MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA

Podobne dokumenty
zna wykresy i własności niektórych funkcji, np. y = x, y =

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016

Kształcenie w zakresie podstawowym. Klasa 2

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy.

a =, gdzie A(x 1, y 1 ),

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki.

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I BRANŻOWA SZKOŁA I STOPNIA LICZBY RZECZYWISTE

WYMAGANIA EDUKACYJNE. rok szkolny 2018/2019

1, y = x 2, y = x 3, y= x, y = [x], y = sgn x;

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II BRANŻOWA SZKOŁA I STOPNIA WYRAŻENIA ALGEBRAICZNE. PROPORCJONALNOŚĆ ODWROTNA

WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM ZAKRES PODSTAWOWY. rok szkolny 2016/2017. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12

1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół nr 119.

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019

Wymagania edukacyjne z matematyki klasa II technikum

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA. Temat lekcji Zakres treści Osiągnięcia ucznia LICZBY RZECZYWISTE.

Przedmiotowy system oceniania z matematyki.

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Założenia ogólne przedmiotowego systemu oceniania z matematyki:

Wymagania edukacyjne z matematyki

Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI I ZASTOSOWAŃ MATEMATYKI OBOWIĄZUJĄCE W ZSPS I VIII LO W TORUNIU zewaluowane 1 września 2017

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy.

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)

WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM. rok szkolny 2017/2018. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12

Przedmiotowe Zasady Oceniania MATEMATYKA klasy VII i VIIII

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Rozkład materiału nauczania

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY

Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi

KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA DRUGA

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI KONTRAKT

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI

V. WYMAGANIA EGZAMINACYJNE

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019

Wymagania edukacyjne z matematyki w klasie III A LP

1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

K P K P R K P R D K P R D W

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Klasa druga. Poziom rozszerzony.

Standardy wymagań maturalnych z matematyki - matura

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu Fizyka. 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie.

PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA. Temat lekcji Zakres treści Osiągnięcia ucznia. Uczeń:

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów

KLASA PIERWSZA POLTECHNICZNA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

KRYTERIA OCENIANIA Z MATEMATYKI (zakres rozszerzony) klasa 2LO

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności

Dział I FUNKCJE I ICH WŁASNOŚCI

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Przedmiotowy System Oceniania z Matematyki

III. STRUKTURA I FORMA EGZAMINU

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony

I. Funkcja liniowa WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony. I Przekształcenia wykresów funkcji

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.)

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów

Transkrypt:

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie, które jest funkcją, od przyporządkowania, które funkcją nie jest; opisywać funkcje na różne sposoby (grafem, wzorem, tabelką, wykresem, opisem słownym); wskazać wykres funkcji liczbowej; wyznaczyć dziedzinę funkcji liczbowej; określić zbiór wartości funkcji (proste przykłady); obliczyć ze wzoru funkcji jej wartość dla danego argumentu; obliczyć argument funkcji, gdy dana jest wartość funkcji dla tego argumentu; obliczyć miejsca zerowe funkcji; określić na podstawie wykresu funkcji: dziedzinę, zbiór wartości, miejsca zerowe, wartość największą i najmniejszą funkcji, maksymalne przedziały, w których funkcja rośnie (maleje, jest stała) oraz zbiory, w których funkcja przyjmuje wartości dodatnie (ujemne); określić na podstawie wykresu, czy dana funkcja jest różnowartościowa; sporządzić wykres funkcji spełniającej podane warunki; stosować poznane wykresy funkcji do rozwiązywania równań i nierówności; podać opis matematyczny zależności dwóch zmiennych w postaci funkcji; odczytywać i interpretować informacje na podstawie wykresów funkcji, dotyczące różnych zjawisk, np. przyrodniczych, ekonomicznych, socjologicznych, fizycznych, chemicznych; przetwarzać informacje wyrażone w postaci wzoru funkcji lub wykresu funkcji. 2. Przekształcanie wykresów funkcji. na podstawie wykresu funkcji y = f(x) naszkicować wykres funkcji y = f(x + a); na podstawie wykresu funkcji y = f(x) naszkicować wykres funkcji y = f(x) + b; na podstawie wykresu funkcji y = f(x) naszkicować wykres funkcji y = f (x + a) + b; na podstawie wykresu funkcji y = f(x) naszkicować wykres funkcji y = f(x); na podstawie wykresu funkcji y = f(x) naszkicować wykres funkcji y = f(x) ; na podstawie wykresu funkcji y = f(x) naszkicować wykres funkcji y = f( x); na podstawie wykresu funkcji y = f(x) naszkicować wykres funkcji y = f( x).

3. Funkcja liniowa. wskazać wielkości wprost proporcjonalne oraz określić współczynnik proporcjonalności; zastosować proporcjonalność prostą w rozwiązywaniu zadań; sporządzić wykres funkcji liniowej i odczytać własności funkcji na podstawie jej wykresu; znaleźć wzór funkcji liniowej o zadanych własnościach; wykorzystać interpretację współczynników występujących we wzorze funkcji liniowej w rozwiązywaniu zadań; wyznaczyć wzór funkcji liniowej, której wykres jest równoległy (prostopadły) do wykresu danej funkcji liniowej; stosować pojęcie funkcji liniowej do opisywania zjawisk z życia codziennego; naszkicować wykres równania pierwszego stopnia z dwiema niewiadomymi; rozwiązywać układy równań pierwszego stopnia z dwiema niewiadomymi oraz interpretować je graficznie; rozwiązywać zadania tekstowe prowadzące do układów równań liniowych. 4. Funkcja kwadratowa. odróżnić wzór funkcji kwadratowej od wzorów innych funkcji; sporządzić wykres funkcji kwadratowej i podać jej własności na podstawie wykresu; wyznaczać współrzędne wierzchołka paraboli i wzór funkcji kwadratowej w postaci kanonicznej; przekształcać wykresy funkcji kwadratowych; wyznaczyć wzór ogólny funkcji kwadratowej o zadanych własnościach lub na podstawie jej wykresu; wyznaczyć miejsca zerowe funkcji kwadratowej i wzór funkcji kwadratowej w postaci iloczynowej; sprawnie przekształcać wzór funkcji kwadratowej (z postaci ogólnej do postaci kanonicznej, z postaci iloczynowej do postaci kanonicznej itd.); interpretować informacje występujące we wzorze funkcji kwadratowej w postaci kanonicznej, ogólnej i postaci iloczynowej (o ile istnieje); sprawnie rozwiązywać równania i nierówności kwadratowe oraz interpretować je graficznie, zapisywać rozwiązania odpowiednich nierówności w postaci sumy przedziałów; rozwiązywać zadania tekstowe prowadzące do równań i nierówności kwadratowych; wyznaczyć wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym; rozwiązywać zadania (w tym również umieszczone w kontekście praktycznym) prowadzące do badania funkcji kwadratowej (zadania optymalizacyjne); rozwiązywać układy równań prowadzące do równań kwadratowych; analizować zjawiska z życia codziennego, opisane wzorem lub wykresem funkcji kwadratowej; opisać dane zjawisko za pomocą wzoru funkcji kwadratowej.

5. Geometria płaska czworokąty. posługiwać się własnościami czworokątów w rozwiązywaniu zadań; stosować poznane twierdzenia w rozwiązywaniu zadań dotyczących wielokątów; stosować funkcje trygonometryczne w rozwiązywaniu zadań geometrycznych dotyczących czworokątów; stosować własności podobieństwa figur w rozwiązywaniu zadań, w tym umieszczonych w kontekście praktycznym. 6. Geometria płaska pole czworokąta. stosować poznane wzory do obliczania pól wielokątów; stosować twierdzenie dotyczące pól figur podobnych, w tym również umieszczonych w kontekście praktycznym (np. dotyczących planu, mapy, skali mapy); rozwiązywać zadania z zastosowaniem pól figur płaskich, również z wykorzystaniem funkcji trygonometrycznych. 7. Wielomiany. odróżnić wielomian od innego wyrażenia; dodać, odjąć i pomnożyć wielomiany; rozłożyć wielomian na czynniki, stosując poznane wzory skróconego mnożenia, grupowanie wyrazów oraz wyłączanie wspólnego czynnika poza nawias; rozwiązywać proste równania wielomianowe; rozwiązywać zadania tekstowe prowadzące do prostych równań wielomianowych. 8. Ułamki algebraiczne. Równania wymierne. wyznaczyć dziedzinę ułamka algebraicznego; skracać, rozszerzać, dodawać, odejmować, mnożyć i dzielić ułamki algebraiczne; rozwiązywać proste równania wymierne prowadzące do równań liniowych lub kwadratowych; rozwiązywać zadania tekstowe prowadzące do prostych równań wymiernych; szkicować wykres funkcji y = x a, dla danego a różnego od 0; omówić własności funkcji y = x a, dla danego a różnego od 0;

przekształcić wykres funkcji y = x a (stosując poznane przekształcenia wykresów funkcji); korzystać ze wzoru i wykresu funkcji y = x a do interpretacji zagadnień związanych z wielkościami odwrotnie proporcjonalnymi. 9. Ciągi. określać ciąg wzorem ogólnym; wyznaczać wyrazy ciągu określonego wzorem ogólnym; narysować wykres ciągu i podać własności tego ciągu na podstawie wykresu; zbadać monotoniczność ciągu; zbadać, czy dany ciąg jest ciągiem arytmetycznym; wyznaczyć ciąg arytmetyczny na podstawie wskazanych danych; wyznaczyć sumę n początkowych wyrazów ciągu arytmetycznego; rozwiązywać zadania tekstowe z wykorzystaniem własności ciągu arytmetycznego; zbadać, czy dany ciąg jest ciągiem geometrycznym; wyznaczyć ciąg geometryczny na podstawie wskazanych danych; wyznaczyć sumę n początkowych wyrazów ciągu geometrycznego; rozwiązywać zadania tekstowe z wykorzystaniem własności ciągu geometrycznego; rozwiązywać zadania stosując wzory na n-ty wyraz i sumę n początkowych wyrazów ciągu arytmetycznego i ciągu geometrycznego, również umieszczone w kontekście praktycznym; stosować procent prosty i procent składany w zadaniach dotyczących oprocentowania lokat i kredytów. FORMY KONTROLI OSIĄGNIĘĆ UCZNIÓW Uczeń może uzyskać cząstkową z matematyki: ze sprawdzianów pisemnych (prace klasowe, testy, kartkówki) w następującej skali: niedostateczny ( 0%, 40% ) dopuszczający 40%, 50%) dostateczny 50%, 70%) dobry 70%, 85%) bardzo dobry 85%,100% celujący ocena bardzo dobry + zadanie dodatkowe.

odpowiedzi ustne (odpowiedzi z kilku ostatnich zajęć, prezentacja rozwiązania zadania, dyskusja nad rozwiązaniem problemu itp.) praca w grupach zadanie domowe aktywność na zajęciach Poszczególnym formom oceniania nadaje się różną wagę. KRYTERIA OCEN Ocenę celującą otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program nauczania,a ponadto spełniający co najmniej dwa z warunków: twórczo rozwija własne uzdolnienia i zainteresowania, uczestniczy w zajęciach pozalekcyjnych, pomysłowo i oryginalnie rozwiązuje nietypowe zadania, osiąga wyniki prac pisemnych na poziomie powyżej 85% oraz rozwiązuje poprawnie zadania dodatkowe, oznaczone jako wykraczające poza obowiązujący program nauczania. bierze udział i osiąga sukcesy w konkursach i olimpiadach matematycznych. Ocenę bardzo dobrą otrzymuje uczeń, który opanował pełen zakres wiadomości przewidziany programem nauczania oraz potrafi: sprawnie przeprowadzać rachunki, samodzielnie rozwiązywać zadania, wykazać się znajomością definicji i twierdzeń oraz umiejętnością ich zastosowania w zadaniach, posługiwać się poprawnie językiem matematycznym, samodzielnie zdobywać wiedzę, osiąga wyniki prac pisemnych na poziomie 85% i powyżej, przeprowadzać rozmaite rozumowania dedukcyjne. Ocenę dobrą otrzymuje uczeń, który opanował wiadomości i umiejętności przewidziane podstawą programową oraz wybrane elementy programu nauczania, a także potrafi: samodzielnie rozwiązać typowe zadania, wykazać się znajomością i rozumieniem poznanych pojęć i twierdzeń oraz algorytmów, posługiwać się językiem matematycznym, który może zawierać jedynie nieliczne błędy i potknięcia, sprawnie rachować, osiąga wyniki prac pisemnych na poziomie 70% i powyżej, przeprowadzić proste rozumowania dedukcyjne. Ocenę dostateczną otrzymuje uczeń, który opanował wiadomości i umiejętności przewidziane podstawą programową, co pozwala mu na: wykazanie się znajomością i rozumieniem podstawowych pojęć i algorytmów, stosowanie poznanych wzorów i twierdzeń w rozwiązywaniu typowych ćwiczeń i zadań, osiąganie wyników prac pisemnych na poziomie 50% i powyżej, wykonywanie prostych obliczeń i przekształceń matematycznych.

Ocenę dopuszczającą otrzymuje uczeń, który opanował wiadomości i umiejętności przewidziane podstawą programową w takim zakresie, że potrafi: samodzielnie lub z niewielką pomocą nauczyciela wykonywać ćwiczenia i zadania o niewielkim stopniu trudności, wykazać się znajomością i rozumieniem najprostszych pojęć oraz algorytmów, operować najprostszymi obiektami abstrakcyjnymi (liczbami, zbiorami, zmiennymi I zbudowanymi z nich wyrażeniami), osiągnąć wynik prac pisemnych na poziomie 40% i powyżej wykazuje chęć współpracy w celu uzupełnienia braków Ocenę niedostateczną otrzymuje uczeń, który nie opanował podstawowych umiejętności i wiadomości przewidzianych podstawą programową, czyli nie zna podstawowych definicji, wzorów, twierdzeń i algorytmów, nie potrafi zastosować poznanych informacji do rozwiązania elementarnych zadań ( w szczególności nie potrafi przeprowadzić odtwórczego rozumowania) nie posiada wystarczających umiejętności rachunkowych nie potrafi przełożyć prostego tekstu matematycznego na zapis matematyczny (np. x jest o 40% większe od y), wyniki jego prac pisemnych są na poziomie niższym niż 40%, nie podejmuje prób nadrobienia zaległości, nie korzysta z możliwości konsultacji Ocena semestralna i końcoworoczna wystawiana jest na podstawie ocen cząstkowych, uzyskanych przez ucznia odpowiednio: ocena semestralna - w trakcie pierwszego semestru, ocena końcowa całego roku szkolnego. Ocenę wyższą niż przewidywana uczeń może uzyskać poprawiając sprawdziany pisemne ocenione poniżej oceny, o którą się ubiega, na ocenę nie niższą od niej. Formę poprawy ustala nauczyciel (np. test, sprawdzian obejmujący całość poprawianego materiału, pojedyncze sprawdziany poprawkowe.) Poprawa odbywa się w czasie umożliwiającym terminowe wystawienie oceny końcowej.