Epitaksja z fazy ciekłej (LPE)

Podobne dokumenty
Epitaksja z fazy ciekłej (LPE)

Fizyka, technologia oraz modelowanie wzrostu kryształów. II. semestr Wstęp. 16 luty 2010

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka i technologia wzrostu kryształów

Diagramy fazowe graficzna reprezentacja warunków równowagi

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska

WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura

Wzrost fazy krystalicznej

Fizyka, technologia oraz modelowanie wzrostu kryształów

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Wzrost objętościowy z fazy gazowej. Krzysztof Grasza

Metody wytwarzania elementów półprzewodnikowych

Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle

Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207

ELEMENTY ELEKTRONICZNE

ROZTWORY, WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY

Termodynamika materiałów

chemia wykład 3 Przemiany fazowe

Laboratorium z chemii fizycznej. Zakres zagadnień na kolokwia

Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC

Azotkowe diody laserowe na podłożach GaN o zmiennym zorientowaniu

ELEMENTY ELEKTRONICZNE

Termodynamiczne warunki krystalizacji

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

TECHNOLOGIE OTRZYMYWANIA MONOKRYSZTAŁÓW

Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy gazowej

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Wykład 4. Przypomnienie z poprzedniego wykładu

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski

Prowadzący. telefon PK: Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5)

Lateralny wzrost epitaksjalny (ELO)

Fizyka, technologia oraz modelowanie wzrostu kryształów Dyfrakcja i Reflektometria Rentgenowska

Czym się różni ciecz od ciała stałego?

Wykład 8B. Układy o ograniczonej mieszalności

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk

Krystalizacja. Zarodkowanie

Prężność pary nad roztworem

Analiza termiczna Krzywe stygnięcia

Fizyka i technologia złącza PN. Adam Drózd r.

Kalorymetria. 1. I zasada termodynamiki, Prawo Hessa, Prawo Kirchhoffa (graficzna interpretacja), ciepło właściwe, termodynamiczne funkcje stanu.

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką

Wykład IV. Półprzewodniki samoistne i domieszkowe

Lateralny wzrost epitaksjalny (ELO)

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1

Podstawy technologii monokryształów

Osadzanie z fazy gazowej

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI

KINETYKA UTLENIANIA METALI

Wykład 8 Wykresy fazowe część 1

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego

Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

Wykład 8 Wykresy fazowe część 2

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Załącznik nr 1. Projekty struktur falowodowych

The role of band structure in electron transfer kinetics at low dimensional carbons

Efekty strukturalne przemian fazowych

WZROST KRYSZTAŁÓW OBJĘTOŚCIOWYCH Z FAZY ROZTOPIONEJ (ROZTOPU)

WYKŁAD 7. Diagramy fazowe Dwuskładnikowe układy doskonałe

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.

Wykresy równowagi fazowej. s=0

ZAMRAŻANIE PODSTAWY CZ.2

Warunki izochoryczno-izotermiczne

Ciekłe kryształy. Wykład dla liceów Joanna Janik Uniwersytet Jagielloński

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Kinetyka zarodkowania

14. DIAGRAM GIBBSA. Sprawdzono w roku 2014 przez A.Klimek-Turek

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Teoria pasmowa ciał stałych

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

Z.R. Żytkiewicz IF PAN I Konferencja. InTechFun

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego

Synteza Nanoproszków Metody Chemiczne II

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych

Temat 27. Termodynamiczne modele blokowe wzrostu kryształów

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

prof. dr hab. Małgorzata Jóźwiak

Plan wykładu. 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD

STRUKTURA IDEALNYCH KRYSZTAŁÓW

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

Rozszczepienie poziomów atomowych

Fizyka i technologia wzrostu kryształów

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI

Numer Nota albumu Robert G

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką

Fazy i ich przemiany

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Transkrypt:

Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy ciekłej (LPE) 8 kwiecień 213 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 2-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 1 ext. 3363 E-mail: zytkie@ifpan.edu.pl Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 1-142 Warszawa, ul Sokołowska 29/37 tel: 22 88 8 244 e-mail: stach@unipress.waw.pl, mike@unipress.waw.pl Wykład 2 godz./tydzień poniedziałek 15: ul. Pawińskiego 5a, blok D, V piętro, sala konferencyjna http://www.icm.edu.pl/web/guest/edukacja http://www.unipress.waw.pl/~stach/

Epitaksja z fazy ciekłej (LPE) Plan wykładu: definicja + idea metody trochę techniki trochę historii kinetyka wzrostu: dyfuzja konwekcja w układach LPE LPE - układy wieloskładnikowe elektroepitaksja z fazy ciekłej - LPEE morfologia powierzchni warstw LPE - struktury niskowymiarowe

Epitaksja z fazy ciekłej (Liquid Phase Epitaxy - LPE) - technika wzrostu warstw epitaksjalnych (najczęściej cienkich) z ciekłego metalicznego roztworu strefa rozpuszczania transport składników źródło (GaAs) roztwór zalety wzrostu z roztworu + zalety epitaksji strefa wzrostu Pożądane własności rozpuszczalnika: składnik kryształu (np. Ga dla GaAs) lub mała rozpuszczalność w krysztale (Bi, Sn, In, Pb, etc.) niski punkt topnienia wysoka rozpuszczalność składników w T epi niska prężność par w T epi wysoka stabilność chemiczna wysoka czystość chemiczna niska cena??? GaAs

Idea wzrostu warstw metodą LPE (przykład GaAs na podłożu GaAs) Reguła faz Gibbsa: f(stopnie swobody) = c(składniki) - p(fazy) + 2(p; T) Ga-AsGaAs 2 2 p = const. f = 1 (T) 1 roztwór Ga-As podłoże GaAs T = T 1 T T top (GaAs) ciecz (Ga+As) GaAs 1 2 T: T 1 T 2 T 1 T 2 2 3 ciecz + GaAs 3 ciecz + GaAs warstwa GaAs T = T 2 x 2 x 1.5 x As LPE - metoda równowagowa!!! 1

Idea wzrostu warstw metodą LPE (przykład GaAs na podłożu GaAs) wzrost w gradiencie T roztwór Ga-As GaAs T = T 1 C(T 1 ) T T top (GaAs) 1 ciecz (Ga+As) GaAs T 1 GaAs T = T 2 < T 1 C(T2) < C(T1) T 2 2 ciecz + GaAs ciecz + GaAs x 2 x 1.5 1 LPE - metoda równowagowa!!! x As

kwarcowy reaktor H 2 elektronika pieca TC TC TC piec roztwory tłok Układ LPE III-V (schemat) pompa próżniowa źródło N 2 ruch elementów tygla H 2 podłoże TC pomiar i sterowanie T oczyszczalnik H 2 wylot gazów źródło H 2 tygiel (grafit, kwarc,...) układ poziomy ITE Warszawa

Tygle do wzrostu warstw metodą LPE obracany tygiel tipping dipping wzrost pojedynczych warstw

Tygle do wzrostu warstw metodą LPE cd. ciekłe roztwory grafit ruch suwaka roztwory podłoże suwak grafitowy podłoże tłok TC Zalety: wzrost struktur wielowarstwowych wzrost z cienkiej warstwy roztworu czyszczenie roztworu Wady: nieco rozmyte granice między warstwami IF PAN

Historia H. Nelson: Epitaxial growth from the liquid state and its application to the fabrication to the fabrication of tunnel and laser diodes RCA Rev. 24 (1963) 63. Nobel 2 - H. Kroemer, J. Kilby, Z. Alfierow za rozwinięcie technologii heterostruktur półprzewodnikowych Dlaczego LPE: metoda łatwa i tania wysokie czystości warstw (segregacja) możliwość wzrostu selektywnego szeroka gama możliwych związków (Al, P,...) metoda bezpieczna

Kinetyka wzrostu transport w objętości roztworu - dyfuzja, konwekcja,... transport objętościowy substancji rozpuszczonej (solute) (6) (5) (4) (1) (3) (2) procesy powierzchniowe procesy powierzchniowe wolniejszy z tych 2 etapów decyduje o szybkości wzrostu kryształu zazwyczaj w LPE T na tyle wysoka (procesy powierzchniowe szybkie), a wymuszenie wzrostu na tyle słabe, że transport w cieczy limituje prędkość krystalizacji

GaAs LPE: wzrost kontrolowany dyfuzją - przykład GaAs z roztworu Ga C As wykres fazowy Ga-As.5 ciekły roztwór Ga-As T T 1 T 2 uproszczenia: szybka kinetyka powierzchniowa brak konwekcji T C As (T 1 ) C As (T 2 ) C t D 2 C z 2 j As V gr C D z C z As C As (T ) transport: masy ciepła H T t z k 2 T V 2 z T z gr mała szybkość wzrostu V gr bardzo szybki transport ciepła brak dyfuzji w fazie stałej V gr warunek ciągłości strumienia masy C z C z l s C C D z Ds z s, z l, z l + warunki brzegowe/początkowe

GaAs LPE: wzrost kontrolowany dyfuzją cd. C As roztwór skończony ciekły roztwór Ga-As C As (T ) C As (T 1 ) C As (T 2 ) z H < H = równania 2 l V 2 gr Cs, z Cl, z Dl z C t D C z C z roztwór pół-nieskończony H H D t l Ga - As: T 8 o C D l 41 5 cm 2 /s t 3 min Dt 2.6 mm warunki brzegowe/początkowe C Cl ( z, t) Ceq ( T( t)) l ( z, t) z wersja LPE

LPE: wzrost kontrolowany dyfuzją cd. - T(t) chłodzenie skokowe kinetyka powierzchniowa T wzrost T -T V gr t -1/2 wjazd wyjazd podłoża t t < 3 ms szybkość wzrostu grubość warstwy d t 1/2 roztwór skończony

LPE: wzrost kontrolowany dyfuzją cd. - T(t) chłodzenie liniowe chłodzenie liniowe + wstępne przechłodzenie T T V gr kontakt t D t T -t T -T kontakt t T -t d V gr T D A t B t 3 2 D AT t B t d D t 3 2

GaAs LPE: przesycenie stężeniowe C As ciekły roztwór Ga-As wykres fazowy Ga-As.5 T B T A T eq (z) C l (z) T teoria: zwiększyć gradt na powierzchni (T B zamiast T A ) H z Udayashankar et al., Bull. Mater. Sci 26 (23) 685 inkluzje In InSb/InSb praktyka: zmniejszyć gradient koncentracji ograniczyć grubość roztworu zmniejszyć prędkość wzrostu

GaAs LPE: przepływy w objętości cieczy C As ciekły roztwór Ga-As przepływ wymuszony!!! C As (T 2 ) z C z const D V gr 1 3 1 6 1 2 - grubość warstwy dyfuzyjnej - lepkość - prędkość kątowa Burton, Prim, Schlichter, J. Chem. Phys. 21 (1953) 1987. zwiększenie prędkości wzrostu kontrola ewentualnych naturalnych przepływów w cieczy większe ryzyko przesycenia stężeniowego

GaAs LPE: konwekcja naturalna konwekcja naturalna ( T, C) + grawitacja konwekcja termiczna stężeniowa C As T ciężki??? C założenia: brak mieszania zewnętrznego podłoże pionowe T(x, y, z) = const. tylko konwekcja stężeniowa typowe roztwory III-V solvent > solute (Ga, In) (As, P) C g CAs (T 2 ) lekki destabilizujący rozkład stężenia substancji rozpuszczonej (As) C As (T 2 ) ciekły roztwór Ga-As z gradient grubości warstwy

LPE: konwekcja naturalna cd. g GaAs ciężki lekki lekki ciężki GaAs z H destabilizujący rozkład C As stabilizujący rozkład C As wykład S. Krukowski niska liczba Rayleigh a Ra (<1) dominuje dyfuzja zazwyczaj mamy gradt i gradc 3 Ra C g C H D 1 Ra T g T H 3 1 C As >> D - małe C może spowodować przepływ konwekcja stężeniowa >> konwekcja termiczna Ra H 3 - wysokość roztworu!!! Tiller JCG 2 (1968) 69: brak konwekcji termicznej H < 5 mm brak konwekcji stężeniowej H < 2 mm LPE z cienkiej warstwy roztworu!!!

podłoże z H LPE: konwekcja naturalna cd. Kimura et al. JCG 167 (1996) 516 LPE Si z Sn doświadczenie + symulacje g górne dolne podłoże C As technika YO-YO podłoże z H T podłoże z H g g podłoże t podłoże

Wzrost LPE warstw wieloskładnikowych (przykład GaAlAs na GaAs) Reguła faz Gibbsa: f(stopnie swobody) = c(składniki) - p(fazy) + 2(p; T) np. Ga-Al-As Ga 1-x Al x As 3 2 p = const. f = 2 (T, x) układ 2-składnikowy: skład warstwy ustalony układ 3-składnikowy: skład warstwy zmienny T T T - grad x s LPE: Al x Ga 1-x As/GaAs GaAs AlAs T = const. 1 x l x s x s = const. x Al

Elektroepitaksja z fazy ciekłej (Liquid Phase Electroepitaxy LPEE) T = const. + przepływ prądu elektrycznego przez granicę faz - źródło (GaAs) As As As As As As H z j dyf j el j dyf As efekt Peltiera CT T C T D H D dc TP dt H P j el As elektrotransport E C( T j e ) C( T efekt wiatru elektronowego ) GaAs + T -T P T T Vgr gęęstoś gęstość prądu prąrą = 2.5 cm LPEE InGaAs/GaAs S. Dost, Univ.Victoria, BC, Canada LPEE AlGaSb/GaSb Z.R. Zytkiewicz, IF PAN

Elektroepitaksja z fazy ciekłej - zalety T = const. wysoka jednorodność warstw monitoring in situ znaczniki czasowe jednoczesny wzrost wielu kryształów łatwiejsza kontrola V gr gęstość prądu wypłaszczanie powierzchni GaAs: Ge t 6 t 5 t 4 t 3 t 2 t 1 znaczniki - R(t) źródło ciekły roztwór podłoże + Al x Ga 1-x As/GaAs V gr dr dt j e podłoże epi

4 m Elektroepitaksja z fazy ciekłej - wady bardziej skomplikowany układ (kontakty) AlGaAs efekt Joule a - limit grubości kryształu GaAs bez efektu Joule a z efektem Joule a z - źródło As As H j el źródło - H As As j dyf podłoże As + T -T P j dyf T T podłoże As + j el T T +T J T

kwarc grafit kwarc grafit LPE: morfologia powierzchni - defekty - w LPE niska koncentracja defektów punktowych i strukturalnych (wzrost równowagowy; T << T M ) - pewne charakterystyczne własności powierzchni wzrost krawędziowy (EG) roztwór Ga-As EG utrudnia ściągnięcie roztworu po wzroście lokalny brak wzrostu Bauser Appl. Phys. 15 (1978) 243 podłoże Z.R. Zytkiewicz JCG 94 (1989) 919 roztwór Ga-As roztwór Ga-As podłoże grafit roztwór Ga-As EG podłoże EG podłoże kształt roztworu i dyfuzja 2D przy ścianie prowadzą do wzrostu krawędziowego Przyczyna: lokalne maskowanie podłoża: utlenienie podłoża lub roztworu obce cząstki (ruchome części w tyglu!!!)

podłoże zaokrąglone (R = 2m) LPE: morfologia powierzchni E. Bauser Atomic mechanisms in semiconductor Liquid Phase Epitaxy Handbook of Crystal Growth, Ed. D.T.J. Hurle vol. 3b, Elsevier 1994.5 o (komercyjne podłoża GaAs)

LPE: morfologia powierzchni (grube warstwy GaAs) facet growth stopnie: wysokość =.258 nm szerokość = 1.6 m NDIC (D. Dobosz, M. Zadrożna) AFM (E. Łusakowska IF PAN) 1 m

LPE: morfologia powierzchni (grube warstwy GaAs) AFM (E. Łusakowska IF PAN) terrace growth stopnie: wysokość = 3 nm szerokość = 15 m monoatomowe stopnie na powierzchni tarasu NDIC (D. Dobosz, M. Zadrożna)

LPE: morfologia powierzchni cd. =.5 o brak zarodkowania 2D brak dyslokacji powierzchnia atomowo gładka (brak stopni monoatomowych) np. w Epitaxial Lateral Overgrowth E. Bauser Atomic mechanisms in semiconductor Liquid Phase Epitaxy Handbook of Crystal Growth, ed. D.T.J. Hurle vol. 3b, Elsevier 1994

1 nm LPE - struktury niskowymiarowe Konuma et al. APL 63 (1993) 25 Si 15.6 nm/si.995 C.5 5.2 nm podłoże 4 cale!!! kropki SiGe/Si pseudomorphic Ge/Si czas wzrostu < 1 s

Podsumowanie LPE wzrost z roztworu: niska koncentracja defektów punktowych metoda łatwa i tania (w wersji standard) wysokie czystości warstw (segregacja) możliwość wzrostu selektywnego szeroka gama możliwych związków (Al, P,...) metoda bezpieczna epitaksja: kontrola mechanizmu wzrostu (dezorientacja podłoża) podłoże wymusza dopasowanie sieciowe warstwy o grubościach od nm do mm wzrost struktur niskowymiarowych - możliwy choć trudny wady: trudności ze wzrostem nierównowagowym domieszkowanie ograniczone wykresem fazowym (np. GaAs:Mn) struktury wymagające dużego przesycenia (np. GaAs/Si) układy o ograniczonej mieszalności w fazie stałej monitoring in situ bardzo trudny

Do czytania o LPE Handbook of Crystal Growth, Ed. D.T.J. Hurle vol. 3, Elsevier 1994 E. Bauser Atomic mechanisms in semiconductor Liquid Phase Epitaxy M.B. Small, E.A. Giess and R. Ghez Liquid Phase Epitaxy E. Kuphal Liquid Phase Epitaxy Appl. Phys. A52 (1991) 38. M.B. Small, I. Crossley The physical processes occurring during liquid phase epitaxial growth J. Cryst. Growth 27 (1974) 35. M.G. Astles Liquid Phase Epitaxial Growth of III-V Compound Semiconductor Materials and their Device Applications, IOP Publishing 199. B. Pamplin (ed.) Crystal growth, Pergamon, 1974 K. Sangwal (ed.) Elementary Crystal Growth, SAAN Publishers, 1994.