budowę chemiczną, reaktywność, charakterystykę reakcji spalania, wpływ zmian temperatury i ciśnienia na własności chemiczne.

Podobne dokumenty
Wiesław Apostoluk PROCESY SPALANIA

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

mgr inż. Aleksander Demczuk

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

SZKOLENIE PODSTAWOWE STRAŻAKÓW RATOWNIKÓW OSP Temat 11: Spalanie wybuchowe. Piotr Wójcik

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

Prowadzący: dr hab. inż. Agnieszka Gubernat (tel. (0 12) ;

ZASADY POSTĘPOWANIA W SYTUACJACH ZAGROŻEŃ (NP. POŻARU, AWARII) Szkolenia bhp w firmie szkolenie okresowe robotników 79

KURS STRAŻAKÓW RATOWNIKÓW OSP CĘŚĆ I. TEMAT 6: Proces spalania, a pożar. Autorzy: Ariadna Koniuch Daniel Małozięć

SPALANIE PALIW GAZOWYCH

Procesy spalania materiałów palnych

Inżynieria procesów przetwórstwa węgla, zima 15/16

str. 2 MATERIAŁ NAUCZANIA

KURS STRAŻAKÓW RATOWNIKÓW OSP część II. TEMAT 2: Rozwój pożaru. Autorzy: Ariadna Koniuch Daniel Małozięć

Warunki izochoryczno-izotermiczne

Kryteria oceniania z chemii kl VII

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu?

Wykonana są z tworzywa antyelektrostatycznego (PE EL) mogą przetłaczać czynnik o maksymalnej temperaturze +40 C.

Wykonana są z tworzywa antyelektrostatycznego (PE EL) mogą przetłaczać czynnik o maksymalnej temperaturze +40 C.

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE

Węglowodory poziom podstawowy

LABORATORIUM SPALANIA I PALIW

Podstawowe wiadomości o zagrożeniach

Odwracalność przemiany chemicznej

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Przy prawidłowej pracy silnika zapłon mieszaniny paliwowo-powietrznej następuje od iskry pomiędzy elektrodami świecy zapłonowej.

Wykład z Chemii Ogólnej i Nieorganicznej

1. Podstawowe prawa i pojęcia chemiczne

VIII Podkarpacki Konkurs Chemiczny 2015/2016

Zabezpieczenia przeciwpożarowe i przeciwwybuchowe w energetyce oraz podstawowe zasady udzielania pierwszej pomocy. Dariusz Gaschi

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

NOWOCZESNE KOMORY SPALANIA BIOMASY - DREWNA DREWNO POLSKIE OZE 2016

Opracowała: mgr inż. Ewelina Nowak

ZASADY POSTĘPOWANIA W SYTUACJI ZAGROŻEŃ. Szkolenia bhp w firmie szkolenie okresowe pracowników administracyjno-biurowych 178

Przykładowe zadania z rozdziałów 1 5 (Mol, Stechiometria wzorów i równań chemicznych, Wydajność reakcji i inne)

str. 2 MATERIAŁ NAUCZANIA

Przemiany substancji

Opracował: dr inż. Tadeusz Lemek

... imię i nazwisko,nazwa szkoły, miasto

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

Wiadomości pomocne przy ocenie zgodności - ATEX

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

uczeń opanował wszystkie wymagania podstawowe i ponadpodstawowe

STECHIOMETRIA SPALANIA

Chemia. 3. Która z wymienionych substancji jest pierwiastkiem? A Powietrze. B Dwutlenek węgla. C Tlen. D Tlenek magnezu.

Wiadomości pomocne przy ocenie zgodności - ATEX

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

ZAGROŻENIA GAZOWE CENTRALNA STACJA RATOWNICTWA GÓRNICZEGO G

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

Magazynowanie cieczy

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)

Termochemia elementy termodynamiki

1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:

Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania. poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści

Zagrożenie pożarem i wybuchem

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

LABORATORIUM SPALANIA I PALIW

Spis treści 1. WOJEWÓDZTWO PODKARPACKIE - DANE ZA ROK WOJEWÓDZTWO PODKARPACKIE - DANE ZA ROK

Powtórzenie wiadomości z kl. I

XXI Regionalny Konkurs Młody Chemik FINAŁ część I

Opracowała: mgr inż. Ewelina Nowak

Lista materiałów dydaktycznych dostępnych w Multitece Chemia Nowej Ery dla klasy 7

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 16 stycznia 2015 r. zawody II stopnia (rejonowe)

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

Procentowa zawartość sodu (w molu tej soli są dwa mole sodu) wynosi:

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

APARATY GRZEWCZO WENTYLACYJNE PRZECIWWYBUCHOWE ASI

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

Podstawowymi składnikami paliw są następujące pierwiastki: C, H, S oraz pierwiastki niepalne jak O, N oraz nieznaczne ilości związków mineralnych.

O LPG W PROSTYCH SŁOWACH. Mieszanina propanu i butanu- LPG GAZ, który ulega skropleniu w temperaturze pokojowej gdy ciśnienie wynosi od 2.2 do 4 atm.

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

Przemiany energii w zjawiskach cieplnych. 1/18

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

STECHIOMETRIA SPALANIA

Nazwisko...Imię...Nr albumu... ZGAZOWANIE PALIW V ME/E, Test 11 (dn )

ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Wykład 6. Klasyfikacja przemian fazowych

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Termochemia efekty energetyczne reakcji

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje rejonowe

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II

OCENA ZAGROŻENIA WYBUCHEM DLA UKŁADU DOZUJĄCEGO WOLNOSTOJĄCEGO

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe)

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z CHEMII klasa I

CLP/GHS Klasyfikacja zagrożeń wynikających z właściwości fizycznych

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

Węgiel i jego związki z wodorem

Wymagania przedmiotowe do podstawy programowej - chemia klasa 7

Nazwy pierwiastków: ...

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

WĘGLOWODORY POWTÓRZENIE WIADOMOŚCI

Wymagania programowe na poszczególne oceny chemia kl. I

Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001

Transkrypt:

Zagrożenie pożarowe występujące w produkcji przemysłowej związane jest ściśle z właściwościami materiałów stosowanych jako surowce, półprodukty jak i wyroby gotowe. Na zagrożenie to mają także wpływ warunki prowadzenia procesów technologicznych, rodzaj i stan urządzeń technologicznych, stosowane zabezpieczenia techniczne. Analizując zagrożenie pożarowe procesu technologicznego musimy brać pod uwagę właściwości substancji występujących w kolejnych fazach procesu technologicznego. Dotyczy to zarówno surowców, półproduktów jak i materiałów pomocniczych. Aby ocenić rozmiary prawdopodobnych zagrożeń oraz przewidzieć ich mechanizmy trzeba zebrać i przeanalizować informacje dotyczące:. własności fizykochemicznych palnych substancji a zwłaszcza: wartości granic wybuchowości, gęstość względem powietrza (dotyczy par i gazów), zdolność do mieszania się palnych par i gazów z utleniaczem (powietrzem), temperatura zapłonu, temperatura wrzenia, temperatura samozapalenia.. pomieszczenia lub przestrzeni zewnętrznej, a w tym: rozkład i kubatura pomieszczenia, ukształtowanie i pokrycie terenu przestrzeni zewnętrznej, dane o wentylacji, dane o ruchach powietrza, lokalizacja źródeł zagrożenia. 3. rodzaju przewidywanych źródeł zagrożenia podając dane o: stanie pracy urządzeń w jakim może dochodzić do wydzielania się substancji palnych, ilości wydzielanych lub mogących się wydzielić substancji palnych, czasie wydzielania substancji palnych, możliwości przyrostu ciśnienia w pomieszczeniu w przypadku wybuchu mieszaniny. stan skupienia, barwę, zapach, temperatury przemian fazowych: topnienia, wrzenia, ciężar cząsteczkowy, gęstość, temperaturę zapłonu (dotyczy cieczy), temperaturę samozapalenia, granice wybuchowości, ciepło spalania. budowę chemiczną, reaktywność, charakterystykę reakcji spalania, wpływ zmian temperatury i ciśnienia na własności chemiczne. Substancja to rodzaj materii odznaczający się określonymi własnościami fizycznymi. Zjawisko fizyczne przebiega z zachowaniem składu materii jako niezmiennej całości. Reakcja chemiczna jest to przebieg zjawiska chemicznego opisany przy pomocy symboli pierwiastków. Zjawisko chemiczne związane jest zawsze z przemianą istoty i własności substancji. Większość pierwiastków chemicznych i szereg innych substancji w odpowiednich warunkach reaguje z tlenem. Proces taki nazywamy utlenieniem. w temperaturze pokojowej tlen jest stosunkowo bierny chemicznie i tylko nieliczne substancje reagują z nim w tej temperaturze. Do takich substancji zalicza się np. fosfor, który w temperaturze pokojowej utlenia się na powietrzu, a z czystym tlenem reaguje w sposób gwałtowny zgodnie z równaniem P 4 + 5O P O 5 W procesach utleniania charakterystyczne jest, że łączenie się danej substancji z tlenem w niskich temperaturach zachodzi z bardzo małą szybkością. Pomimo tego, że w większości przypadków proces ten przebiega z wydzielaniem ciepła, aby reakcję przyspieszyć należy substancję ogrzać. Powyżej pewnej temperatury reakcja przebiega już bez naszej ingerencji i podtrzymywana jest kosztem wydzielającego się ciepła. Duże ilości wydzielającego się ciepła powodują znaczny wzrost temperatury utlenianej substancji, oraz zwiększają szybkość reakcji utleniania i doprowadzają do stanu, w którym przebieg jej ma charakter gwałtowny. Oprócz efektów cieplnych mamy wówczas do czynienia z rozżarzeniem się utlenianej substancji, emisją promieniowania cieplnego i pojawieniem się płomienia. Taki przebieg procesu utleniania nazywa się spalaniem Temperaturę, w której następuje gwałtowny przebieg procesu utleniania danej substancji a charakter jego jest typowy dla procesu spalania, nazywamy temperaturą zapłonu. Proces utleniania może nastąpić także w wyniku działania związków bogatych w tlen, mogących go oddać. Związki takie nazywamy utleniaczami.

Przykłady utleniaczy i Lp. Nazwa utleniacza Wzór Sposób działania chemiczny Nadmanganian potasu KMnO 4 rozkład KMnO 4 K O+Mn O 7 MnO+,5O rozkład Dwuchromian potasu K Cr O 7 KCr O 7 K O+CrO Cr O +,5 O 3 Woda utleniona H O H O H O+ O 4 Podchloryn wapnia Ca(ClO) Ca(ClO) CaCl + O 5 Chloran potasu KClO 3 KClO 3 KCl+3O 6 Ozon O 3 O 3 O + O 7 Nadtlenek sodu Na O Na O Na O+ O 8 Nadtlenek eteru (C H 5) O C H 5 O O C H 5 O C H 5+ O 9 Pięciotlenek azotu N O 5 N O 5 N O 4 + O 0 Kwas azotowy HNO 3 rozpad HNO 3 H O+N O 5 NO+ O Powietrze (O +N ) O (OO) Spalanie jest to proces fizykochemiczny, którego podstawą jest przebiegająca z dużą szybkością reakcja utleniania, polegająca na gwałtownym łączeniu się substancji palnej (paliwa) z utleniaczem. Spalaniu towarzyszy wydzielanie znacznej ilości ciepła i zwykle świecenie (płomienia). Produkty spalania mają znaczny zapas energii cieplnej, tak że ich wzbudzone atomy (ogrzane) emitują pewne ilości ciepła, co oko ludzkie odbiera jako świecenie. Utleniaczami w takim procesie mogą być tlen, ozon, substancje chemiczne bogate w tlen (kwas azotowy, azotan amonu, nadchlorany) a także niemetale jak siarka, fluor, chlor, brom, jod. Inicjowanie procesu spalania płomieniowego palnych gazów, cieczy i ciał stałych następuje przez: zapalenie, zapłon. Zapalenie polega na równomiernym ogrzewaniu materiału do takiej temperatury, w której zapala się on samorzutnie w całej masie, bez udziału punktowego bodźca energetycznego ii. Zapłon polega na zapaleniu mieszaniny palnej punktowym bodźcem energetycznym, tylko w bardzo ograniczonej przestrzeni, wokół której powstaje czoło płomienia przemieszczające się następnie już samoczynnie na całą pozostałość mieszaniny. iii Temperatura zapalenia jest to najniższa temperatura materiału, który ogrzewany strumieniem ciepła dostarczonym z zewnątrz w wyniku rozkładu termicznego wydziela palną fazę lotną o stężeniu umożliwiającym jego zapalenie się. w Rozporządzeniu MSW z dnia 3..99 parametr ten określa się jako temperatura samozapalenia. Samozapalenie to proces zapoczątkowania reakcji spalania zachodzący w wyniku zmian biologicznych lub fizycznych i chemicznych materiałów. Samonagrzewanie się materiałów i w konsekwencji ich samozapalenie, następuje samorzutnie bez udziału zewnętrznych strumieni ciepła i bez udziału punktowych źródeł ciepła. iv. Zapłon i dalsze przemieszczanie się płomienia w mieszaninach gazowych jest możliwe w pewnym zakresie stężeń paliwa i utleniacza. Te granice to granice wybuchowości, dolna i górna. Granica wybuchowości to minimalna (dolna) lub maksymalna (górna) zawartość składnika palnego w mieszaninie z powietrzem przy której zapłon jest już (jeszcze) możliwy. jest stałą charakteryzującą właściwości substancji, wskazuje jaka ilość substancji palnej jest zdolna utworzyć w określonej przestrzeni mieszaninę wybuchową. Granice zapalności mieszanin palnych par i gazów z powietrzem oznacza się w % objętościowych (rzadziej w g/m 3 ). Granice wybuchowości są zmienne i zależą od: ciśnienia w miarę obniżania ciśnienia zakres granic zapalności zwęża się aż do zrównania dolnej i górnej granicy zapalności co oznacza niepalność. Punkt ten dla mieszanin wodoru z powietrzem występuje przy ciśnieniu,45 kpa, dla mieszanin metanu przy,47 kpa a dla mieszanin butanu 3,8 kpa. Wzrost ciśnienia powoduje rozszerzenie granic wybuchowości, górna granica zmienia się bardziej. Niektóre substancje wykazują najpierw zwężenie a następnie rozszerzenie zakresu wybuchowości np. metan. temperatury w miarę wzrostu temperatury mieszaniny palnej gazów granice zapalności rozszerzają się. Wpływ temperatury początkowej na granice wybuchowości dla niektórych substancji przedstawione są w tabeli nr 3. bodźca termicznego wraz ze wzrostem mocy impulsu początkowego, zapłonowego, granice zapalności rozszerzają się. Zapłon mieszaniny wybuchowej można wywołać różnymi postaciami energii cieplnej jak: iskra elektryczna, iskra mechaniczna, rozżarzone ciało stałe, skupione promieniowanie. Największą zdolność zapłonową przy jednocześnie najmniejszym zasobie energii, maja iskry elektryczne. Zdolność zapłonowa iskier elektrycznych jest zależna od wielkości zawartego w nich ładunku wyrażonego w milidżulach [mj] oraz rodzaju i stężenia składnika palnego. Wzrost energii iskry elektrycznej powoduje rozszerzenie zakresu wybuchowości. ilości gazu obojętnego w mieszaninie obecność gazu obojętnego w mieszaninie palnej zmniejsza zakres zapalności, składu najbardziej niebezpieczna jest mieszanina mająca pewną, niewielką nadwyżkę składnika palnego w stosunku do składu stechiometrycznego, miejsca zainicjowania zapłonu i kierunku dalszego rozprzestrzeniania się płomienia. stężenia tlenu w mieszaninie wzrost stężenia tlenu w mieszaninie ma wpływ na podniesienie górnej granicy wybuchowości, nie ma natomiast istotnego wpływu na wartość dolnej granicy wybuchowości. Tabela nr Zależność granic wybuchowości mieszanin metanu z powietrzem od ciśnienia początkowego Nadciśnienie Granice wybuchowości %obj. [Mpa] dolna górna 0,0 6,0 3,0 0,98 6,6 4,0,06 7,5

4,90 5,7 9,5,5 5,7 45,4 39, 5, 46,0 Tabela nr Granice zapalności niektórych substancji Granice wybuchowości Nazwa substancji dolna górna Aceton, 3,0 Acetylen,3 8,0 Alkohol etylowy 3, 0,0 Alkohol metylowy 5,5 36,5 Amoniak 5,0 8,0 Benzyna samochodowa 0,8 7,6 n Butan,5 8,5 Chlorobenzen,3,0 Dwusiarczek węgla,0 50,0 Etan 3,0 5,5 Eter etylowy,6 48,0 Etylen,7 34,0 Gaz miejski 5,3 40,0 Gaz ziemny 4,3 5,0 Metan 4,9 5,4 Propan, 9,5 Siarkowodór 4,3 45,5 Terpentyna 0,8 6,0 Tlenek etylenu 3,0 00,0 Tlenek węgla,5 75,0 Wodór 4,0 75,0 Tabela nr 3 Zależność granic wybuchowości od temperatury początkowej Temperatura początkowa, o C Nazwa związku 0 00 50 00 50 00 50 00 V d, % obj. V g % obj. Alkohol metylowy 6,45 5,90 5,56 5, 4,88 Alkohol butylowy,56,47,39,30 Cykloheksanol,07,0 0,95 0,88 9,5,0 Cykloheksanon,6,08 0,99 0,90 9,0 9, 9,5 Kwas octowy 5,70 5,37 5,05 4,73 8,9 Anilina,3,6,,7 Benzen,3,8,,04 0,97 Toluen,,03 0,97 0,9 0,86 Istnieją substancje nie posiadające w danych warunkach górnej granicy wybuchowości (acetylen, tlenek etylenu). Niebezpieczeństwo wybuchu gazów i par w mieszaninie z powietrzem opisuje się przez podanie: szybkości rozprzestrzeniania się płomienia, temperatury zapalenia (samozapalenia), granic wybuchowości w powietrzu, maksymalnego ciśnienie wybuchu, szybkości wzrostu ciśnienia. Płomień jest samo rozprzestrzeniającą się w przestrzeni reakcją spalania mającą strefę święcącą Zależnie od sposobu przenoszenia ciepła w czasie spalania, rozróżnia się dwa graniczne przypadki spalania: płomień, detonację. Reakcję spalania, której szybkość zależy od dyfuzji powietrza do paliwa nazywa się spalaniem dyfuzyjnym, a reakcję spalania mieszaniny substancji palnej wstępnie zmieszanej z utleniaczem spalaniem kinetycznym. Płomień jest to widzialna objętość gazowa, w której przebiegają procesy rozkładu termicznego, utleniania i spalania. Płomień powstaje w części przestrzeni, w której zachodzi chemiczna reakcja spalania. Rozróżnia się dwa typy płomieni: dyfuzyjny tzn. płomień powstały w wyniku zapalenia tej części objętości, w której następuje mieszanie się paliwa z powietrzem; szybkość spalania w płomieniu dyfuzyjnym zależy od szybkości dyfuzji powietrza do strefy spalania płomienia, płomień powstały w warunkach, gdy substancja palna była już wstępnie, przed zapaleniem zmieszana z powietrzem, oznacza to, że szybkość spalania określana jest przede wszystkim szybkością przebiegu reakcji spalania 3

Wielkością charakteryzującą rozwój procesu spalania jest szybkość spalania. Spalanie m 3 gazu miejskiego może przebiegać kilka godzin (w palniku) lub ułamek sekundy (spalanie mieszaniny z powietrzem). Wyzwala się wtedy moc rzędu kilkuset kw. Prędkość przemieszczania się czoła płomienia w kierunku prostopadłym do czoła płomienia nazywa się normalną prędkością spalania.. Normalna prędkość szybkość spalania jest funkcja składu chemicznego substancji, jej stężenia, początkowej temperatury i ciśnienia. Laminarna szybkość spalania S u dla gazów w powietrzu i w tlenie v Substancja S u w powietrzu S u w tlenie [cm/s] [cm/s] Metan 36,4 393 Etan 40, Propan 45,0 390 n Butan 40,5 n Heksan 38,5 Etylen 68,0 550 Acetylen 73,0 360 Wodór 30,0 900 Szybkość spalania mieszanin gazowych z tlenem lub powietrzem jest zmienna w zależności od charakteru składnika palnego i jego stężenia. W zależności od szybkości rozprzestrzeniania się płomienia mieszaniny dzielimy na 3 grupy: mieszaniny wolno spalające się U n 0 do 60 m/s, (większość mieszanin), mieszaniny szybko spalające się U n 60 do 300 m/s, (mieszaniny wodoru, acetylenu, etylenu, metylo acetylenu i tlenku etylenu z powietrzem), mieszaniny bardzo szybko spalające się U n od kilkunastu do kilkuset m/s (mieszaniny palnych par i gazów z tlenem). Reakcja spalania jest reakcją egzotermiczną, tzn. że przebiega z wydzielaniem ciepła. Ciepło wydzielone podczas reakcji utleniania (spalania) liczone na mol utlenianej substancji, nazywamy ciepłem reakcji utleniania (spalania). Ciepło to jest odniesione do temperatury 98K (5 o C) i ciśnienia 0.3 kpa oraz normalnych stanów skupienia substratów i produktów reakcji odpowiadających tej temperaturze i ciśnieniu (mówimy wówczas o stanie standardowym dla substratów i produktów). Wyjaśnia to przykładowa reakcji spalania metanu zachodząca zgodnie z równaniem: CH 4 + O CO + H O + Q, Q 66,7 kj/mol CH 4 gdzie Q jest ciepłem spalania. Mieszanina reakcyjna kosztem ciepła reakcji ogrzewa się tak znacznie, że powstająca obok CO woda jest w postaci pary. Standardowym stanem skupienia wody w temperaturze 98K jest stan ciekły, zaś pozostałych substancji gazowy. Ciepło powyższej reakcji należy więc zmierzyć po ochłodzeniu mieszaniny reakcyjnej do temperatury 98 K i po skropleniu się pary wodnej. w przypadku substancji o charakterze paliw ciepło spalania podaje się w przeliczeniu na kg lub m 3, przy czym ciepło to odniesione jest również do temperatury 98 K i standardowych stanów skupienia produktów spalania, gdy spalanie paliwa jest całkowite. Ciepło spalania jest to ilość ciepła, która wydziela się podczas całkowitego spalania jednostki masy danej substancji ( dla ciał ciekłych i stałych w kj/kg a dla gazów w kj/m 3. Wartość opałowa to ilość ciepła w kj, która wydziela się podczas całkowitego spalania jednostki masy substancji, przy założeniu, że woda po spaleniu występuje w postaci pary. w przypadku substancji o charakterze paliw ciepło spalania podaje się w przeliczeniu na kg lub m 3, przy czym ciepło to odniesione jest również do temperatury 98 K i standardowych stanów skupienia produktów spalania, gdy spalanie paliwa jest całkowite. Przy spalaniu metanu, spalanie niecałkowite mogłoby mieć np. następujący przebieg: CH 4 + 3/ O CO + H O + Q Wydzielone w tej reakcji ciepło jest mniejsze od ciepła wydzielonego w reakcji spalania całkowitego. Przez wartość opałową paliwa takiego, jak np. benzyna, gaz ziemny, metan itp., rozumiemy ciepło całkowitego spalania kg lub m 3 paliwa odniesione do temperatury 98 K, gdy woda powstała jako jeden z produktów spalania powstaje w stanie pary. Wartość opałowa jest więc mniejsza od ciepła spalania o ciepło kondensacji wydzielonej wody. Do typowych reakcji utleniania zaliczyć można reakcje niektórych niemetali z tlenem powietrza lub czystym tlenem. Przebieg tych reakcji jest niejednokrotnie gwałtowny i jak już zaznaczono ma typowe cechy procesu spalania. Reakcje wielu substancji organicznych z powietrzem lub tlenem są również w wielu przypadkach reakcjami o charakterze spalania, a w ich wyniku jako produkty spalania całkowitego powstają dwutlenek węgla i woda. Jeżeli substancja organiczna zawiera azot, siarkę lub fosfor, to obok dwutlenku węgla i wody jako produkty spalania całkowitego tworzą się odpowiednie połączenia tlenowe tych pierwiastków. Powstanie popiołu w trakcie spalania substancji organicznych lub pochodzenia organicznego (węgiel kamienny, torf itp.) uwarunkowane jest zawartością metali lub substancji mineralnych. Aktywne chemicznie metale reagują nie tylko z powietrzem lub z tlenem lecz ulegają utlenianiu za pomocą fluoru, chlorem itp. Bardzo często ogrzany metal spala się w wyniku takiej reakcji. Żelazo po rozżarzeniu do pewnej temperatury spala się w tlenie. Liczne metale spalają się w gazowym chlorze. Przykładem takiej reakcji jest spalanie żelaza, które zachodzi zgodnie z równaniem: Gazowy chlor podtrzymuje palenie. Dowodem na to jest fakt, że zapalona świeczka umieszczona w naczyniu z chlorem nie gaśnie, a spala się kopcącym płomieniem. Podobnie zachowuje się gazowy fluor. Do substancji o charakterze paliw zalicza się drewno, torf, węgiel brunatny i kamienny, koks, benzynę, oleje napędowe, mazut, : ziemny, generatorowy, wielkopiecowy i świetlny. Paliwa dzielimy na podstawie ich stanu skupienia na stałe, ciekłe i gazowe, zaś ze względu na sposób ich otrzymania na naturalne i sztuczne. Do paliw naturalnych zaliczyć należy drewno, torf, wszystkie gatunki węgli kopalnych, ropę naftową, gaz ziemny. Do paliw sztucznych zaliczamy brykiety z różnych gatunków węgli, węgiel drzewny, koks gazowniczy i hutniczy, produkty przeróbki ropy naftowej i upłynnienia węgla, otrzymywane przez procesy destylacji rozkładowej drewna i węgli oraz przez zgazowanie paliw stałych itp. Wśród paliw sztucznych osobną grupę stanowią paliwa rakietowe. Paliwa te charakteryzują się dostarczaniem dużych ilości ciepła w przeliczaniu na jednostkę masy spalanej substancji. Do grupy tej zaliczamy takie substancje jak nitrometan, nitrogliceryna, roztwór azotanu amonu w ciekłym amoniaku, mieszaninę alkoholu metylowego z czystym nadtlenkiem wodoru, mieszaninę nitrocelulozy z nitrogliceryną, borowodory itp. Cechą charakterystyczną każdego paliwa jest jego wartość opałowa, na podstawie której określa się przydatność danego paliwa do określonych celów energetycznych. w tabeli poniżej przedstawiono wartości opałowe niektórych substancji wykorzystywanych jako paliwa lub jako składnik paliw (koks, metan, tlenek węgla). Produktami spalania pospolitych paliw stałych, zarówno sztucznych jak naturalnych, są spalinowe składające się z tlenków węgla, pary wodnej i zanieczyszczone z reguły związkami siarki, azotu itp., oraz popiół i części stałe unoszone w dymie (sadza). 4

Paliwa ciekłe i gazowe charakteryzują się tym, że spalane nie dają popiołu, powstanie którego uwarunkowane jest zawartością substancji mineralnych. Spaliny składają się najczęściej z pary wodnej i tlenków węgla, które mogą być zanieczyszczone np. związkami siarki, czy azotu. Ciepło spalania i wartości opałowe niektórych substancji. Reakcja spalania Ciepło spalania Wartość opałowa MJ kg MJ kg H + O H O 4.88 9.00 S (romb) + O SO 9.7 9.7 C (diam)+ O CO 3.95 3.95 C (graf)+ O CO 3.89 3.89 P 4 + 5O P O 5 4.49 4.9 C (koks) + O CO 33.8 33.8 CO+ 0.5O CO 0. 0. CH 4+O CO +H O 55.56 49.80 C H 4+3O CO +H O 50.75 47.75 Spalanie gazów Spalanie gazów może przebiegać dyfuzyjnie lub kinetycznie. W kinetycznym reżimie spalania paliwo gazowe i utleniacz są przed zapaleniem wstępnie zmieszane. W celu zapoczątkowania reakcji spalania w mieszaninie palnej gazowej niezbędne jest dostarczenie do niej bodźca energetycznego np. w postaci iskry elektrycznej. W wyniku zapalenia mieszaniny powstaje czoło płomienia przemieszczające się już samodzielnie prze całą pozostałość tej mieszaniny. W takich warunkach spalanie przebiega z dużymi prędkościami. Gęstość gazów i par cieczy jest na ogół większa niż gęstość powietrza (za wyjątkiem acetylenu, etylenu, amoniaku, cyjanowodoru, tlenku węgla, metanu i wodoru). Gazy lżejsze od powietrza unoszą się ku górze tym szybciej im niższa jest ich gęstość. Gazy cięższe od powietrza opadają na podłoże i rozprzestrzeniają się po nim na duże odległości, zależne od ilości par wydzielonych do otoczenia. Należy jednak pamiętać, że gęstość mieszaniny par cieczy z powietrzem zależy od prężności pary nasyconej tej cieczy w danej temperaturze. Jednym z parametrów podawanych jako cecha charakterystyczna danej substancji jej masa cząsteczkowa. Mając informacje jaka jest masa cząsteczkowa danej substancji chemicznej można obliczyć bezwzględną gęstość jej par w warunkach normalnych tzn. T 73 o K i p 03 hpa. mol gazu doskonałego w tych warunkach zajmuje,44 dcm 3. Objętość molowa zależy od temperatury. Wzrasta wraz ze wzrostem temperatury. Dla celów praktycznej oceny zagrożenia pożarowego wygodniejsza jest wartość gęstości względnej gazu w odniesieniu do powietrza. Zastępcza masa cząsteczkowa powietrza wynosi w przybliżeniu 8 g. Gęstość względna może wtedy być obliczona w sposób następujący: d p m m d p gęstość względna gazu w odniesieniu do powietrza, m masa cząsteczkowa gazu, m masa cząsteczkowa powietrza. 44, 8 Np. dla propanu C 3H 8 m C3H8 d propanu, 575 44, Gazy palne oraz pary cieczy łatwo zapalnych pod względem gęstości w stosunku do powietrza podzielić można na trzy grupy. Tabela nr 4 Podziała gazów i par z uwagi na gęstość w stosunku do powietrza Gęstość względem powietrza Określenie Przykłady unoszące się do góry wodór, metan, amoniak, gaz miejski, gaz wodny, palne rozchodzące się we wszystkich acetylen, tlenek węgla, etan. etylen, kierunkach, palne i pary cieczy łatwo zapalnych opadające i pełzające. cyjanowodór, o masie cząsteczkowej pow. 3 i pary wszystkich cieczy 5

Rysunek: Typy spalania kinetycznego! " # $ $ % & ' ( ) * +, -. - ( " / ". - 0 - ( - ( 3 4 5 6 7 8 5 6 7 9 9 9 : 6 ; < 7 9 9 9 ' > ) 0? $ @ - A B C 4 5 6 8 D 5 6 7 9 5 6 7 9 9 : 6 ; < 7 9 9 Temperatury zapalenia (samozapalenia) niektórych gazów i par palnych vi Nr Nazwa czynnika Wzór chemiczny Temperatura samozapalenia Bezwodnik kwasu octowego (CH 3C0) 0 334 Aceton (CH 3) C0 535 3 Benzen C 6H 6 560 4 Butadien l,3 CH CH CH CH 430 5 Alkohol II rzędowy butylowy CH 3CH(OH)CH CH 3 408 6 Dwusiarczek węgla CS 0 7 Chlorobenzen C 6H 5CI 637 8 Cykloheksan C 6H 59 9 Cyklosheksanon C 6H 0O 49 0,4 dioksan CH CH OCH CH O 379 Etylobenzen C 6H 5C H 5 43 n Heptan C 7H 6 5 3 n Heksan C 6H 4 33 4 dwumetoksymetan CH (OCH 3) 36 5 Naftalen C 0H 8 58 6 n Nonan C 9H 0 05 7,,4 trójmetylopentan CH 3CH(CH 3)CHiC(CH 3) 3 4 8 n Tetradekan CH 3 (CH ) CH 3 0 9 Czterowodorosfuran CaHHO 4 0 Toluen C 6H 5CH 3 535 Trójchlorosilan SiHCl 3 30 Octan winylu CH CHCOOCH 3 385 3 p Ksylen C 6H 4(CH3) 58 Temperatury zapalenia (samozapalenia) gazów mieszczą się na ogół w zakresie 400 600 o C (acetylen 305, propan butan 30). Gazy dzieli się na dwie grupy według wartości dolnej granicy wybuchowości: grupa I palne V d < 0%, grupa II palne V d > 0% (V d dolna granica wybuchowości). Gazy niepalne, które w normalnych warunkach nie ulegają zapaleniu. 6

Gazy trujące, które w razie przedostania się do organizmu lub stykania się z powierzchnią ciała zagrażają zdrowiu lub życiu ludzi bądź zwierząt. Gazy sprężone dostarczane pod ciśnieniem większym od atmosferycznego. Gazy skroplone dostarczane w stanie ciekłym, o temperaturze otoczenia. Gazy skroplone silnie schłodzone (ciekłe) dostarczane w stanie ciekłym, o temperaturze niższej od otoczenia. Gazy rozpuszczone dostarczane w stanie rozpuszczonym w cieczy. Gazy zestalone dostarczane w stanie stałym, o temperaturze niższej od otoczenia. Stopień czystości gazu ilość składnika podstawowego wyrażona w procentach objętościowych, ściśle określona w normach przedmiotowych. (oddziaływania na organizm żywy) (sposobu przechowywania lub transportu) Symbol Nazwa Symbol Nazwa Symbol Nazwa Symbol Nazwa palne trujące specjalnie czyste sprężone niepalne nie trujące czyste skroplone 3 oczyszczone 3 skroplone silnie schłodzone 4 4 techniczne 5 rozpuszczane zestalone Obliczanie granic wybuchowości Obliczanie granic wybuchowości na podstawie liczby atomów tlenu teoretycznie niezbędnej do spalenia określonej ilości substancji palnej według wskaźników empirycznych można wykonać na podstawie poniższych wzorów: Dgr.zap. D gr.zap. Ggr.zap. 00 % obj. 4,76(N ) + M g/l 4,76(N -)Vt 4x00 4,76(N+ % obj. 4) G gr.zap. 4M g/l (476N+ 4)Vt D gr.zap. dolna granica wybuchowości, G gr.zap. górna granica wybuchowości, N liczba atomów tlenu teoretycznie niezbędna do spalenia cząsteczki substancji palnej w mieszaninie ( z równania spalania mieszaniny stechiometrycznej) M ciężar cząsteczkowy substancji palnej w mieszaninie, V t objętość gramocząsteczki w danej temperaturze w litrach. Można także wykorzystać następujące zależności: K 040 00, Q molowe ciepło spalania [cal/mol] S w stężenie stechiometryczne składnika palnego. Dla mieszanin wieloskładnikowych granice wybuchowości można obliczyć wykorzystując wzór Le Chateliera: 7

V dm P V d P + V d 00 P3 + V d3 P +... + V n dn V dm dolna granica zapalności mieszaniny w % objętościowych, P, P,P 3,...P n stężenie poszczególnych składników palnych w % obj.; P,+ P,+P 3,+...+P n 00 %, V d, V d, V d3..v dn dolne granice wybuchowości składników mieszaniny. Jeśli w mieszaninie zawarte są składniki niepalne (CO,N ) dolną granice wybuchowości wyznaczamy z wzoru: Z (+ ) x00 00-Z Vdm Vdp Z 00+ Vdpx 00-Z V dm dolna granica wybuchowości mieszaniny [%obj.] Vdp dolna granica wybuchowości części palnej mieszaniny, [% obj] Z zawartość gazów niepalnych w mieszaninie [% obj.] Spalanie cieczy zachodzi, gdy nad jej powierzchnią znajduje się mieszanina par z powietrzem zdolna do spalania. t.źr.zapalenia > t.zapalenia t.cieczy > t.zapłonu Rysunek: Warunki niezbędne do zapalenia się cieczy vii Temperatura zapłonu jest parametrem charakterystycznym tylko dla cieczy palnych. Temperatura zapłonu cieczy jest podstawą klasyfikacji cieczy ze względu na niebezpieczeństwo pożarowe: Klasa I ciecze o temperaturze zapłonu do o C Klasa II ciecze o temperaturze zapłonu > o C do 55 o C Klasa III ciecze o temperaturze zapłonu >55 o C do 00 o C Ciecze I i II klasy traktowane są jako niebezpieczne pożarowo. Temperatura zapłonu charakteryzuje zdolność cieczy do tworzenia mieszanin wybuchowych w zależności od stanu cieplnego cieczy jak i otoczenia. Jeśli temperatura zapłonu ma wartość ujemną w warunkach normalnych należy liczyć się ze stałym utrzymywaniem się stężeń par cieczy z powietrzem powyżej dolnej granicy wybuchowości. Przeciwnie gdy będziemy mieli do czynienia z cieczą o temperaturze zapłonu znacznie wyższej od temperatury otoczenia. Im gęstość względna par cieczy jest większa tym zagrożenie jest większe, gdyż pary gromadzić się mogą w najniższych miejscach pomieszczenia, snują się na duże odległości, wypełniają kanały i inne zagłębienia terenu w których mogą zalegać przez długi okres czasu. Temperatury zapalenia większości cieczy palnych zawierają się w granicach 300 600 o C. Do wyjątków należą dwusiarczek węgla 0 o C, eter etylowy 60 o C i aldehyd octowy 40 o C. o tych wyjątkach należy pamiętać, gdyż pary tych cieczy zmieszane z powietrzem mogą ulec zapaleniu od ogranych powierzchni (np. rurociągi cieplne). Istotnym parametrem jest szybkość parowania. Im ciecz szybciej paruje z otwartego naczynia lub powierzchni rozlania, tym szybciej stężenie par osiągnie dolną granicę wybuchowości. Względna szybkość parowania to stosunek szybkości parowania cieczy do cieczy wzorcowej (eter etylowy). Ciała stałe Spalanie organicznych ciał stałych poprzedzone jest ich rozkładem termicznym. Skład i objętość tworzącej się fazy lotnej zależy od struktury materiału i jego właściwości fizycznych oraz od warunków w których przebiega rozkład. Aby zapoczątkować reakcję spalania materiału stałego, 8

pod wpływem ciepła, zachodzą trzy stadia:. ogrzewanie materiału,. rozkład termiczny, 3. zapalenie. Sposoby tworzenia się palnej fazy lotnej z ciała stałego sublimacja topnienie parowanie topnienie rozkład topnienie rozkład rozkład parowanie rozkład + parowanie Cechy palności różnych gatunków drewna viii Lp. Rodzaj drewna Temperatura zapłonu [ o C] zapalenia[ o C] Balsa 0 0 Lipa 40 360 3 Świerk 55 360 4 Sosna 60 360 5 Brzoza 60 380 6 Mahoń 70 430 7 Dąb 90 450 8 Akacja 300 480 Pyły. Pył jest to układ koloidowy, w którym ośrodkiem rozpraszającym jest gaz, fazą rozproszona ciało stałe. Pyły mogą spalać się wybuchowo. Mieszaniny wybuchowe mogą tworzyć z powietrzem pyły materiałów palnych, np. drewna, węgla, oraz pyły materiałów powszechnie uważanych za niepalne, np. pyły metali, tworzyw sztucznych. Zasadnicze znaczenie ma wielkość cząstek pyłu. Czym rozdrobnienie materiału jest większe tym łatwiej powstają i dłużej się utrzymują chmury pyłowe. Przy bardzo dużej powierzchni czynnej wzrasta zdolność adsorpcji tlenu, zmniejsza się minimalna energia potrzebna do zapalenia chmury pyłowej i wzrasta prędkość reakcji spalania. W przypadku pyłów mechanizm tworzenia mieszanin wybuchowych z powietrzem jest inny niż w przypadku par i gazów. Cząstki ciała stałego, ze względu na dużą różnicę ich gęstości względem powietrza łatwo opadają, dzięki czemu stężenie pyłu w powietrzu szybko spada ale też pył osiadły łatwo może być uniesiony i ponownie może wystąpić mieszanina wybuchowa. Przy ocenie niebezpieczeństwa powstawania mieszanin wybuchowych pyłów z powietrzem istotne znaczenie ma: wielkość cząstek, (stopień rozdrobnienia), temperatura tlenia pyłu osiadłego (5 mm warstwy), temperatura zapalenia chmury pyłowej, dolna granica wybuchowości, minimalna energia zapalająca maksymalne ciśnienie wybuchu, maksymalna szybkość narastania ciśnienia wybuchu ciepło spalania gęstość. Temperatura tlenia pyłu zleżałego jest istotna ze względu na maksymalnie dopuszczalne temperatury powierzchni, na których pył może zalegać. Tlący się pył stanowi niebezpieczeństwo wytworzenia niewielkiej chmury pyłowej powstałej na skutek podrywania pyłu przez ruchy konwekcyjne spalin w powietrzu. Tzw. wyfuknięcie powstałej chmury pyłowej powoduje znacznie silniejsze ruchy powietrza i poderwanie następnej, już większej chmury pyłowej. Do pyłów tworzących mieszaniny wybuchowe z powietrzem zalicza się te pyły, których dolna granica wybuchowości nie przekracza 65 g/m 3. Pyły, których dolna granica wybuchowości jest wyższa, zalicza się do niebezpiecznych pożarowo. Wybuch jest to zespół zjawisk towarzyszących bardzo szybkiemu przejściu układu z jednego stanu równowagi w drugi z wyzwoleniem znacznej ilości energii. Wybuch fizyczny to taki wybuch podczas którego składniki układu nie ulegają reakcjom chemicznym. np. wybuch kotła parowego, wybuch butli z gazem. Wybuch chemiczny jest to bardzo szybko przebiegająca egzotermiczna reakcja spalania, której towarzyszy powstawanie dużej ilości gazowych produktów spalania co powoduje na ogół znaczny wzrost ciśnienia. Np. podczas wybuchu kg pyłu skrobi tworzy się ok. 4 m 3 produktów spalania co powoduje wzrost ciśnienia. W wielu procesach technologicznych niezbędne jest stosowanie substancji mogących tworzyć z powietrzem mieszaniny wybuchowe a tym 9

samym powodować zagrożenie wybuchem. Zagrożenie wybuchem może mieć miejsce przy pracy z substancjami palnymi takimi jak:, pary, mgły lub rozdrobnione ciała stałe o ile ich stężenia w mieszaninie z powietrzem zawarte są w granicach wybuchowości. Dla zainicjowania wybuchu niezbędne jest źródło zapłonu o dostatecznej energii. Groźne w skutkach wybuchy mogą mieć miejsce w przypadku równoczesnego wystąpienia następujących warunków: wysoki stopień rozdrobnienia substancji palnej, stężenie substancji palnej zawarte jest w granicach wybuchowości, ilość mieszaniny wybuchowej przekracza niebezpieczną wartość, istnieje źródło zapłonu o dostatecznej energii. : jest to mieszanina gazów, par lub mgieł palnych cieczy, a także pyłów lub włókien z powietrzem lub innymi gazami utleniającymi, o stężeniu substancji palnej zawartym między dolną a górną granicą wybuchowości, w której po zaistnieniu zapłonu reakcja przebiega samorzutnie. Aby móc skutecznie zapobiegać możliwości powstania warunków do wybuchu należy dokładnie poznać czynniki wpływające na tworzenie się mieszanin wybuchowych i powstawanie tzw. wokół potencjalnych źródeł wydzielania substancji. : jest to przestrzeń, w której może występować mieszanina wybuchowa. Ocena zagrożenia wybuchem jest podstawą do zastosowania skutecznych środków mających na celu: zabezpieczenie przed powstawaniem mieszanin wybuchowych, zabezpieczenie przed zapłonem mieszaniny wybuchowej, zabezpieczenie przed skutkami wybuchu. Na wielkość strefy zagrożenia wybuchem mają wpływ: względna gęstość par cieczy i gazów palnych w stosunku do powietrza, (za wyjątkiem acetylenu, etylenu, amoniaku, cyjanowodoru, tlenku węgla, metanu i wodoru pozostałe i pary są cięższe od powietrza). Gazy lżejsze od powietrza unoszą się ku górze mieszając się przy tym z powietrzem, wielkość źródeł wydzielania substancji palnych do otoczenia, ilość wydzielonej do otoczenia substancji decyduje o rozmiarach powstającej strefy zagrożenia, czas wydzielania i utrzymywania się mieszaniny wybuchowej, temperatura zapłonu cieczy palnych, dolne granice wybuchowości par cieczy i gazów palnych, stosowane zabezpieczenia techniczne. Ocena zagrożenia wybuchem pomieszczeń oraz przestrzeni zewnętrznych obejmuje wskazanie pomieszczeń zagrożonych wybuchem, a także wyznaczenie w pomieszczeniach i przestrzeniach zewnętrznych odpowiednich stref zagrożenia wybuchem.za dokonanie tej oceny, są odpowiedzialni: inwestor, jednostka projektowania lub użytkownik decydujący o procesie technologicznym. Dokonując oceny zagrożenia wybuchem należy ustalić czy w przestrzeni poddawanej ocenie (pomieszczenie w którym stosuje się substancje mogące tworzyć mieszaniny wybuchowe, strefa wokół urządzenia zawierającego substancje niebezpieczne,) mogą wystąpić, pary, mgły lub pyły w ilościach zdolnych do wytworzenia mieszaniny wybuchowej. W pomieszczeniu należy wyznaczyć strefę zagrożenia wybuchem, jeżeli może w nim występować mieszanina wybuchowa o objętości co najmniej 0,0 m3 w zawartej przestrzeni. Ocena zagrożenia wybuchem pomieszczeń oraz przestrzeni zewnętrznych obejmuje wskazanie pomieszczeń zagrożonych wybuchem a także wyznaczenie w pomieszczeniach i przestrzeniach zewnętrznych odpowiednich stref zagrożenia wybuchem. Za dokonanie tej oceny odpowiedzialny jest inwestor, jednostka projektowa lub użytkownik decydujący o procesie technologicznym. to pomieszczenie, w którym może wytworzyć się mieszanina wybuchowa powstała z wydzielającej się takiej ilości palnych gazów, par, mgieł lub pyłów, której wybuch mógłby spowodować przyrost ciśnienia w tym pomieszczeniu przekraczający. Przyrost ciśnienia w pomieszczeniu P (w Pa), spowodowany przez wybuch z udziałem jednorodnych palnych gazów lub par o cząsteczkach zbudowanych z atomów węgla, wodoru, tlenu, azotu i chlorowców, określany jest za pomocą równania: P m max P V Cst max ρ W maksymalna masa substancji palnych, tworzących mieszaninę wybuchową, jaka może wydzielić się w rozpatrywanym pomieszczeniu (kg), maksymalny przyrost ciśnienia przy wybuchu stechiometrycznej mieszaniny gazowo lub parowo powietrznej w zamkniętej komorze (Pa), współczynnik przebiegu reakcji wybuchu, uwzględniający niehermetyczność pomieszczenia, nieadiabatyczność reakcji wybuchu, a także fakt udziału w reakcji niecałej ilości palnych gazów i par, jaka wydzieliłaby się w pomieszczeniu równy 0,7 dla palnych gazów i 0,7 dla palnych par, objętość przestrzeni powietrznej pomieszczenia, stanowiąca różnicę między objętością pomieszczenia i objętością znajdujących się w nim instalacji, sprzętu, zamkniętych opakowań itd. (m 3 ), objętościowe stężenie stechiometryczne palnych gazów lub par, β stechiometryczny współczynnik tlenu w reakcji wybuchu, 0

β n C + n H 4 n Cl n O n C, n H, n Cl, n O odpowiednio ilości atomów węgla, wodoru, chlorowców i tlenu w cząsteczce gazu lub pary, ρ gęstość palnych gazów lub par w temperaturze pomieszczenia w normalnych warunkach pracy (kg x m 3 ). Przyrost ciśnienia w pomieszczeniu P (w Pa), spowodowany przez wybuch z udziałem substancji palnych nie wymienionych w.3..., jest określany za pomocą równania: P m max V q ρ sp p P o W c p T q sp ciepło spalania (J x kg ), Po ciśnienie atmosferyczne normalne, równe 0 35 Pa, ρ p gęstość powietrza w temperaturze T (kg x m 3 ), c p ciepło właściwe powietrza, równe,0 x 0 3 J x kg x K, T temperatura pomieszczenia w normalnych warunkach pracy (K), W 0,7 dla palnych gazów i uniesionego palnego pyłu, W 0, dla palnych par i mgieł. Masa palnych par m (w kg), wydzielających się w pomieszczeniu wskutek parowania cieczy z otwartej powierzchni, jest określana za pomocą równania: m 0 9 F τ K P s M F powierzchnia parowania cieczy (w m ) dla każdego dm 3 cieczy rozlanej na posadzce betonowej przyjmuje się F 0,5 m dla roztworów zawierających nie więcej niż 70% masowego udziału rozpuszczalnika i F m dla pozostałych cieczy, τ przewidywany maksymalny czas wydzielania się par (s), K współczynnik parowania określony w tabeli, P s prężność pary nasyconej w temperaturze pomieszczenia t w o C (Pa), B (A- Ps 33x 0 τ+ C A ) A, B, C A współczynniki równania Antoine'a dla danej cieczy, M masa cząsteczkowa cieczy (kg x kmol ). Tabela Wartości współczynnika parowania K Prędkość przepływu powietrza nad Temperatura pomieszczenia w o C powierzchnią parowania (m x s ) 0 5 0 30 35 0,0,0,0,0,0 0, 3,0,6,4,8,6 0, 4,6 3,8 3,5,4,3 0,5 6,6 5,7 5,4 3,6 3,,0 0,0 8,7 7,7 5,6 4,6 W przypadku występowania w pomieszczeniu wentylacji awaryjnej uruchamianej samoczynnie, przy określaniu m max dla palnych gazów lub par

dopuszcza się uwzględnianie jej działania, jeżeli odciągi powietrza znajdują się w pobliżu miejsca przewidywanego wydzielania się gazów lub par. Przyjmowaną do obliczenia P maksymalną masę substancji palnych można wtedy zmniejszyć "k" razy, przy czym: k + n x τ n ilość wymian powietrza w pomieszczeniu przy działaniu wentylacji awaryjnej (s ), τ przewidywany czas wydzielania gazów lub par (s). Obliczenie przewidywanego przyrostu ciśnienia w pomieszczeniu nie jest wymagane w przypadku, gdy bez jego dokonania inwestor, jednostka projektowania lub użytkownik decydujący o procesie technologicznym uznaje pomieszczenie za zagrożone wybuchem. Wielkość źródeł wydzielania określa się maksymalną ilością substancji możliwych do wydzielenia w atmosferę otoczenia z urządzeń technologicznych. Strefę zagrożenia wybuchem w pomieszczeniu wyznacza się jeśli może w nim wystąpić mieszanina wybuchowa o objętości co najmniej 0,0 m 3. w pomieszczeniach małych, o objętości mniejszej niż 00 m 3, także mniejsze niż 0 l ilości rozproszonej substancji tworzącej z powietrzem mieszaninę wybuchowa, może być dla znajdujących się tam ludzi niebezpieczne. w przypadkach szczególnych jak na przykład narkoza w kanałach oddechowych płuc człowieka bardzo małe ilości są dla człowieka groźne w razie zapalenia. Płomienie podczas spalania się mieszaniny wybuchowej mogą objąć przestrzeń dziesięciokrotnie większą niż objętość mieszaniny. Prawdopodobieństwo wystąpienia mieszaniny wybuchowej jest zależne od: możliwości wydzielenia się substancji do otoczenia, ilości substancji jaka może wydzielić się do otoczenia. możliwości wydzielenia do otoczenia substancji mogących tworzyć mieszaniny wybuchowe. Możliwość wydzielenia do otoczenia substancji mogących tworzyć mieszaniny wybuchowe zależy od: - sprawności aparatów technologicznych (nieszczelności), - rodzaju procesu technologicznego (ciągły, okresowy), - lokalizacji aparatów (na wolnym powietrzu są warunki znacznie korzystniejsze), - wielkości aparatów, a w szczególności ilości substancji niebezpiecznych w nich zawartych, - konstrukcji aparatów, - stosowanych systemów zabezpieczeń technicznych, - przestrzegania podstawowych zasad bezpieczeństwa. imelania Pofi Szczepańska Wybrane zagadnienia z chemii ogólnej, fizykochemii spalania i rozwoju pożarów SĄ Kraków 994 ii M.Pofit Szczepańska Wybrane zagadnienia z chemii ogólnej, fizykochemii spalania i rozwoju pożarów. iii M.Pofit Szczepańska j.w. iv M.Pofit Szczepańska j.w. v M.Pofit - Szczepańska Wybrane zagadnienia z fizykochemii wybuchu. vi PN-84/E-089 Elektryczne urządzenia przeciwwybuchowe. Mieszaniny wybuchowe. Klasyfikacja i metody badań. vii wg M.Pofit Szczepańska Wybrane zagadnienia z chemii ogólnej, fizykochemii spalania i rozwoju pożarów str.57 viii wg M.Pofit Szczepańska Wybrane zagadnienia z chemii ogólnej, fizykochemii spalania i rozwoju pożarów str.75