WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II BRANŻOWA SZKOŁA I STOPNIA WYRAŻENIA ALGEBRAICZNE. PROPORCJONALNOŚĆ ODWROTNA

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II BRANŻOWA SZKOŁA I STOPNIA WYRAŻENIA ALGEBRAICZNE. PROPORCJONALNOŚĆ ODWROTNA"

Transkrypt

1 Rok szkolny 2018/19 klasa 3w WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II BRANŻOWA SZKOŁA I STOPNIA WYRAŻENIA ALGEBRAICZNE. PROPORCJONALNOŚĆ ODWROTNA opisać za pomocą wyrażeń algebraicznych związki między różnymi wielkościami w prostych przypadkach obliczyć wartości liczbowe prostych wyrażeń algebraicznych porządkować jednomiany redukować wyrazy podobne w sumie algebraicznej dodawać, odejmować i mnożyć sumy algebraiczne rozpoznać wielkości odwrotnie proporcjonalne stosować odpowiedni wzór skróconego mnożenia do wyznaczenia kwadratu sumy lub różnicy oraz różnicy kwadratów stosować zależności między wielkościami odwrotnie proporcjonalnymi do rozwiązywania prostych zadań wyznaczyć współczynnik proporcjonalności podać wzór proporcjonalności odwrotnej narysować wykres funkcji f(x)=ax, gdzie a 0 i podać jej własności (dziedzinę, zbiór wartości, przedziały monotoniczności) korzystać ze wzoru i wykresu funkcji f(x)=ax do interpretacji zagadnień związanych z wielkościami odwrotnie proporcjonalnymi opisać za pomocą wyrażeń algebraicznych związki między różnymi wielkościami, w tym również w geometrii przekształcać wyrażeni8a algebraiczne z zastosowaniem wzorów skróconego mnożenia narysować wykres f(x)=ax, gdzie a 0 w podanym zbiorze wyznaczyć współczynnik a tak, aby funkcja f(x)=ax spełniała podane warunki rozwiązać zadania tekstowe, stosując proporcjonalność odwrotną uzasadnić wzory skróconego mnożenia stosować poznane wiadomości i umiejętności, w sytuacjach problemowych FUNKCJA KWADRATOWA narysować wykres funkcji y=ax2 i podać jej własności korzystając z postaci ogólnej funkcji kwadratowej, obliczyć jej wartości dla podanych argumentów sprawdzić algebraicznie, czy dany punkt należy do wykresu odpowiedniej funkcji kwadratowej obliczyć współrzędne wierzchołka paraboli stosować własności funkcji f(x)=ax2 do rozwiązywania zadań o treści praktycznej

2 narysować wykresy funkcji f(x)=ax2+q,f(x)=a(x p)2, f(x)=a(x p)2+q i podać ich własności przekształcić postać ogólną funkcji kwadratowej do postaci kanonicznej zastosowaniem wzoru na współrzędne wierzchołka paraboli rozwiązać równania kwadratowe niepełne metodą rozkładu na czynniki oraz stosując wzory skróconego mnożenia określić liczbę pierwiastków równania kwadratowego w zależności od znaku wyróżnika rozwiązać równania kwadratowe, stosując wzory na pierwiastki wyznaczyć algebraicznie współrzędne punktów przecięcia paraboli z osiami układu współrzędnych sprowadzić funkcje kwadratową do postaci iloczynowej, o ile jest to możliwe odczytać miejsca zerowe funkcji kwadratowej z jej postaci iloczynowej narysować wykres funkcji kwadratowej, korzystając z punktów charakterystycznych paraboli wyznaczyć najmniejszą i największą wartość funkcji kwadratowej w podanym przedziale znaleźć brakujące współczynniki funkcji kwadratowej, znając współrzędne punktów należących do jej wykresu rozwiązać nierówności kwadratowe rozwiązać zadania tekstowe prowadzące do wyznaczania wartości najmniejszej i największej funkcji kwadratowej wykorzystać własności funkcji kwadratowej do interpretacji zagadnień geometrycznych, fizycznych itp. ( także osadzonych w kontekście praktycznym) rozwiązać zadania o znacznym stopniu trudności dotyczące funkcji kwadratowej TRYGONOMETRIA konieczne (ocena dopuszczająca) stosować twierdzenie Pitagorasa korzystając ze wzorów na przekątną kwadratu i wysokość trójkąta równobocznego odczytywać z tablic wartości funkcji trygonometrycznych danego kąta ostrego znaleźć w tablicach kąt ostry, gdy zna wartość jego funkcji trygonometrycznej obliczyć wartości funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym, gdy dane są boki tego trójkąta podać wartości funkcji trygonometrycznych kątów 30,45,60 obliczyć wartości pozostałych funkcji trygonometrycznych, mając dany sinus lub cosinus kąta ostrego wykorzystać funkcje trygonometryczne do obliczania pól trójkątów i czworokątów w prostych przypadkach użyć kalkulatora do wyznaczenia przybliżonej lub dokładnej wartości funkcji trygonometrycznej danego kąta ostrego korzystać z kalkulatora do wyznaczenia przybliżonej lub dokładnej miary kąta ostrego, dla której funkcja trygonometryczna przyjmuje daną wartość wyznaczać wartości pozostałych funkcji trygonometrycznych, gdy dany jest tangens kąta ostrego stosować zależności między funkcjami trygonometrycznymi do upraszczania

3 wyrażeń zawierających funkcje trygonometryczne wykorzystywać funkcje trygonometryczne do obliczania pól trójkątów i czworokątów stosować funkcje trygonometryczne do rozwiązywania zadań osadzonych w kontekście praktycznym stosować podczas rozwiązywania zadań wzór na pole trójkąta P=12absinγ oraz wzór na pole równoległoboku P=absinγ stosować funkcje trygonometryczne do rozwiązywania zadań o podwyższonym stopniu trudności uzasadniać związki między funkcjami trygonometrycznymi STEREOMETRIA określić liczbę ścian, wierzchołków i krawędzi graniastosłupów i ostrosłupów sporządzić rysunek wielościanu obliczać długości przekątnych graniastosłupów prostych obliczyć pola powierzchni bocznej i całkowitej graniastosłupów i ostrosłupów rysować siatki wielościanu, również mając dany jej fragment zamieniać jednostki objętości wskazać w wielościanach proste prostopadłe, równoległe i skośne wskazać w wielościanach rzut prostokątny danego odcinka wskazać kąt między przekątną graniastosłupa a płaszczyzną jego podstawy wskazać kąty między odcinkami w ostrosłupie a płaszczyzną jego podstawy wskazać kąt między sąsiednimi ścianami wielościanu rozwiązać typowe zadania dotyczące kąta między prostą a płaszczyzną obliczyć objętości graniastosłupów i ostrosłupów prawidłowych dobrać odpowiednią jednostkę objętości do danej sytuacji praktycznej wynikającej z treści zadania obliczyć pola powierzchni i objętości brył obrotowych, korzystając ze wzorów wskazać przekroje prostopadłościanów i obliczyć ich pola obliczyć pola powierzchni i objętości brył obrotowych z zastosowaniem funkcji trygonometrycznych i twierdzeń planimetrii rozwiązać zadania dotyczące pola powierzchni bocznej stożka przeprowadzić wnioskowania dotyczące położenia prostych w przestrzeni wykorzystywać własności wielościanów i brył obrotowych do rozwiązywania zadań nietypowych i problemowych uzasadnić związki między odcinkami i kątami w bryłach sprawdzić podobieństwo brył wyznaczyć skalę podobieństwa brył podobnych i stosuje ją do rozwiązywania zadań dotyczących ich pola powierzchni i objętości wykorzystać podobieństwo brył do rozwiązywania problemów o charakterze praktycznym STATYSTYKA

4 obliczyć średnią arytmetyczną, wyznaczyć medianę zestawu danych odczytać i zinterpretować dane przedstawione w postaci diagramów, wykresów i tabel obliczyć średnią arytmetyczną, wyznaczyć medianę danych przedstawionych na diagramie w prostych sytuacjach wykorzystać średnią arytmetyczną i medianę do rozwiązywania prostych zadań obliczyć średnią ważoną obliczyć średnią arytmetyczną, średnią ważoną, wyznaczyć medianę i dominantę danych pogrupowanych interpretować średnią arytmetyczną, medianę, dominantę i średnią ważoną opracować i przedstawić dane statystyczne w zadanej postaci wykorzystać średnią arytmetyczną, medianę, dominantę i średnią ważoną do rozwiązywania zadań zebrać i opracować dane statystyczne w postaci odpowiednio dobranej do sytuacji przeprowadzić analizę krytyczną interpretacji podanych zestawów danych przeprowadzić wnioskowanie dotyczące zestawów danych na podstawie wartości liczb je charakteryzujących stosować średnią arytmetyczną, średnią ważoną, medianę, dominantę do rozwiązywania nietypowych zadań lub problemów Ogólne kryteria ocen z matematyki Ocena celujący Ocenę tę otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program nauczania, a ponadto spełniający jeden z podpunktów: twórczo rozwija własne uzdolnienia i zainteresowania; uczestniczy w zajęciach pozalekcyjnych; pomysłowo i oryginalnie rozwiązuje nietypowe zadania; bierze udział i osiąga sukcesy w konkursach i olimpiadach matematycznych. Ocena bardzo dobry Ocenę tę otrzymuje uczeń, który opanował pełen zakres wiadomości przewidziany programem nauczania oraz potrafi: sprawnie rachować; samodzielnie rozwiązywać zadania; wykazać się znajomością definicji i twierdzeń oraz umiejętnością ich zastosowania w zadaniach; posługiwać się poprawnym językiem matematycznym; samodzielnie zdobywać wiedzę; przeprowadzać rozmaite rozumowania dedukcyjne. Ocena dobry Ocenę tę otrzymuje uczeń, który opanował wiadomości i umiejętności przewidziane podstawą programową oraz wybrane elementy programu nauczania, a także potrafi: samodzielnie rozwiązać typowe zadania; wykazać się znajomością i rozumieniem poznanych pojęć i twierdzeń oraz algorytmów; posługiwać się językiem matematycznym, który może zawierać jedynie nieliczne błędy i potknięcia; sprawnie rachować; przeprowadzić proste rozumowania dedukcyjne.

5 Ocena dostateczny Ocenę tę otrzymuje uczeń, który opanował wiadomości i umiejętności przewidziane podstawą programową, co pozwala mu na: wykazanie się znajomością i rozumieniem podstawowych pojęć i algorytmów stosowanie poznanych wzorów i twierdzeń w rozwiązywaniu typowych ćwiczeń i zadań; wykonywanie prostych obliczeń i przekształceń matematycznych. Ocena dopuszczający Uczeń opanował wiadomości i umiejętności przewidziane podstawą programową w takim zakresie, że potrafi: samodzielnie lub z niewielką pomocą nauczyciela wykonywać ćwiczenia i zadania o niewielkim stopniu trudności; wykazać się znajomością i rozumieniem najprostszych pojęć oraz algorytmów; operować najprostszymi obiektami abstrakcyjnymi (liczbami, zbiorami, zmiennymi i zbudowanymi z nich wyrażeniami). Ocena niedostateczny Ocenę tę otrzymuje uczeń, który nie opanował podstawowych wiadomości i umiejętności wynikających z programu nauczania oraz: nie radzi sobie ze zrozumieniem najprostszych pojęć, algorytmów i twierdzeń; popełnia rażące błędy w rachunkach; nie potrafi (nawet przy pomocy nauczyciela, który między innymi zadaje pytania pomocnicze) wykonać najprostszych ćwiczeń i zadań; nie wykazuje najmniejszych chęci współpracy w celu uzupełnienia braków i nabycia j wiedzy i umiejętności. Kryteria ocen wypowiedzi ustnych: Ocena celujący - odpowiedź wskazuje na szczególne zainteresowanie przedmiotem, spełniając kryteria oceny bardzo dobrej, wykracza poza obowiązujący program nauczania, zawiera treści poza programowe, własne przemyślenia i oceny. Ocena bardzo dobry - odpowiedź wyczerpująca, zgodna z programem, swobodne operowanie faktami i dostrzeganie związków między nimi. Ocena dobry - odpowiedź zasadniczo samodzielna, zawiera większość wymaganych treści, poprawna pod względem języka, nieliczne błędy, nie wyczerpuje zagadnienia. Ocena dostateczny - uczeń zna najważniejsze fakty, umie je zinterpretować, odpowiedź odbywa się przy niewielkiej pomocy nauczyciela, występują nieliczne błędy rzeczowe. Ocena dopuszczający - podczas odpowiedzi możliwe są liczne błędy, zarówno w zakresie wiedzy merytorycznej jak i w sposobie jej prezentowania, uczeń zna fakty i przy pomocy nauczyciela udziela odpowiedzi. Ocena niedostateczny - odpowiedź nie spełnia wymagań podanych powyżej kryteriów ocen pozytywnych (brak elementarnych wiadomości, rezygnacja z odpowiedzi). Kryteria oceny wypowiedzi pisemnych (zadania domowe, kartkówki, prace klasowe): Ocena celujący Uzyskanie co najmniej 98% możliwych do uzyskania punktów. Ocena bardzo dobry Uzyskanie co najmniej 90-97,9% możliwych do uzyskania punktów. Ocena dobry Uzyskanie 75-89,9% możliwych do uzyskania punktów. Ocena dostateczny Uzyskanie 50-74,9% możliwych do uzyskania punktów. Ocena dopuszczający Uzyskanie 30-49,9% możliwych do uzyskania punktów. Ocena niedostateczny Uzyskanie 0-29,9% możliwych do uzyskania punktów. Zasady przeprowadzania prac pisemnych:

6 kartkówka obejmująca materiał ostatniej lekcji lub zadanie domowe nie musi być zapowiedziana, kartkówka trwa około 10 minut, praca klasowa obejmująca materiał całego działu musi być zapowiedziana z przynajmniej tygodniowym wyprzedzeniem, poprzedzona powtórzeniem wiadomości i jej termin uzgodniony z klasą, aby nie pokrywał się z terminem już zapowiedzianej pracy pisemnej, pracę klasową uczniowie piszą przez całą lekcję. Zasady poprawiania prac pisemnych: na lekcji powtórzeniowej uczeń może poprawić kartkówki dotyczące aktualnie powtarzanego materiału jeśli uczeń nie pisał kartkówki ma obowiązek zaliczyć ją w terminie uzgodnionym z nauczycielem, na poprawę pracy klasowej przeznaczona jest osobna lekcja i każdy uczeń ma prawo przystąpić do poprawy swojej oceny, przy czym każda ocena jest wpisywana do dziennika, każdy uczeń, który nie pisał pracy klasowej ma obowiązek napisania jej w terminie poprawy (wyjątek stanowią dłuższe nieobecności spowodowane chorobą, które traktowane są indywidualnie). Oprócz ocen za odpowiedzi ustne, prace pisemne i zadania domowe uczeń może otrzymać dodatkowe oceny: za aktywność na lekcji, za udział w konkursach przedmiotowych, nawet na etapie szkolnym. Ocena semestralna i końcowo roczna w klasie 3w ustalana jest w oparciu o wszystkie oceny cząstkowe. Warunkiem koniecznym uzyskania oceny pozytywnej jest zaliczenie wszystkich kartkówek.

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry);

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.) Rok szkolny 2018/19 klasa 4bB oraz 4iA WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I BRANŻOWA SZKOŁA I STOPNIA LICZBY RZECZYWISTE

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I BRANŻOWA SZKOŁA I STOPNIA LICZBY RZECZYWISTE Rok szkolny 2018/19 klasa 1w WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I BRANŻOWA SZKOŁA I STOPNIA LICZBY RZECZYWISTE /ocena rozpoznać liczby naturalne w tym pierwsze i złożone, całkowite, wymierne, niewymierne,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Temat ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. TRYGONOMETRIA (15 h )

Bardziej szczegółowo

1 wyznacza współrzędne punktów przecięcia prostej danej

1 wyznacza współrzędne punktów przecięcia prostej danej Wymagania edukacyjne z matematyki DLA II i III KLASY ZASADNICEJ SZKOŁY ZAWODOWEJ Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może je realizować jedynie

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,

Bardziej szczegółowo

Założenia ogólne przedmiotowego systemu oceniania z matematyki:

Założenia ogólne przedmiotowego systemu oceniania z matematyki: Założenia ogólne przedmiotowego systemu oceniania z matematyki: 1. Zgodnie z założeniami wewnątrzszkolnego regulaminu oceniania, klasyfikowania i promowania uczniów, ocena powinna być jawna. 2. Ocenianiu

Bardziej szczegółowo

Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:

Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo: WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI Rok szkolny 2018 / 2019 POZIOM PODSTAWOWY KLASA 3 1. RACHUNEK PRAWDOPODOBIEŃSTWA wypisuje

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na

Bardziej szczegółowo

Plan wynikowy, klasa 3 ZSZ

Plan wynikowy, klasa 3 ZSZ Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 3 UWAGI: 1. Zakłada się,

Bardziej szczegółowo

Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki.

Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki. Propozycja szczegółowego rozkładu materiału Program zakłada powtórzenie i utrwalenie wiadomości i umiejętności z wcześniejszych etapów edukacyjnych, niezbędnych w dalszym toku kształcenia (np. działania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era

Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era Ocena: dopuszczający dostateczny dobry bardzo dobry celujący Funkcja liniowa

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.) Rok szkolny 2019/20 klasa 4bB Joanna Mikułka YMAGANIA EDUACYJNE Z MATEMATYI LASA IV ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny);

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: Matematyka klasa III ZSZ. Wymagania podstawowe. (ocena dostateczna)

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: Matematyka klasa III ZSZ. Wymagania podstawowe. (ocena dostateczna) Nauczyciel: Lucyna Gonsior WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: Matematyka klasa III ZSZ Dział programowy Wymagania konieczne (ocena dopuszczająca) Wymagania podstawowe (ocena dostateczna) Wymagania rozszerzające

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki.

Przedmiotowy system oceniania z matematyki. Zespół Szkół Ponadgimnazjalnych Im. Jarosława Iwaszkiewicza W Twardogórze Przedmiotowy system oceniania z matematyki. I OGÓLNE KRYTERIA OCEN Z MATEMATYKI OCENA CELUJĄCA Ocenę tę otrzymuje uczeń, którego

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału

Plan wynikowy z rozkładem materiału Plan wynikowy z rozkładem materiału Zamieszczone poniżej zestawienie zagadnień omawianych na lekcjach matematyki to propozycja połączenia planu wynikowego z rozkładem materiału. Dzięki takiemu rozwiązaniu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny

Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie. Ocena celująca Ocenę tę otrzymuje uczeń, którego wiedza wykracza poza obowiązujący

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO 1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole

Bardziej szczegółowo

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM ZAKRES PODSTAWOWY. rok szkolny 2016/2017. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12

WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM ZAKRES PODSTAWOWY. rok szkolny 2016/2017. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM ZAKRES PODSTAWOWY rok szkolny 2016/2017 Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 Wymagania na ocenę dopuszczającą dotyczą zagadnień elementarnych, stanowiących

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA

Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA . Liczby rzeczywiste (3 h) Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może

Bardziej szczegółowo

Wymagania edukacyjne z matematyki. w Zasadniczej Szkole Zawodowej

Wymagania edukacyjne z matematyki. w Zasadniczej Szkole Zawodowej Ogólne kryteria oceny z matematyki Ocena niedostateczna Otrzymuje ją uczeń, który: Wymagania edukacyjne z matematyki w Zasadniczej Szkole Zawodowej nie opanował elementarnych wiadomości wynikających z

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych

Bardziej szczegółowo

1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół nr 119.

1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół nr 119. PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W GIMNAZJUM nr 71 im. Krzysztofa Kamila Baczyńskiego oraz W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO 1. Przedmiotowe Zasady Oceniania z matematyki

Bardziej szczegółowo

Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony

Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony I. Procedury oceniania osiągnięć uczniów Ocenę celującą otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY 1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom podstawowy

Kryteria oceniania z matematyki Klasa III poziom podstawowy Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Przedmiotowe Zasady Oceniania MATEMATYKA klasy VII i VIIII

Przedmiotowe Zasady Oceniania MATEMATYKA klasy VII i VIIII Przedmiotowe Zasady Oceniania MATEMATYKA klasy VII i VIIII I. Uwagi ogólne: Opracowała Dorota Kiersk-Królikowska 1. Ocenianiu podlegają osiągnięcia edukacyjne uczniów poprzez rozpoznawanie przez nauczyciela

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.) l. 4bA WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZAES OZSZEZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); wymagania rozszerzające (dobry);

Bardziej szczegółowo

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2 KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI I ZASTOSOWAŃ MATEMATYKI OBOWIĄZUJĄCE W ZSPS I VIII LO W TORUNIU zewaluowane 1 września 2017

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI I ZASTOSOWAŃ MATEMATYKI OBOWIĄZUJĄCE W ZSPS I VIII LO W TORUNIU zewaluowane 1 września 2017 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI I ZASTOSOWAŃ MATEMATYKI OBOWIĄZUJĄCE W ZSPS I VIII LO W TORUNIU zewaluowane 1 września 2017 1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi

Bardziej szczegółowo

ZASADNICZA SZKOŁA ZAWODOWA

ZASADNICZA SZKOŁA ZAWODOWA M ATE M ATY K A ZASADNICZA SZKOŁA ZAWODOWA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Dział programowy : LICZBY I WYRAŻENIA Ocenę niedostateczną uczeń uzyska, jeśli nie spełnia wymagań koniecznych: - nie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE

Bardziej szczegółowo

Stopień celujący otrzymuje uczeń, który otrzymał stopień bardzo dobry i rozwiązał zadanie wskazane jako dodatkowe.

Stopień celujący otrzymuje uczeń, który otrzymał stopień bardzo dobry i rozwiązał zadanie wskazane jako dodatkowe. PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI 50 1. Oceny bieżące, oceny klasyfikacyjne, śródroczne i oceny klasyfikacyjne roczne ustala się w stopniach według następującej skali: 1) stopień celujący 6 2)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

w najprostszych przypadkach, np. dla trójkątów równobocznych

w najprostszych przypadkach, np. dla trójkątów równobocznych MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I ZSZ

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I ZSZ WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I ZSZ dopuszczający dostateczny dobry bardzo dobry celujący LICZBY RZECZYWISTE potrafi: -dopasować liczbę do odpowiedniego zbioru -wykonać

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

MATEMATYKA Szkoła Branżowa

MATEMATYKA Szkoła Branżowa Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA rok szkolny 2018/2019 MATEMATYKA Szkoła Branżowa I. Formy i metody sprawdzania i oceniania osiągnięć ucznia: 1. Praca klasowa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE. rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE. rok szkolny 2018/2019 WYMAGANIA EDUKACYJNE rok szkolny 2018/2019 Przedmiot Klasa Nauczyciel uczący Poziom matematyka 3t Zuzanna Durlak rozszerzony 1. Funkcja kwadratowa Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.)

Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.) Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.) Zastosowanie przez nauczyciela wcześniej opisanych metod nauczania, form pracy i środków dydaktycznych oraz korzystanie z niniejszego programu nauczania

Bardziej szczegółowo

zna wykresy i własności niektórych funkcji, np. y = x, y =

zna wykresy i własności niektórych funkcji, np. y = x, y = Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek

Bardziej szczegółowo

I. Potęgi. Logarytmy. Funkcja wykładnicza.

I. Potęgi. Logarytmy. Funkcja wykładnicza. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna

Bardziej szczegółowo

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI PRZEDMIOTOWE OCENIANIE Z MATEMATYKI w XLV Liceum Ogólnokształcącym im. Romualda Traugutta w Warszawie I. Przedmiotowe Ocenianie (PO) opiera się na Wewnątrzszkolnym Ocenianiu, które z kolei reguluje: 1.

Bardziej szczegółowo

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

WYMAGANIA NA OCENĘ 12. Równania kwadratowe Uczeń demonstruje opanowanie umiejętności ogólnych rozwiązując zadania, w których:

WYMAGANIA NA OCENĘ 12. Równania kwadratowe Uczeń demonstruje opanowanie umiejętności ogólnych rozwiązując zadania, w których: str. 1 / 1. Równania kwadratowe sprawdza, czy liczba jest pierwiastkiem równania, po uporządkowaniu równania określa jego rodzaj (zupełne, niezupełne), rozwiązuje proste uporządkowane równania zupełne

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

Plan wynikowy klasa 3. Zakres podstawowy

Plan wynikowy klasa 3. Zakres podstawowy Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Wymagania edukacyjne zakres podstawowy klasa 3A

Wymagania edukacyjne zakres podstawowy klasa 3A Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 2

Kształcenie w zakresie podstawowym. Klasa 2 Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ W OBRZYCKU

ZESPÓŁ SZKÓŁ W OBRZYCKU Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne

Bardziej szczegółowo

83 Przekształcanie wykresów funkcji (cd.) 3

83 Przekształcanie wykresów funkcji (cd.) 3 Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA. rok szkolny 2017/2018. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12

WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA. rok szkolny 2017/2018. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA rok szkolny 2017/2018 Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 1 Liczby rzeczywiste i działania na nich liczby naturalne na osi liczbowej. wykonywać

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III gimnazjum

Wymagania edukacyjne z matematyki dla klasy III gimnazjum Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy

Bardziej szczegółowo

a =, gdzie A(x 1, y 1 ),

a =, gdzie A(x 1, y 1 ), WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA DRUGA

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA DRUGA Matematyka Zakres materiału i wymagania edukacyjne, KLASA DRUGA FUNKCJE 1. Dziedzina i miejsca zerowe funkcji dziedzina funkcji opisanej wzorem definicja miejsca zerowego wyznacza dziedzinę funkcji opisanej

Bardziej szczegółowo