POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW

Podobne dokumenty
POMIARY KĄTÓW I STOŻKÓW

POMIARY WYMIARÓW ZEWNĘTRZNYCH, WEWNĘTRZNYCH, MIESZANYCH i POŚREDNICH

POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji

Rozdział I. Wiedza ogólna o pomiarach w budowie maszyn Metrologia informacje podstawowe Jednostki miar. Wymiarowanie...

WZORCE I PODSTAWOWE PRZYRZĄDY POMIAROWE

Temat ćwiczenia. Cechowanie przyrządów pomiarowych metrologii długości i kąta

POMIARY POŚREDNIE POZNAŃ III.2017

POMIARY POŚREDNIE. Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska

POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji

Laboratorium metrologii

Strona internetowa

SPRAWDZANIE SPRAWDZIANU DWUGRANICZNEGO TŁOCZKOWEGO DO OTWORÓW

Pomiary wymiarów zewnętrznych (wałków)

Pomiary otworów. Ismena Bobel

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI ĆWICZENIE NR 2 POMIAR KRZYWEK W UKŁADZIE WSPÓŁRZĘDNYCH BIEGUNOWYCH

Przekrój 1 [mm] Przekrój 2 [mm] Przekrój 3 [mm]

Copyright 2012 Daniel Szydłowski

Metrologia: charakterystyki podstawowych przyrządów pomiarowych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Pomiary wymiarów kątowych i stożków

Tolerancja wymiarowa

Klasyfikacja przyrządów pomiarowych i wzorców miar

TOLERANCJE I PASOWANIA WYMIARÓW LINIOWYCH. 1. Wymiary nominalne rzeczywiste, tolerancja wymiaru.

Wyznaczanie współczynnika załamania światła

Przedmowa Wiadomości ogólne... 17

Opis przedmiotu 4 części zamówienia: Przyrządy pomiarowe

c) d) Strona: 1 1. Cel ćwiczenia

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie B-2 POMIAR PROSTOLINIOWOŚCI PROWADNIC ŁOŻA OBRABIARKI

1.Wstęp. Prąd elektryczny

Instytut Obrabiarek i TBM, Politechnika Łódzka

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW

Formularz cenowy. Część 4 zamówienia Przyrządy pomiarowe. Ilość Specyfikacja sprzętu (nazwa producenta +typ/model/wersja) sztuk

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Opis przedmiotu 4 części zamówienia: Przyrządy pomiarowe

Opis przedmiotu 1 części zamówienia: Przyrządy pomiarowe

SPRAWDZANIE NARZĘDZI POMIAROWYCH

Temat ćwiczenia. Pomiary gwintów

STYKOWE POMIARY GWINTÓW

Katedra Technik Wytwarzania i Automatyzacji

1. Parametry gwintów, 2. Tolerancje gwintów, 3. Oznaczanie gwintów na rysunkach, 4. Metody pomiaru gwintów zewnętrznych: -średnicy podziałowej d 2,

Formularz cenowy. Część 4 zamówienia Przyrządy pomiarowe

Opis przedmiotu 1 części zamówienia: Przyrządy pomiarowe

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI

CENNIK USŁUG METROLOGICZNYCH obowiązuje od 01 stycznia 2019r.

Metrologia Techniczna

Formularz cenowy Część 4 zamówienia Przyrządy pomiarowe

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s

Instytut Obrabiarek i TBM, Politechnika Łódzka

Laboratorium metrologii. Instrukcja do ćwiczeń laboratoryjnych. Temat ćwiczenia: Pomiary gwintów

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

Pomiary gwintów w budowie maszyn / Jan Malinowski, Władysław Jakubiec, Wojciech Płowucha. wyd. 2. Warszawa, Spis treści.

POLITECHNIKA OPOLSKA

Temat ćwiczenia. Pomiary płaskości i prostoliniowości powierzchni

Wymiary tolerowane i pasowania. Opracował: mgr inż. Józef Wakuła

ZAKRES AKREDYTACJI LABORATORIUM WZORCUJĄCEGO Nr AP 162

ODPOWIEDŹ DO ZAPYTANIA O WYJAŚNIENIE TREŚCI SIWZ

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych

CENNIK USŁUG METROLOGICZNYCH obowiązuje od 01 stycznia 2018r.

SPRAWDZANIE NARZĘDZI POMIAROWYCH

MATERIAŁY POMOCNICZE DO WYKŁADU Z GRAFIKI INŻYNIERSKIEJ nt.: TOLEROWANIE WYMIARÓW LINIOWYCH I KĄTOWYCH, PASOWANIE ELEMENTÓW

ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi.

POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1.

Instrukcja obsługi linijki koincydencyjnej do pomiaru odległości między prążkami dyfrakcyjnymi

ĆWICZENIE 1 WYZNACZANIE DŁUGOŚCI FALI ZA POMOCĄ SPEKTROSKOPU

DOKŁADNOŚĆ POMIARU DŁUGOŚCI

ZAŁĄCZNIK A do ZARZĄDZENIA Nr 1/2018 Dyrektora Okręgowego Urzędu Miar w Gdańsku z dnia 3 stycznia 2018 r.

OBLICZANIE NADDATKÓW NA OBRÓBKĘ SKRAWANIEM na podstawie; J.Tymowski Technologia budowy maszyn. mgr inż. Marta Bogdan-Chudy

( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA.

POMIAR ŚREDNICY PODZIAŁOWEJ GWINTÓW ZEWNĘTRZNYCH

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia

20 x 5 7, x 5 9,55 11,60 13,25 17,40. 23,80 30 x 5 37,10 50,30 (453) 7,90 8,70 13,10 15,00 21,40. 26,40 35 x 7 52,00 91,30 129,00.

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK

Tolerancje kształtu i położenia

POMIARY OPTYCZNE Pomiary kątów (klinów, pryzmatów) Damian Siedlecki

Zapis i Podstawy Konstrukcji Mechanicznych

Numer ogłoszenia: ; data zamieszczenia: Informacje o zmienianym ogłoszeniu: data r.

Wynagrodzenie w [zł] Nazwa przyrządu pomiarowego, uwagi

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wymiarowanie. Wymiary normalne. Elementy wymiaru rysunkowego Znak ograniczenia linii wymiarowej

ŚWIADECTWO WZORCOWANIA

Budowa, możliwości pomiarowe oraz obsługa przyrządów pomiarowych.

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO

SERIA II ĆWICZENIE 2_3. Temat ćwiczenia: Pomiary rezystancji metodą bezpośrednią i pośrednią. Wiadomości do powtórzenia:

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

Pomiar dyspersji materiałów za pomocą spektrometru

ĆWICZENIE NR 9. Zakład Budownictwa Ogólnego. Stal - pomiar twardości metali metodą Brinella

SPRAWDZANIE MIKROMIERZA O ZAKRESIE POMIAROWYM: mm

Wymiarowanie jest to podawanie wymiarów przedmiotów na rysunkach technicznych za pomocą linii, liczb i znaków wymiarowych.

Pomiar współczynnika załamania światła OG 1

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI ĆWICZENIE NR 1

PRZEWODNIK PO PRZEDMIOCIE

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Pomiar kątów poziomych

I PRACOWNIA FIZYCZNA, UMK TORUŃ

Transkrypt:

POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji TEMAT: Ćwiczenie nr 4 POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć 3 wskazane kąty zadanego przedmiotu kątomierzem uniwersalnym i kątomierzem optycznym.. sprawdzić kąt zbieżności klina zewnętrznego zadanego przedmiotu przy pomocy liniału sinusowego, 3. zmierzyć kąt i zbieżność stożka wewnętrznego używając kulek jako elementów pośredniczących. 4. zmierzyć kąt i zbieżność stożka zewnętrznego używając wałeczków jako elementów pośredniczących. ZAŁĄCZNIKI: PN-8/M-0 Stożki i złącza stożkowe, Terminologia, PN-77/M-036 Układ tolerancji kątów. I. Wprowadzenie M. Bartoszuk, Z. Zalisz, Opole 00 r.

Tolerowanie kątów Spośród wymiarów kątowych wyróżnia się, analogicznie jak przy liniowych kąty zewnętrzne, wewnętrzne, pośrednie i mieszane. Analogicznie też, stosowane w budowie maszyn wymiary kątowe mają układ tolerancji zawarty w normie PN-77/M036. Tolerancja kąta zależy od długości krótszego ramienia kąta oraz od przyjętej klasy dokładności. Norma przewiduje 7 klas dokładności wykonania kątów, przy czym zakłada się trzy możliwości położenia pola tolerancji: na zewnątrz materiału, w głąb materiału lub symetrycznie względem kąta nominalnego (tab. ). Tablica. Poł0żenie pól tolerancji względem kąta nominalnego Położenie pola tolerancji kąta Odchyłki Kąt elementu pryzmowego Szkic Kąt stożka + AT α + AT AT α AT ± AT α ± AT ) ) W przypadkach uzasadnionych dopuszcza się odchyłki dwustronne niesymetryczne Pomiary kątomierzem

Do bezpośrednich pomiarów kątów stosuje się kątomierze uniwersalne z noniuszem lub kątomierze optyczne, którymi można mierzyć kąty od 0º5' do 360º. Odczytanie wskazań kątomierza uniwersalnego z noniuszem 0º5' (rys..) odbywa się podobnie jak w przyrządzie suwmiarkowym, to jest kreska zerowa podziałki noniusza wskazuje na tarczy liczbę stopni, natomiast jedna z pozostałych kresek podziałki noniusza, znajdująca się na przedłużeniu jednej z kresek podziałki na tarczy, wskazuje liczbę minut. Wskazania w kątomierzu optycznym (rys..) odczytuje się bezpośrednio na szklanej tarczy obserwowanej przez okular wyposażony w lupę. a) b) Rys.. Kątomierz uniwersalny z noniuszem 0º5': a) wskazania wielkości mierzonej, b) przykłady zastosowania 3

a) b) Rys.. Kątomierz optyczny: a) widok ogólny; liniał pomiarowy stały, liniał pomiarowy ruchomy sprzężony z okularem, 3 okular, b) pole widzenia w okularze Pomiary liniałem sinusowym Liniał sinusowy służy do pośrednich pomiarów kątów w zakresie 0 90 o, lecz najlepsze dokładności osiąga się do około 45 o. Liniał sinusowy (rys. 3) stanowi dokładnie wykonana płytka, w której osadzono dwa jednakowe wałki o osiach ustawionych równolegle. Wszystkie elementy liniału wykonane są z dużą dokładnością. Tolerancja średnicy oraz dopuszczalna nierównoległość obu wałków względem siebie i górnej płaszczyzny liniału wynoszą ±0,00 mm. Wymiar L charakterystyczny dla danego liniału wykonany jest w tolerancji ± 0,00 mm dla L=00 mm oraz ± 0,005 dla L=00 mm. Rys. 3. Pomiar kąta liniałem sinusowym; liniał sinusowy, płytki wzorcowe, 3 przedmiot mierzony, 4 czujnik z podstawką, 5 płyta pomiarowa 4

Pomiary liniałem wykonuje się na płaskiej płycie pomiarowej, a pomiar polega na takim doborze wysokości H zestawu płytek wzorcowych, aby górna tworząca mierzonego przedmiotu (klina lub stożka) była równoległa do płaszczyzny płyty. Wysokość H dobiera się drogą kolejnych przybliżeń, mierząc jednocześnie położenie górnej tworzącej przedmiotu odpowiednio wybranym narzędziem, np. czujnikiem lub poziomicą. Po osiągnięciu położenia, w którym tworząca przedmiotu i powierzchnia płyty są do siebie równoległe można wyznaczyć kąt przedmiotu z zależności: sin α = Zestawienie stosu płytek wzorcowych, przy którym różnica wskazań czujnika przesuwającego się wzdłuż tworzącej stożka jest równa zeru, wymaga nieraz wielu prób. Dlatego dopuszcza się możliwość pewnej różnicy wskazań czujnika oraz uwzględnia się ją w postaci poprawki wysokości stosu płytek wzorcowych - c. Kąt α wyznacza się wtedy z zależności: H + c sinα = L H L Rys. 4. Wyznaczenie poprawki c ze względu na różnicę wskazań Obliczanie poprawki wymaga uwzględnienia różnicy wskazań czujnika W = W W na znanej długości pomiarowej l. Z rysunku 4 wynika, że: W l = L c H 5

stąd: W c = l L H Przy obliczaniu poprawki należy zwrócić uwagę na jej znak algebraiczny. Jeżeli wskazania czujnika przesuwanego od położenia odpowiadającego wskazaniu W do W maleją, tzn. bok mierzonego klina nachylony jest jak na rys. 4 poprawka ma znak ujemny, gdy jest odwrotnie poprawka jest dodatnia. Niedokładność opisanej metody pośredniej zależy z jednej strony od błędów samego liniału, z drugiej strony od pozostałych narzędzi, to jest płytek wzorcowych, płyty pomiarowej oraz narzędzia, którym mierzono nierównoległość tworzącej przedmiotu do płaszczyzny płyty. Pomiary za pomocą kulek i wałeczków Bezpośrednie pomiary, szczególnie skomplikowanych części maszyn, są często trudne albo też wymagałyby budowy specjalnych urządzeń kontrolnych. W tej sytuacji pomiary mogą ułatwić elementy pośredniczące. W praktyce, do pomiaru kąta stożka wewnętrznego stosuje się dwie kulki o różnej średnicy i np. wysokościomierz mikrometryczny (rys. 5 i wzory obliczeniowe,, i 3). Rys. 5. Pomiary zbieżności (kąta) stożka wewnętrznego z wykorzystaniem kulek jako elementów pośredniczących 6

Wzory do obliczeń: d d sinα = () (M M ) (d d ) d = (H M d )tgα () cosα D d = (M d )tgα (3) cosα D Do pomiaru kąta stożka zewnętrznego stosuje się dwa wałeczki o jednakowej średnicy i dwa stosy płytek wzorcowych o tym samym wymiarze oraz np. mikrometr (rys. 6 i wzory obliczeniowe 4, 5, i 6). Rys. 6. Pomiary zbieżności (kąta) stożka zewnętrznego z wykorzystaniem dwóch wałeczków jako elementów pośredniczących Wzory do obliczeń: tg M M = H α (4) w d = M (5) tg α d w = M (6) α tg 7

II. Wykonanie zadań pomiarowych Zadanie. Przygotować kątomierz uniwersalny lub optyczny do pomiaru, sprawdzić błąd wskazania dla kąta 90 (kątownik) lub 80 (powierzchnia stolika pomiarowego) by uwzględnić go poprzez poprawkę w końcowym wyniku pomiaru. Każdy z dowolnie wybranych 3 kątów przedmiotu zmierzyć 6-krotnie zapisując wyniki (stopnie i minuty kątowe) w tabeli wyników, i wyliczyć wartość średnią α i niepewność pomiarową e. Podać wartość poprawioną każdego z kątów. Tabela wyników Kąt lp. 3 4 5 6 α e α α α 3 Zadanie. Przygotować potrzebne narzędzia i pomoce miernicze do pomiaru. Określić wstępnie wysokość H stosu płytek wzorcowych (z dokładnością do /000 mm) dla spodziewanego kąta klina. Złożyć stos z wybranych płytek wzorcowych, ustawić stanowisko i przystąpić do pomiaru. Pomiary wykonywać według planu (szkic pomiarowy + tabela wyników ) notując wyniki w zaprojektowanej tabeli wyników. Szczegóły poda prowadzący. Określić wartość średnią kąta α i niepewność pomiarową e α wyliczoną metodą różniczki zupełnej. Podać wartość poprawioną mierzonej wielkości i ocenić poprawność wykonania mierzonego kąta. Tabela wyników. 8

Kąt lp. 3 4 5 6 średnia e W mm W mm l mm H mm Zadanie 3 i 4 Wykonać postępując podobnie jak w zadaniach i. Szkic pomiarowy i tabelkę wyników opracować samodzielnie. 9