MODELOWANIE INŻYNIERSKIE nr 7, ISSN 896-77X UKŁAD KONDYCJONUJĄCO- PRZETWARZAJĄCY ELEKTROMECHANICZNEGO PRZETWORNIKA DRGAŃ Maciej Rosół a, Bogdan Sapiński b, Jakub Jasiński c AGH Akademia Górniczo-Hutnicza, Katedra Automatyki i Inżynierii Biomedycznej AGH Akademia Górniczo-Hutnicza, Katedra Automatyzacji Procesów a mr@agh.edu.pl, b deep@agh.edu.pl, c qbajkrk@gmail.com Streszczenie W pracy opisano zaprojektowany i wykonany układ kondycjonująco-przetwarzający napięcie wyjściowe elektromechanicznego przetwornika drgań, którego działanie opiera się na prawie indukcji elektromagnetycznej Faradaya. Układ ten oraz przetwornik są podzespołami budowanego w ramach realizowanego przez autorów projektu liniowego tłumika magnetoreologicznego (MR) z odzyskiem energii. Przedstawiono także wyniki badań laboratoryjnych opracowanego układu w stanie jałowym i obciążenia. Słowa kluczowe: przetwornik elektromechaniczny, tłumik MR, układ kondycjonująco-przetwarzający, drgania THE SIGNAL CONDITIONING AND PROCESSING SYSTEM TO SUPPORT AN ELECTROMECHANICAL VIBRATION CONVERTER Summary The paper presents the newly designed and fabricated conditioning and processing system converts the output voltage from an electromechanical vibration converter based on the Faraday's laws of electromagnetic induction. This system and the converter are both sub-assemblies of a linear mangnetorheological (MR) damper with the energy recovery capability, being developed by the authors. The results of laboratory testing of the conditioning system during the idle run and under load are summarised. Keywords: electromechanical transducer, MR damper, conditioning and processing system, vibrations. WSTĘP Tradycyjne semiaktywne układy redukcji drgań z tłumikami MR są układami ze sprzężeniem zwrotnym. Energia elektryczna, potrzebna do aktywacji tłumików MR w układach ochrony obiektów drgających, pochodzi z zewnętrznego źródła prądu stałego o mocy rzędu watów. W niektórych przypadkach źródłem tej energii może być sam obiekt drgający. Aby było to możliwe, do układu należy wprowadzić elektromechaniczny przetwornik drgań (generator), którego zadaniem jest przetwarzanie energii drgań na energię elektryczną [, ]. W takim generatorze, działającym na zasadzie prawa Faradaya, prędkość obiektu drgającego jest przetwarzana na napięcie indukowane w jego cewce. Napięcie to powoduje zmianę natężenia prądu w cewce sterującej tłumika MR (odbiorniku) i w konsekwencji zmianę siły generowanej przez tłumik. Z reguły do aktywacji tłumika MR nie jest wykorzystywane wprost napięcie indukowane przez generator, lecz napięcie przetworzone przez odpowiedni układ kondycjonująco-przetwarzający. Przedstawiony w pracy układ kondycjonującoprzetwarzający opracowano dla generatorów przeznaczonych do zasilania liniowych (obrotowych) tłumików MR 66
Maciej Rosół, Bogdan Sapiński, Jakub Jasiński wytwarzających siłę (moment) rzędu kilku niutonów (niutonometrów). Wykonanie układoprzedzone było budową modelu, identyfikacją oraz symulacjami komputerowymi []. Celem badań opracowanego układu były pomiary i analiza rzeczywistych parametrów elektrycznych oraz porównanie ich z parametrami przyjętymi na etapie projektowania, a także określenie granicznych wartości napięć i natężenia prądów dla założonego obciążenia (cewki sterującej tłumika MR).. BUDOWA UKŁADU Schemat blokowy układu kondycjonującoprzetwarzającego pokazano na rys.. Głównymi blokami układu są: prostownik z mostkiem Graetza, przetwornica napięcia DC/DC, blok pomiarowy oraz sterownik z mikrokontrolerem PIC8. Napięcie wyjściowe przetwornika u jest wstępnie prostowane przez zbudowany na diodach Schottkyego [7] mostek Graetza. Napięcie wyprostowane u jest podawane na wejście przetwornicy DC/DC. Napięcie wyjściowe z tej przetwornicy up zasila obciążenie (cewkę sterującą) przez klucz analogowy Ks. Klucz Ks jest sterowany za pomocą mikrokontrolera przez wyjście cyfrowe, co umożliwia uzyskanie zadanej wartości natężenia prądu w cewce. Przetwornicę DC/DC zbudowano na układzie LM6 [6] stosowanym w przetwornicach podwyższających napięcie. Układ LM6 ma sprawność sięgającą 9%, akceptuje napięcia wejściowe (.8 ) V i pozwala uzyskać napięcia wyjściowe (. ) V []. W opracowanym układzie kondycjonowania przyjęto napięcie wyjściowe przetwornicy + V. Blok pomiarowy zbudowano przy użyciu energooszczędnych wzmacniaczy operacyjnych LT96 [8], zasilanych napięciem ± V z przetwornicy DC/DC +V/±V typu IQ S. Blok ten przetwarza napięciowe sygnały analogowe x, z (z czujników przemieszczeń), napięć u, u, natężenia prądów i, i do wartości napięć akceptowalnych przez przetwornik A/C mikrokontrolera PIC8 []. Przetworzone przez ten blok sygnały pomiarowe oznaczono: x, z, u, u, i, i. Mikrokontroler PIC8 służy do sterowania kluczem analogowym Kz, przez który zasilana jest przetwornica +/±V oraz do komunikacji z komputerem przez port USB. Pomiar natężenia prądów i oraz i dokonywany jest przez wykorzystujący efekt Halla czujnik prądu ACS7 [9], o czułości 8 mv/a i maksymalnym prądzie A, który jest zasilany napięciem +V DC. Rys.. Obwód drukowany układu kondycjonującoprzetwarzającego Zastosowany w układzie 8-bitowy mikrokontroler PIC8 zasilany napięciem (..6) V ma kilka trybów zarządzania energią (cechuje się poborem prądu ok.. ma w trybie aktywnym), kanałowy / bitowy przetwornik A/C, wystarczającą do sterowania przetwornicą moc obliczeniową ( MIPS przy częstotliwości taktowania 8 MHz) oraz możliwość komunikacji z urządzeniami zewnętrznymi przez port USB. lub RS. Opisany układ kondycjonująco-przetwarzający wykonano w postaci obwodu drukowanego (płytki PCB), którego widok pokazano na rys.. Rys.. Schemat blokowy układu kondycjonująco-przetwarzającego 67
UKŁAD KONDYCJONUJĄCO-PRZETWARZAJĄCY ELEKTROMECHANICZNEGO. BADANIA UKŁADU Badania laboratoryjne przeprowadzono w celomiaru oraz analizy rzeczywistych parametrów elektrycznych wykonanego układu kondycjonującoprzetwarzającego i porównanie ich z parametrami założonymi na etapie projektowania, a także określenia granicznych wartości napięć i natężenia prądów dla założonego obciążenia Schemat stanowiska, na którym prowadzono badania opracowanego układu, pokazano na rys.. W skład stanowiska wchodzą: komputer z kartą wejść/wyjść typu RT-DAC/PCI, analogowy napięciowy sterownik mocy, układ kondycjonująco-przetwarzający i tłumik MR. Na komputerze, w środowisku MATLAB/Simulink, jest uruchamiana aplikacja czasu rzeczywistego, odtwarzająca rzeczywisty napięciowy sygnał wyjściowy z elektromagnetycznego przetwornika drgań, zarejestrowany podczas jego badań na maszynie wytrzymałościowej. Wymagane przez cewkę sterującą wartości napięcia i natężenia prądu są uzyskiwane za pośrednictwem analogowego sterownika mocy. Wyjście tego sterownika jest podłączone do wejścia u układu kondycjonującoprzetwarzającego, którego napięcie wyjściowe zasila cewkę sterującą tłumika MR. Badania przeprowadzono w stanie jałowym oraz w stanie obciążenia (cewką sterującą tłumika MR) przy dwóch rodzajach sygnałów przemieszczenia (wymuszeni z: sinusoidalnego o amplitudzie mm i częstotliwości z zakresu (., 6.) Hz zmienianą z krokiem. Hz) oraz chirp o amplitudzie mm i rosnącej oraz malejącej częstotliwości z zakresu (.,.) Hz. Wybrane wyniki badań przedstawiono na rys. 7. Obrazują one przebiegi czasowe napięcia wyjściowego przetwornika u, napięcia wejściowego i wyjściowego przetwornicy u, up oraz natężenia prądu w cewce sterującej tłumika i przy w/w parametrach sygnałów przemieszczenia. Przebiegi z rys. dotyczą stanu jałowego przy wymuszeniu sinusoidalnym o częstotliwości. Hz. Amplituda napięcia u okresowo przekracza wartość.7 V (w chwilach t:.87,., 9.9 s). Napięcie wyprostowane u ma mniejszą wartość, skutkiem czego jest załączenie przetwornicy DC/DC tylko w tych chwilach czasowych, dla których u>.8 V. Na wyjścirzetwornicy pojawia się wówczas napięcie up wynoszące około.7 V, które z czasem przyjmuje wartość równą zero. Na rys. przedstawiono przebiegi w stanie jałowym przy wymuszeniu sinusoidalnym o częstotliwości. Hz. Amplituda napięcia u w całym obserwowanym okresie przekracza wartość V. Powoduje to ustalenie się na wejścirzetwornicy napięcia u o średniej wartości ok..9 V. W efekcie, na wyjścirzetwornicy otrzymuje się stabilne napięcie up=.8 V. Na rys. 6 pokazano przebiegi czasowe u, u oraz up uzyskane przy wymuszeniu typu chirp. Częstotliwość sygnału chirp w przedziale czasu (,.) s narastała od. Hz do. Hz, a następnie malała do. Hz (t=88 s). Z wykresów wynika, że praca przetwornicy zależy od częstotliwości wymuszenia: od. Hz do. Hz (t=.69 s), napięcie up= V, od. Hz do. Hz (t=8. s), przetwornica pracuje niestabilnie, napięcie up zmienia się okresowo od około.8 V do V, od. Hz do. Hz, przetwornica pracuje stabilnie, tzn. na wyjściu jest utrzymywane napięcie o założonej wartości (w tym przypadku up=.8 V) przy wahaniach nieprzekraczających %. Należy zauważyć, że ponowne wyłączenie przetwornicy (malejąca częstotliwość wymuszeni, następuje przy częstotliwości.9 Hz. Powyżej częstotliwości. Hz napięcie rzekracza założoną wartość up, co powoduje, że zakłócenia z wejścia przetwornicy przenoszą się na jej wyjście. Rys.. Schemat blokowy stanowiska 68
Maciej Rosół, Bogdan Sapiński, Jakub Jasiński 6 u - u - - - - 6 8-6 6 8 b). u... 6 8 b) u 6 8 c) c) 6 8 6 8 Rys.. Napięcia: u, b) u, c) up: f=. Hz Rys.. Napięcia: u, b) u, c) up: f=. Hz 69
UKŁAD KONDYCJONUJĄCO-PRZETWARZAJĄCY ELEKTROMECHANICZNEGO u - - 6 8 u 7 6 6 8 b) 7 b). u 6 6 8..... 6 8 c) 6 8 Rys. 6. Napięcia: u, b) u, c) up: chirp. c) i [A].8.6.. -. 6 8 Rys. 7. Napięcia: u, b) up, oraz natężenie prądu c) i: f=. Hz Na rys. 7 zamieszczono przebiegi czasowe u, up oraz i w stanie obciążenia przy wymuszeniu sinusoidalnym o częstotliwości. Hz. Z wyników widać, że napięcie u osiąga wartość średnią wynoszącą ok. 6 V, co umożliwia załączenie przetwornicy. Można zaobserwować, że przetwornica nie generuje napięcia up o założonej wartości oraz, że wahania natężenia prądu i, osiągają % wartości średniej wynoszącej. A. Takie zachowanie układu wynika ze zbyt dużego obciążenie prądowego elektromechanicznego przetwornika drgań, przy którym nie można osiągnąć stabilnej wartości napięcia na wyjściu przetwornicy DC/DC.. PODSUMOWANIE W pracy opisano budowę oraz wyniki badań laboratoryjnych zaprojektowanego i wykonanego układu kondycjonująco-przetwarzającego. Działanie układu sprawdzono w stanie jałowym i obciążenia. W badaniach szczególną uwagę zwrócono na napięcia wejściowe i wyjściowe przetwornicy oraz natężenie prądu obciążenia. Określono zakres częstotliwości i amplitudy sygnału wyjściowego z przetwornika, przy których uzyskuje się stabilną pracę układu. W stanie jałowym wyznaczono użyteczny zakres częstotliwości sygnału z (z czujnika przemieszczeni, dla którego gwarantowana jest odpowiednia wartość napięcia up. Pozwoliło to na oszacowa- 7
Maciej Rosół, Bogdan Sapiński, Jakub Jasiński nie zakresu natężenia prądu obciążenia, w którym układ pracuje stabilnie. Wyniki badań wskazały na potrzebę modyfikacji układolegającej na podwyższeniu napięcia up, wyeliminowaniu przetwornicy DC/DC oraz jego miniaturyzacji z uwagi na planowaną integrację układu z przetwornikiem i tłumikiem MR (budowę tłumika MR z odzyskiem energii). Praca finansowana przez Narodowe Centrum Badań i Rozwoju w ramach projektu NR -6-. Literatura. Pressman A.I., Billings K., Morey T.: Switching power supply design. The McGraw Hill Companies, 9. Third Edition.. Rosół M., Sapiński B.: Identyfikacja sterowanego układu kondycjonowania sygnału generatora elektromagnetycznego. Modelowanie Inżynierskie, nr, t., s. 9 6.. Sapiński B.: Vibration power generator for a linear MR damper. Smart Materials and Structures, 9, p. 6.. Sapiński B.: Experimental study of self-powered and sensing MR damper-based vibration control system. Smart Materials and Structures, 9, p. 6.. Microchip Technology Inc., PIC8F7J Family Data Sheet,. 6. National Semiconductors, LM6. General Purpose Gated Oscillator Based, DC/DC Boost Converter, December. 7. NXP Semiconductors, PMEGEP. A low VF MEGA Schottky barrier rectifier, December 9. 8. Linear Technology, LT9/LT9/LT96 Single, Dual and Quad Over-The-Top Precision Rail-to-Rail Input and Output Op Amps, USA, 997. 9. http://www.allegromicro.com, Allegro MicroSystems LLC, ACS7 Hall-Effect Current Sensor IC, Technical Information. 7