia się podczas reakcji. Stwierdzono doświadczalnie, że w tym przypadku stała szybkości reakcji zależy od stężenia obcych jonów, które znajdują się w roztworze. eśli reagenty mają ładunki o jednakowym znaku, to stała szybkości reakcji zwiększa się wraz ze wzrostem stężenia obcej soli, gdy znaki ładunków są przeciwne, zmniejsza się. Efekt ten nie występuje, gdy R lub Y nie mają ładunków. Przyjmuje się, że reakcja (1) nie zachodzi bezpośrednio, ale przez szybkie tworzenie produktu pośredniego, który następnie powoli przechodzi w produkt końcowy Z. K - stała równowagi k 1 - stała szybkości reakcji R Y K k Z 1 (2) Etapem określającym szybkość reakcji jest przejście od do Z, dlatego słuszny jest wzór: Dalej stosuje się prawo działania mas: dc Z k c = 1 (3) a a a a, a R, a Y - są aktywnościami reagentów, R Y K = (4) f jest współczynnikiem aktywności produktu pośredniego. a x = c f (5)
Z równań (3), (4) i (5) otrzymuje się: dc Z k a f k K f f R Y c c 1 1 R Y (6) f = = Współczynniki aktywności oblicza się na podstawie teorii Debye a - Huckela wg której współczynnik aktywności jednego rodzaju jonów wynosi: lg f Az 2 = 1 B r (7) a średni współczynnik aktywności f jest równy: - siła jonowa obliczona ze wzoru: lg f Az z Bx = 1 (8) 1 2 = m c z m 2 m (9) c m i z m - oznaczają odpowiednio stężenie i ładunek jonów w roztworze, A i B - stałe, x - najmniejsza odległość, na jaką mogą się zbliżyć jony różnoimienne. Dla roztworów wodnych w temperaturze 25 0 C otrzymuje się: A = 0.510 (dm 3 ) 1/2 mol -1/2 B = 0.330 10 8 (dm 3 ) 1/2 mol -1/2 cm -1 W przypadku bardzo małej siły jonowej w temp. 25 0 C w roztworach wodnych można stosować graniczne prawo Debye a - Huckela, wg którego współczynnik aktywności jonu rodzaju m wynosi: lg f m = A.z m 2 (10) Ponieważ produkt pośredni powstaje dzięki spotkaniu się jonów R i Y, więc w przybliżeniu: Stąd otrzymuje się: z x = z R z y (11)
lg f r f f y 2 2 2 = A z z z z A z z x R Y R Y = 2 (12) R Y Przyjmuje się, że c R może być pominięte w stosunku do c Y i c i stężenie obcej soli traktuje się jako stale w czasie reakcji, stąd siła jonowa jest również stała. Z równania (6) otrzymuje się: oraz dc Z dc = R dc R = kc k k K f f R f Y = (14) 1 Y Z równań (12) i (14) uzyskuje się w końcu: c R (13) k lg k Kc 1 Y = 2 Az z (15) R Y Z równania (13) po scałkowaniu otrzymuje się: c lg c R 0R = k t t 2. 303 0 (16) Zmiany stężenia reagentów w czasie można śledzić różnymi metodami. Odpowiednią metodą może być spektrofotometria, stosowana w przypadku, gdy, której stężenie chce się oznaczyć ma widmo absorpcyjne w dogodnym do śledzenia zakresie długości fal świetlnych. Fiolet krystaliczny ma silne widmo w części widzialnej z maksimum absorpcji przy 590 nm; powstająca w reakcji zasada karbinolowa jest bezbarwna. Spadek stężenia fioletu w czasie można więc mierzyć spektrofotometrycznie. Zależność absorpcji promieniowania od stężenia substancji absorbującej opisuje prawo Lamberta-Beera. edna z matematycznych postaci tego prawa jest następująca:. A (λ) = ε (λ) l c (17) A (λ) - absorbancja przy długości fali świetlnej λ, ε (λ) - molowy współczynnik absorpcji zależny od długości fali wyrażony w dm 3 /mol cm, l - długość drogi światła w próbce w cm, c - stężenie substancji absorbującej światło o długości fali λ wyrażone w mol/dm 3 Wstawiając odpowiednie wartości A λ do równania (16) uzyskujemy:
lg A ( λ ) A 0 ( λ) k ( t t ) = 2. 303 0 (18) Równanie jest słuszne przy założeniu, że przy długości fali, dla której mierzy się A, R pochłania światło, natomiast produkt powstający Z jest w tym zakresie przeźroczysty. Przy założeniu, że stężenia reagentów praktycznie nie zmieniają się w czasie trwania pomiaru spektrofotometrycznego, absorbancję roztworu wyraża wzór: A (λ) = ε R (λ) l c ε R (C - c) l (19) C - początkowe stężenie substancji R wynikające z naważki. eżeli w rozważanym zakresie widma absorpcyjnego czyste substancje R i Z wykazują tylko jedno pasmo pochłaniania odpowiednio przy długościach fal λ 1 i λ 2., to w czasie t = 0 w widmie obserwuje się tylko pasmo przy λ 1 odpowiadające substancji R. Gdy zachodzi reakcja, część substancji R zanika i powstaje równoważna ilość substancji Z. Pasmo pochłaniania przy λ 1 maleje, a powstaje nowe przy długości fali λ 2. Przy całkowitym przereagowaniu w prawo zanika całkowicie pasmo przy λ 1, a pasmo λ 2 pochodzi od powstałego produktu Z. III. WYKONANIE ĆWICZENIA Aparatura Spektrofotometr SPEKOL z wyposażeniem do pomiarów absorbancji w kuwetach szklanych. Odczynniki Woda destylowana, KOH, KCl, KNO 3, KBr, KI. Przebieg ćwiczenia 1. Przed przystąpieniem do pomiarów należy uważnie zapoznać się z instrukcją obsługi spektrofotometru. 2. Włączyć do gniazda sieciowego SPEKOL i przygotować go do pomiaru według instrukcji obsługi przyrządu. 3. Sporządzić 250 ml roztworu KOH o stężeniu 0,02 M / dm 3. 4. Przygotować cztery naważki podanej w temacie ćwiczenia soli, takie, aby stężenia tej soli w roztworach sporządzanych w kolbkach wynosiły kolejno: 0,01; 0,05; 0,10; 0,20 mol/dm 3. 5. Do 5 kolbek miarowych o poj. 50 ml pobrać po 25 ml roztworu KOH. Odważone ilości soli wsypać do 4 kolbek i dobrze wymieszać. 6. Do kolby nie zawierającej soli wlać 2.5 ml roztworu fioletu o stężeniu 10-4 mol/dm 3 i dopełnić wodą do kreski. Po wymieszaniu szybko napełnić kuwetę roztworem i zmierzyć absorbancję roztworu w kilku odstępach czasu (minimum pięć punktów pomiarowych). Drugą kuwetę napełnić odnośnikiem - w tym przypadku wodą destylowaną. Absorbancję mierzy się w maksimum absorpcji fioletu, która występuje przy długości fali = 590 nm.
Należy zwrócić uwagę na poprawne notowanie czasu przebiegu reakcji oraz dokładny odczyt na skali przyrządu. 7. W ten sam sposób należy postąpić z dalszymi próbkami zawierającymi różne ilości obcej soli. UWAGA We wszystkich przypadkach fiolet wlewać bezpośrednio przed pomiarem i następnie szybko rozpoczynać pomiary absorbancji. IV. ZASADY BEZPIECZEŃSTWA I UTYLIZACA ODPADÓW Substancja Klasyfikacja Zagrożenia Środki bezpieczeństwa Utylizacja KOH KCl KBr KI KNO 3 żrąca R:35 wywołuje groźne nieszkodliwa drażniąca i szkodliwa n utleniająca oparzenia S:26,37,39,45 używać rękawic ochronnych, chronić twarz i oczy, w przypadku kontaktu ze skórą, a zwłaszcza z oczami natychmiast przemyć dużą ilością wody i zwrócić się o pomoc lekarską R: nie dotyczy S: nie dotyczy R:36/37/38 związek drażniący dla oczu, układu oddechowego i skóry R:42/43 może powodować uczulenia przy wdychaniu i kontakcie ze skórą R:8 w kontakcie z materiałem palnym stanowi zagrożenie pożarowe w przypadku kontaktu z oczami - przepłukać wodą S:26-36 w razie kontaktu z oczami przemyć natychmiast dużą ilością wody, używać rękawic i odzieży ochronnej S:22-36/37 nie wdychać pyłu, używać odzieży ochronnej i rękawic S:17 przechowywać z dala od materiałów palnych odpadów umieścić w pojemniku na odpady z grupy N wprowadzić do kanalizacji wprowadzić do kanalizacji wprowadzić do kanalizacji umieścić w pojemniku na odpady z grupy N
V. OPRACOWANIE WYNIKÓW 1. Na podstawie uzyskanych wyników obliczyć, korzystając z równania (18), stałą szybkości k dla każdej wartości siły jonowej roztworu. 2. Narysować wykres zależności log(k) od pierwiastka kwadratowego (siły jonowej). Ze wzoru (15) obliczyć stałą A. Porównać wyznaczoną wartość A z wartością teoretyczną podaną w instrukcji. 3. Przeprowadzić dyskusję błędów. VI. PYTANIA KONTROLNE 1. Prawo Lamberta-Beera i jego zastosowania. 2. Omówić wpływ obcej soli na kinetykę reakcji zachodzących w roztworach. 3. Obliczanie współczynników aktywności jonów na podstawie teorii Debye a - Huckela. VII. LITERATURA 1. Praca zbiorowa, Chemia fizyczna, PWN Warszawa 1980. 2. R. Brdicka, Podstawy chemii fizycznej, PWN Warszawa 1970. 3. G.M. Barrow, Chemia fizyczna, PWN Warszawa 1971.