Opracowała Ewa Szota Wymagania edukacyjne dla klasy I Technikum Elektrycznego i Technikum Elektronicznego Z S Nr 1 w Olkuszu na podstawie programu nauczania dla zawodu technik elektryk [311303] oraz technik elektronik [311408] przedmiot: Podstawy elektrotechniki i elektroniki, rok szkolny 2016/2017 zajęcia prowadzone w wymiarze 3 godz. w tygodniu Temat Pole elektryczne Wymagania edukacyjne podstawowe ponadpodstawowe - wymienić jednostki podstawowe oraz wielkości fizyczne, których dotyczą - rozróżniać i wykorzystywać wielokrotności i podwielokrotności jednostek, - narysować obraz graficzny pola elektrycznego wytworzonego przez ładunki punktowe oraz w kondensatorach płaskich i walcowych, - wymienić i zdefiniować podstawowe wielkości pola elektrycznego, znać ich symbole literowe i jednostki - podać i wyjaśnić twierdzenie Coulomba oraz twierdzenie Gaussa, - znać definicję, jednostkę i symbol literowy pojemności - obliczać pojemność kondensatora płaskiego przez podstawienie do wzoru - obliczać pojemność zastępczą układów kondensatorów połączonych szeregowo i równolegle oraz energię pola elektrycznego kondensatora, przez podstawienie do odpowiednich wzorów. a typowe zadania dotyczące pola elektrycznego, pojemności zastępczej, rozkładu ładunków i napięć w mieszanych układach kondensatorów - rozwiązywać bezbłędnie zadania dotyczące pola elektrycznego, pojemności zastępczej, rozkładu ładunków i napięć w mieszanych układach kondensatorów, - klasyfikować kondensatory, znać kody stosowane do ich oznaczania Na ocenę dostateczną uczeń powinien spełniać wymagania na ocenę dopuszczającą, a - wykorzystywać twierdzenie Coulomba i Gaussa do rozwiązywania prostych, typowych zadań. - obliczać pojemność zastępczą oraz rozkłady ładunków i napięć prostych mieszanych połączeń kondensatorów (do 3 kondensatorów)
Prąd stały - znać definicję prądu elektrycznego i jego natężenia, - znać symbole literowe i jednostki napięcia, potencjału, natężenia prądu, rezystancji, mocy i energii, - wyjaśnić na czym polega przepływ prądu: w metalach, elektrolitach, gazach i półprzewodnikach, - znać prawo Ohma i prawa Kirchhoffa, - obliczać możliwie najprostsze obwody elektryczne z wykorzystaniem tych praw, - obliczać rezystancję zastępczą układów rezystorów połączonych szeregowo bądź równolegle oraz moc i energię przez podstawienie do wzoru, - rozróżniać dzielniki napięcia i prądu, - narysować symbole graficzne źródła napięcia i źródła prądu, - wyjaśnić różnicę między idealnymi, a rzeczywistymi źródłami napięcia (prądu), - znać zasady łączenia szeregowego i równoległego źródeł napięcia -przedstawić zasady rozwiązywania obwodów metodą: oczkową, potencjałów węzłowych, superpozycji, Thevenina i Nortona - znać zasady sporządzana bilansu mocy a typowe obwody elektryczne prądu stałego o średniej skali trudności, - rysować rozkład potencjału w obwodach elektrycznych, charakterystyki prądowo-napięciowe rezystorów i źródeł napięcia. - rozwiązywać bezbłędnie obwody elektryczne prądu stałego z wykorzystaniem wszystkich poznanych metod, - dobrać źródło napięcia do zadanego odbiornika z punku widzenia dopasowania energetycznego Obwody nieliniowe Pole magnetyczne wymagania na ocenę dopuszczającą, a - obliczać rezystancję zastępczą układu dowolnie połączonych niewielkiej liczby rezystorów ( do 4 rezystorów) - obliczać proste obwody elektryczne (dwa oczka maksymalnie) metodą przekształceń - wykorzystywać poznane metody; oczkową, potencjałów węzłowych, superpozycji, Thevenina i Nortona do rozwiązywania prostych obwodów elektrycznych, - sporządzać bilans mocy w prostych obwodach elektrycznych - zdefiniować elementy i obwody nieliniowe, podać przykłady - zdefiniować wielkości fizyczne związane z polem magnetycznym, podać ich symbole literowe, jednostki oraz związki między nimi, - znać i wyjaśnić prawo Biota-Savarta oraz prawo przepływu oraz ich zastosowania, - znać i wyjaśnić wzór na siłę elektrodynamicznego oddziaływania a typowe zadania dotyczące: obwodów nieliniowych, pola magnetycznego i obwodów magnetycznych, - narysować pętlę histerezy magnetycznej i wyjaśnić jej przebieg, określić wpływ wartości współrzędnych charakterystycznych punktów histerezy na własności ferromagnetyka.
Prąd sinusoidalnie zmienny przewodników z prądem oraz określać jej kierunek, - znać i wyjaśnić prawo indukcji elektromagnetycznej Faradaya, - podać przykłady występowania sił elektrodynamicznych i elektromotorycznych indukcji, - podać regułę Lenza i jej zastosowanie, - wymienić rodzaje materiałów magnetycznych i przedstawić ich własności, - znać i wyjaśnić prawa obwodów magnetycznych oraz przedstawić obszar ich zastosowań. wymagania na ocenę dopuszczającą, a - rozwiązywać proste zadania dotyczące pola magnetycznego i obwodów magnetycznych praktycznie przez podstawienie do odpowiednich wzorów. - określać zwrot i kierunek sił elektrodynamicznych i elektromotorycznych indukcji - rysować obrazy graficzne typowych pól magnetycznych. - wymienić i rozróżniać wielkości charakteryzujące przebiegi sinusoidalne, podać ich symbole literowe i jednostki, - znać prawa Kirchhoffa i prawo Ohma dla obwodów prądu sinusoidalnego, - znać wzory na reaktancje, impedancje, susceptancje i admitancje obwodów: R, L, C, RL, RC, RLC i poprawnie podstawiać do nich właściwe wielkości, - znać wzory na moc bierną, czynną i pozorną w obwodach prądu jednofazowego i poprawnie podstawiać do nich właściwe wielkości - wyjaśnić zjawisko rezonansu prądów i napięć, podać przykłady ich występowania oraz zastosowanie, - zdefiniować układy trójfazowe symetryczne i niesymetryczne oraz napięcia i prądy fazowe i przewodowe - narysować układ połączenia odbiornika w gwiazdę oraz w trójkąt. - rozwiązywać zadania dotyczące: obwodów nieliniowych, pola magnetycznego i obwodów magnetycznych, - wyjaśnić ogólną zasadę działania silnika elektrycznego i prądnicy posługując się poznanymi prawami dotyczącymi pól i obwodów magnetycznych. a - przedstawić napięcie (prąd) sinusoidalny w postaci zespolonej, - wykonać podstawowe działania na liczbach zespolonych typowe zadania dotyczące obwodów prądu sinusoidalnie zmiennego, - rysować i analizować charakterystyki częstotliwościowe dwójników RLC, - rysować wykresy wektorowe obwodów prądu sinusoidalnie zmiennego jednofazowych i trójfazowych. - rozwiązywać zadania dotyczące obwodów prądu sinusoidalnie zmiennego z wykorzystaniem liczb zespolonych, - rysować przebieg napięć i prądów w dowolnych punktach obwodu prądu sinusoidalnego.
wymagania na ocenę dopuszczającą, a - rozwiązywać proste zadania dotyczące obwodów prądu sinusoidalnego przez podstawienie do właściwych wzorów i poprawne obliczenia, - narysować wykresy wektorowe dwójników: R, L, C, RL, RC, RLC - scharakteryzować zjawiska rezonansu prądów i napięć, podać sposoby doprowadzania obwodów RLC do rezonansu. Przebiegi niesinusoidalne, stany nieustalone, czwórniki -zdefiniować stan nieustalony oraz stałą czasową obwodu RC i RL, zaznaczyć ją na przebiegach prądów i napięć w dwójniku RC i RL, - przedstawić wpływ wartości stałej czasowej na różne zjawiska zachodzące w obwodach elektrycznych i elektronicznych przykłady, - narysować przykładowe przebiegi niesinusoidalne okresowe, podać przykłady ich występowania, - wyjaśnić pojęcie składowych harmonicznych przebiegów okresowych niesinusoidalnych, - podać i wyjaśnić wzór na wartość skuteczną napięcia (prądu) niesinusoidalnego - zdefiniować czwórniki i wymienić ich rodzaje, - narysować symbol graficzny czwórnika oraz przykłady czwórników typu T i typu П pasywnych i aktywnych, - napisać równania czwórników i zdefiniować ich podstawowe parametry, - zdefiniować impedancję falową czwórnika, - wymienić i rozróżniać podstawowe układy filtrów LC i RC oraz ich charakterystyki amplitudowe i fazowe, - przedstawić zastosowania poszczególnych rodzajów filtrów wymagania na ocenę dopuszczającą, a - obliczać parametry czwórników i stałe czasowe obwodów oraz częstotliwości graniczne filtrów przez podstawienie do odpowiednich wzorów, - wyjaśnić wpływ parametrów obwodów RLC na przebiegi napięć i prądów w stanach nieustalonych a - rysować przebiegi napięć prądów w stanach nieustalonych obwodów RC, RL, RL, - znać i wyjaśnić wzory opisujące te przebiegi, - rozwiązywać typowe zadania dotyczące czwórników i filtrów RC i LC, - przedstawić typowe przebiegi niesinusoidalne w postaci szeregów Fouriera - rozwiązywać zadania dotyczące stanów nieustalonych w obwodach RC, RL i RLC, - rozwiązywać zadania dotyczące czwórników i filtrów oraz przebiegów niesinusoidalnych
Elementy bierne, elementy elektroniczne, technologia i materiałoznawstwo elektryczne - identyfikować poszczególne elementy elektroniczne i elementy bierne elektryczne oraz przedstawić ich zastosowania - wymienić podstawowe parametry: diod prostowniczych, diod stabilizacyjnych, diod pojemnościowych, tranzystorów bipolarnych, unipolarnych, elementów optoelektronicznych, tyrystorów - rysować ich symbole graficzne, - rozróżnia i charakteryzuje metody montażu elektrycznego i mechanicznego, - odczytuje schematy elektryczne i mechaniczne stosowane w dokumentacji technicznej wymagania na ocenę dopuszczającą, a - posługiwać się katalogami przy doborze elementów elektronicznych -przedstawić zasadę działania i zastosowanie omawianych elementów elektronicznych, - sporządzać schematy ideowe układów elektrycznych i elektronicznych na podstawie oględzin, znajomości funkcji i elementów układu montażowego a - odszukać i szacować wartości parametrów katalogowych danych elementów elektronicznych, - przedstawić zakres zastosowań i parametry omawianych elementów elektrycznych i elektronicznych, -znać zasady doboru tych elementów i posługiwać się nimi, - rozróżnia i charakteryzuje podzespoły mechaniczne występujące w schematach układów elektrycznych, - rozróżnia i charakteryzuje sposoby lutowania elementów na płytkach drukowanych - analizować pacę omawianych układów elektronicznych na podstawie ich schematów ideowych - dobierać elementy do zadanych układów elektrycznych i elektronicznych i przewidywać ich pracę w tych układach Ocenę celującą otrzymuje uczeń, który spełnia wymagania na ocenę bardzo dobrą, a - Posiadł wiedzę i umiejętności znacznie wykraczające poza program nauczania. - Biegle posługuje się zdobytymi wiadomościami w rozwiązywaniu problemów technicznych teoretycznych i praktycznych, proponuje rozwiązania nietypowe. - Rozwiązuje zadania dodatkowe wykraczające poza program nauczania. - Przedstawia przejrzyste i wyczerpujące rozwiązania żądań dodatkowych. - Samodzielnie rozwija zainteresowania z zakresu przedmiotu, poszerza zdobyta wiedze, poprzez korzystanie z różnych opracowań i programów komputerowych, Internetu. - Osiąga sukcesy w konkursach.