1228 PAK vol. 56, nr 10/2010
|
|
- Bogusław Wrona
- 9 lat temu
- Przeglądów:
Transkrypt
1 8 PAK vol. 56, nr / Maciej ROSÓŁ, Bogdan SAPIŃSKI, Łukasz JASRZĘBSKI AKADEMIA GÓRNICZO-HUNICZA, al. Mickiewicza, -59 Kraków Badania laboratoryjne układów kondycjonowania sygnału generatora elektromagnetycznego do zasilania tłumika magnetoreologicznego Dr inż. Maciej ROSÓŁ Jest pracownikiem w Katedrze Automatyki Akademii Górniczo-Hutniczej w Krakowie. Zainteresowania: sterowanie układami nieliniowymi w czasie rzeczywistym, inteligentne algorytmy sterowania, regulacja w otwartych środowiskach sterowania, wykorzystanie mikrokontrolerów jednoukładowych oraz sterowników PLC w pomiarach i sterowaniu, sterowanie rozproszone z wykorzystaniem magistrali CAN, sieci Ethernet i LonWorks. Mgr inż. Łukasz JASRZĘBSKI Jest doktorantem Wydziału Inżynierii Mechanicznej i Robotyki Akademii Górniczo-Hutniczej w Krakowie. Zainteresowania i obszary badań: modelowanie układów elektromechanicznych, techniki pomiarowe, układy redukcji drgań mechanicznych z odzyskiem energii, programowanie mikrokontrolerów. mr@agh.edu.pl lukasz.jastrzebski8@gmail.com Prof. dr hab. inż. Bogdan SAPIŃSKI Jest pracownikiem w Katedrze Automatyzacji Procesów Akademii Górniczo-Hutniczej w Krakowie. Działalność naukowa w zakresie automatyki i robotyki. Zainteresowania i obszary badań: sterowanie w układach mechanicznych, semiaktywne i aktywne układy redukcji drgań, odzyskiwanie energii drgań, materiały i konstrukcje inteligentne, zastosowanie cieczy magnetoreologicznych do tłumienia drgań w układach dyskretnych i ciągłych. deep@agh.edu.pl Streszczenie W artykule opisano badania pasywnych układów kondycjonowania sygnału z generatora elektromagnetycznego, które zaprojektowano do zasilania tłumika magnetoreologicznego (MR) o ruchu liniowym. Przedstawiono układy kondycjonowania zrealizowane na diodach Schottky ego oraz przekaźnikach analogowych, stanowisko badawcze oraz wyniki badań. Działanie układów porównano analizując charakterystyki częstotliwościowe i czasowe. Słowa kluczowe: kondycjonowanie sygnałów, generator elektromagnetyczny, tłumik MR, redukcja drgań. Laboratory tests of signal conditioning systems of electromagnetic generator for MR damper power supply Abstract he paper deals with laboratory testing of passive conditioning systems improving the output signal of the electromagnetic generator used for a power linear magnetorheological (MR) damper. he generator, composed of permanent magnets and a coil with foil winding, produces electrical energy according to Faraday s law of electromagnetic induction. his energy is applied to vary the damping characteristics of the MR damper attached to the generator by the input current produced by the device. he objective of the conditioning systems is to improve the voltage signal applied to the control coil of the MR damper. he paper describes briefly the conditioning systems based on Schottky s diodes and analog relays, the experimental setup (the self-powered vibration reduction system based on MR damper for a one-degree-of-freedom object, measurement and control equipment) and the results of experimental tests. he performance of the developed conditioning systems is compared by analyzing the determined frequency and time responses. Keywords: signal conditioning, electromagnetic generator, MR damper, vibration reduction.. Wstęp W ostatniej dekadzie obserwuje się rosnące zainteresowanie problemem odzyskiwania energii z różnych źródeł. akim źródłem mogą być np. drgania maszyn i konstrukcji. Choć w większości przypadków są one uważane za szkodliwe, to jak pokazują wyniki badań, odzyskiwana energia drgań mechanicznych może być po przetworzeniu z powodzeniem wykorzystana do zasilania urządzeń, zwłaszcza tych o małej mocy. Dotyczy to szczególnie czujników, które są zasilane napięciem rzędu kilka woltów, pobierają prąd o natężeniu rzędu kilkudziesięciu miliamperów, a pobierana przez nie energia jest liczona w mikro- lub mili-dżulach []. W przypadku, gdy zasilanie energią odzyskaną dotyczy sterowanych elektrycznie elementów wykonawczych (np. tłumików MR), pobierana energia jest liczona w dziesiątych częściach dżuli lub dżulach [, i 6]. Aby przetworzyć energię drgań mechanicznych na energię elektryczną budowane są różnego rodzaju przetworniki. Przetworniki te mogą wykorzystywać następujące mechanizmy konwersji energii: elektromagnetyczny, elektrostatyczny lub związany z efekt piezoelektrycznym czy też magnetostrykcyjnym. Jednym z wielu problemów związanych z budową takich przetworników jest odpowiednie ukształtowanie sygnału wyjściowego. Zagadnienie to w odniesieniu do przetworników piezoelektrycznych przeznaczonych do zasilania czujników bezprzewodowych poruszono np. w pracy [], a w odniesieniu do przetwornika elektromagnetycznego zasilającego amortyzator samochodowy w pracy []. W niniejszej artykule zagadnienie to dotyczy przetwornika elektromagnetycznego, który jest wykorzystywany do zasilania liniowego tłumika MR. W pracy [5] opisano stanowisko badawcze układu redukcji drgań z generatorem elektromagnetycznym i tłumikiem MR dla obiektu o jednym stopniu swobody. Specyfika działania tego układu redukcji drgań polega na wykorzystaniu do sterowania siłą tłumika MR części energii obiektu drgającego. Prędkość obiektu jest przetwarzana w generatorze na siłę elektromotoryczną, wywołującą przepływ prądu w cewce sterującej tłumika MR, który wzbudza pole magnetyczne wpływające na siłę wytwarzaną przez tłumik. W pracy [6] opisano budowę i wyniki eksperymentów użytego w badaniach generatora elektromagnetycznego. Rezystancja i indukcyjność cewki generatora wynoszą: R g =,5 Ω i L g =,78 mh. Podstawowe parametry techniczne i charakterystyki zastosowanego tłumika MR (model RD-5- firmy Lord Corporation) przedstawiono w pracy [7]. Rezystancja i indukcyjność cewki sterującej tłumika RD-5- wynoszą R t =5,5 Ω, L t =5 mh.
2 PAK vol. 56, nr / 9 W przypadku zasilania tłumika MR bipolarnym sygnałem napięciowym bezpośrednio z generatora, mogą pojawić się problemy z właściwym kształtowaniem napięcia i prądu w cewce sterującej. Sytuacje takie obserwowano podczas badań funkcjonalnych stanowiska. Wprowadzenie pomiędzy cewkę generatora i cewkę sterującą tłumika MR układu kondycjonowania (rys. ) wymusza polaryzację napięcia wyjściowego generatora i jego wygładzenie (filtrację). Wyniki symulacji i projekt badanych układów kondycjonowania (mostek Graetz a, dwukrotny i czterokrotny powielacz napięci przedstawiono w pracy [8]. W niniejszej pracy opisano wyniki badań laboratoryjnych zaprojektowanych i wykonanych układów kondycjonowania. ab.. ab.. Parametry diod Schottky ego SPSLU Parameters of the SPSLU Schottky s diodes Parametr Powtarzająca się wartość szczytowa napięcia wstecznego: V RRM Średnia wartość natężenia prądu w kierunku przewodzenia: I F(AV) ( L=C, =,5) Spadek napięcia w kierunku przewodzenia: V F (I F= A, j=c) Maksymalna temperatura pracy złącza: j Krytyczna wartość narastania napięcia wstecznego: dv/dt Wartość V A max., V 5C V/s ab.. ab.. Parametry przekaźników analogowych AQYEH Parameters of the AQYEH analog relays Rys.. Fig.. Schemat układu zasilania tłumika MR Schematic of powering system for the MR damper. Układy kondycjonowania Układy kondycjonowani zrealizowano na diodach Schottky ego i przekaźnikach (kluczach) analogowych. Schematy układów (z diodami Schottky ego): prostownika z mostkiem Graetz a (MGS), dwukrotnego powielacza napięcia, (PNS) i czterokrotnego powielacza napięcia (PNS) pokazano na rys. a c. Dla rozróżnienia układów z przekaźnikami analogowymi przyjęto oznaczenia: MG, PN, PN. Parametr Wartość natężenia prądu pracy diody LED w kierunku przewodzenia: I Fon Wartość, ma (max., ma) Wartość natężenia prądu diody LED wyłączająca tranzystor optoizolatora: I Foff, ma (max., ma) Spadek napięcia diody LED w kierunku przewodzenia: V F,5 V (max.,5 V) Rezystancja klucza w stanie załączenia: R on,5 Ω (max.,5 Ω) Czas włączenia klucza: on (I F=5 ma),5 ms (max. 5, ms) Czas wyłączenia klucza: off (I F=5 ma), ms (max., ms) Maksymalna wartość napięcia na kluczu: V L V Maksymalna ciągła wartość natężenia prądu klucza: I L A. Stanowisko badawcze Badania układów kondycjonowania przeprowadzono na stanowisku, którego schemat pokazano na rys.. W skład stanowiska wchodziły: elektromagnetyczny wzbudnik drgań, ruchoma platforma, układ redukcji drgań (generator elektromagnetyczny, tłumik RD-5-) i sprężyna. Platforma, układ redukcji drgań i sprężyna stanowią układ mechaniczny o jednym stopniu swobody. Sterowanie drganiami platformy umożliwiał tłumik MR generujący siłę zależną od zmian natężenia prądu w cewce sterującej. Zmiany te wynikają ze zmian siły elektromotorycznej wytwarzanej w cewce generatora. Rys.. Fig.. Schematy układów kondycjonowania: :prostownik z mostkiem Graetz a, dwukrotny powielacz napięcia, czterokrotny powielacz napięcia Schematics of conditioning systems: Graetz bridge, twofold voltage multiplier, fourfold voltage multiplier Do budowy układów wybrano diody typu SPSLU oraz przekaźniki analogowe typu AQYEH. Ważniejsze parametry zastosowanych elementów podano w tabeli i. Elementy te dobrano tak, aby uzyskać jak najmniejszy spadek napięcia przy zakładanym maksymalnym natężeniu prądu przewodzenia (A). Rys.. Fig.. Schemat stanowiska badawczego Schematic of the experimental setup
3 PAK vol. 56, nr / Układ wytwarzania drgań wymuszających ruch platformy składał się z: wzbudnika drgań V78 firmy LDS [9], wzmacniacza mocy i sterownika połączonego z komputerem przez port USB. Do sterowania wzbudnikiem wykorzystano oprogramowanie LDS Dactron Shaker Control w wersji 6., natomiast do akwizycji danych program DASYLab w wersji.. Układ akwizycji danych stanowił komputer przenośny pracujący pod kontrolą systemu Windows XP, połączony z kartą wejść-wyjść AC/CA typu DAQPad-65E firmy National Instruments [] przez interfejs FireWire (IEEE 9). Przemieszczenie rdzenia wzbudnika (wymuszenie) x i platformy z mierzono za pomocą czujników laserowych F 5 RLA 7 []. Do pomiaru siły tłumika F wykorzystano czujnik piezoelektryczny typu 8-C []. W badaniach układów kondycjonowania mierzono: napięcie na zaciskach generatora u, napięcie wyjściowe z układu kondycjonowania u oraz natężenie prądu i w cewce sterującej tłumika MR.. Wyniki badań Badania wykonano w stanie jałowym (SJ) oraz stanie obciążenia (SO) układu kondycjonowania przy wymuszeniach sinusoidalnych x o amplitudzie,5 mm i częstotliwości w zakresie (, ) Hz, zmienianej z krokiem,5 Hz. Wyniki badań pokazano w postaci zależności średnio-półokresowych napięć u AV, u AV, natężenia prądu i AV, siły F AV oraz współczynnika przenoszenia drgań od częstotliwości f. Wartości średnio-półokresowe napięć, natężenia prądu i siły obliczono z wzoru (). gdzie: y AV t t y( ) d () y() wielkość mierzona, y AV wartość średnio-półokresowa wielkości mierzonej. Współczynnik przenoszenia obliczono z wzoru (). XZ t t t t z( ) d x( ) d () u AV u AV u AV MGS SJ MG SJ PNS SJ PN SJ PNS SO PN SO PNS SJ PN SJ PNS SO PN SO Wyznaczone zależności u AV (f), u AV (f), i AV (f), F AV (f), (f) przedstawiono na rys. 8. Aby ułatwić porównanie charakterystyk badanych układów wprowadzono oznaczenia: MGS SJ, PNS SJ, PNS SJ mostek Graetz a z diodami Schottky ego, stan jałowy,, PNS SO, PNS SO mostek Graetz a z diodami Schottky ego, stan obciążenia, MG SJ, PN SJ, PN SJ mostek Graetz a z kluczami analogowymi, stan jałowy,, PN SO, PN SO mostek Graetz a z kluczami analogowymi, stan obciążenia. W stanie obciążenia dla wszystkich układów kondycjonowania zaobserwowano wzrost napięcia u AV (rys. ) i u AV (rys. 5) z częstotliwością. Prowadzi to do wzrostu natężenia prądu i AV (rys. 6) oraz siły tłumika F AV (rys. 7). Należy zauważyć, że dla układów z diodami Schottky ego niezerowa wartość napięcia u AV pojawia się począwszy od częstotliwości f=,5 Hz, którą można przyjąć za częstotliwość progową. W stanie jałowym siła F AV, napięcia u AV, u AV i natężenie prądu i AV osiągają maksymalne wartości dla częstotliwości f=5 Hz. Wynika to z maksymalnej wartości prędkości względnej tłoka tłumika MR ( x z ) uzyskiwanej dla tej częstotliwości. Rys.. Fig Napięcie u AV w funkcji częstotliwości f : układ MGS i MG, układ PNS i PN, układ PNS i PN Voltage u AV vs. frequency f : MGS and MG system, PNS and PN system, PNS and PN system u AV MGS SJ MG SJ 6 8
4 PAK vol. 56, nr /.5. PNS SO.5 PN SO u AV 8 6 PNS SJ PN SJ PNS SO i AV [A]..5 PN SO Rys. 6. Fig. 6. Natężenie prądu i AV w funkcji częstotliwości f : układ MGS i MG, układ PNS i PN, układ PNS i PN Current i AV vs. frequency f : MGS and MG system, PNS and PN system, PNS and PN system Rys. 5. Fig. 5. u AV 5 5 PNS SJ PN SJ PNS SO PN SO 6 8 Napięcie u AV w funkcji częstotliwości f : układ MGS i MG, układ PNS i PN, układ PNS i PN Voltage u AV vs. frequency f : MGS and MG system, PNS and PN system, PNS and PN system MGS SJ MG SJ 8 F AV [N] i AV [A].... PNS SJ 8 PN SJ PNS SO 6 PN SO F AV [N] i AV [A] PNS SO PN SO F AV [N] PNS SJ PN SJ PNS SO PN SO Rys. 7. Fig Siła tłumika F AV w funkcji częstotliwości f : układ MGS i MG, układ PNS i PN, układ PNS i PN Damper force F AV vs. frequency f : MGS and MG system, PNS and PN system, PNS and PN system
5 PAK vol. 56, nr / Z wykresów współczynnika przenoszenia drgań (rys. 8) wynika, że zarówno w stanie jałowym jak i obciążenia, współczynnik ten przyjmuje maksymalną wartość dla częstotliwości własnej drgań układu mechanicznego f =,5 Hz. W zakresie częstotliwości (,5 6,5)Hz, najmniejsze wartości współczynnika przenoszenia drgań uzyskano, stosując układ MGS i MG. Dla częstotliwości f >7 Hz, współczynnik osiągał najmniejsze wartości dla układów PNS, PN, PNS i PN. Wynika to z mniejszej wartości natężenia prądu na wyjściu tych układów kondycjonowania. u, u, F [N] MGS SJ MG SJ Rys. 9. Fig. 9. u - u. F t [s] Przebiegi czasowe u, u, F w stanie jałowym: układ MG, f=.5 Hz Waveforms of u, u, F under no-load condition: MG system, f=.5 Hz PNS SJ PN SJ PNS SO PN SO PNS SJ PN SJ PNS SO PN SO u, u, i [A], F [N] - - u u 5 i.5 F.... t [s] Rys.. Przebiegi czasowe u, u, i, F w stanie obciążenia: układ MG, f=,5 Hz Fig.. Waveforms of u, u, i, F under the load: MG system, f=,5 Hz Przedstawiono również przebiegi czasowe u, u, i oraz F dla układu MG uzyskane przy częstotliwości,5 Hz (rys. 9, ). Z rys. 9 wynika, że maksymalne napięcie u w stanie jałowym wynosi 5,5 V. W efekcie na wyjściu układu MG uzyskuje się napięcie u wynoszące 5,9 V. W przypadku obciążenia układu MG cewką sterującą tłumika MR jest pobierany prąd o natężeniu,6 A (wartość średni. ak duży pobór prądu uniemożliwia osiągnięcie stanu ustalonego, który obserwowano w stanie jałowym. Z rys. widać, że napięcie u oscyluje wokół wartości średniej równej,98 V. Różnica pomiędzy siłą tłumika w stanie obciążenia i stanie jałowym wynosi około 5 N. Rys. 8. Fig Współczynnik przenoszenia drgań : układ MGS i MG, układ PNS i PN, układ PNS i PN ransmissibility coefficient vs. frequency f : MGS and MG system, PNS and PN system, PNS and PN system Pomiary rezystancji kluczy AQYEH wykazały, że ta rezystancja zmienia się ze zmianą natężenia prądu i wynosi od ok.,8 Ω (i=, A) do,5 Ω (i=,5 A). Maksymalna zmiana napięcia mierzonego na diodzie SPSLU wynosiła.8 V w odniesieniu do wartości średniej,7 V. u, u, i [A] u: ZB 5 i: ZB u : MG u: MG 5 i: MG.... t [s] Rys.. Przebiegi czasowe u, u, i, w stanie obciążenia: bez układu kondycjonowani i z układem MG, f=,5 Hz Fig.. Waveforms of u, u, i under the load: with MG system, and without conditioning system f=,5 Hz
6 PAK vol. 56, nr /.5 ZB MG wartości, pomimo znacznych różnic w natężeniu prądu i. Oznacza to, że istotne zmiany siły występują przy natężeniu prądu i, A. Dla częstotliwości f >5 Hz, największa siła tłumika jest osiągana przy zasilaniu tłumika przez układy MGS i MG. Z uwagi na to, że dla f >7 Hz, wartości współczynników przenoszenia przy zasilaniu cewki sterującej przez układy pasywne są większe niż w przypadku braku zasilania, powinno się stosować dodatkowe układy sterujące natężeniem prądu. Pracę wykonano w ramach projektu badawczego nr N Rys.. Współczynnik przenoszenia drgań bez układu kondycjonowani i z układem MG Fig.. ransmissibility coefficient vs. frequency f: with MG system, and without conditioning system Na rys. porównano charakterystyki czasowe napięć u, u oraz natężenia prądu i w przypadku zasilania tłumika przez układ kondycjonowania MG oraz bezpośrednio z generatora elektromagnetycznego (ZB). Podobne porównanie dotyczące współczynnika przenoszenia drgań pokazano na rys.. Napięcie na cewce generatora u dla układu ZB jest większe niż napięcie u podawane na układ MG (wynika to z mniejszej prędkości względnej ( x z ) ). Natężenie prądu w cewce sterującej tłumika oscyluje wokół niezerowej wartości. Wpływa to na poprawę charakterystyki współczynnika przenoszenia drgań. Z wykresów współczynnika przenoszenia drgań (rys. ) widać około % zmniejszenie współczynnika przenoszenia drgań przy częstotliwości rezonansowej. 5. Wnioski W pracy opisano badania pasywnych układów kondycjonowania (z diodami Schottky ego oraz przekaźnikami analogowymi) sygnału generatora elektromagnetycznego do zasilania tłumika MR. Wyniki badań przedstawiono w postaci charakterystyk częstotliwościowych oraz czasowych. Z punktu widzenia zasilania tłumika MR najlepszymi okazały się układy MGS i MG. Układy MGS, PNS, PNS (z diodami Schottky ego), ze względu na napięcie progowe diod V F, generują niezerowe napięcie u przy częstotliwości f >,5 Hz. W przypadku braku zasilania cewki sterującej przy częstotliwości f >6 Hz, prędkość względna ( x z) zmienia się maksymalnie o,8 % w odniesieniu do wartości średniej, co powoduje niewielkie zmiany u oraz u. Siły tłumika F uzyskiwane dla częstotliwości f 5 Hz, przy zasilaniu tłumika przez układy kondycjonowania, osiągają podobne 6. Literatura [] Beeby S. P., udor M. J., White N. M.: Energy harvesting vibration sources for microsystems applications. Measurement Science and echnology, 7, 75 95, IOP Publishing Ltd., UK. 6. [] Cho S. W., Jung H. J., Lee I. W.: Feasibility Study of Smart Passive Control System Equipped with Electromagnetic Induction Device. Smart Materials and Structures 6, 9, 7. [] Roundy S., Leland E. S., Baker J., Carleton E., Reilly E. Lai E., Otis B., Rabey J. M., Wright P. K., Sundararajan V.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing Vol., No, 5, 8 6. [] Zuo L., Scully B., Shestani J., Zhou Y., Design and characterization of an electromagnetic harvester or vehicle suspensions. Smart Materials and Structures, 9,,. [5] Sapiński B., Snamina J., Jastrzębski Ł., Staśkiewicz A.: Stanowisko laboratoryjne do badań samozasilającego się układu redukcji drgań sejsmicznych. XII Krajowe Sympozjum Wpływ Wibracji na Otoczenie, Kraków-Janowice,. [6] Sapiński B.: Vibration power generator for a linear MR damper. Smart Materials and Structures, 9, 5-6,. [7] Sapiński B.: Magnetorheological Dampers for Vibration Control, UWND AGH, Kraków, 6. [8] Rosół M., Sapiński B.: Symulacja i projekt układu kondycjonowania sygnału generatora elektromagnetycznego do zasilania tłumika magnetoreologicznego. XII Krajowe Sympozjum Wpływ Wibracji na Otoczenie, Kraków-Janowice,. [9] [] [] [] otrzymano / received: 8.7. przyjęto do druku / accepted:.9. artykuł recenzowany INFORMACJE Zapraszamy do publikacji artykułów promocyjnych w miesięczniku naukowo-technicznym PAK Redakcja czasopisma POMIARY AUOMAYKA KONROLA - Gliwice, ul. Akademicka, pok. b, tel./fax: 7 9 5, wydawnictwo@pak.info.pl
Badania laboratoryjne układów kondycjonowania sygnału generatora elektromagnetycznego do zasilania tłumika magnetoreologicznego
PAK vol. 5, nr 6/8 Maciej ROSÓŁ, Bogdan SAPIŃSKI, Łukasz JASRZĘBSKI AKADEMIA GÓRNICZO-HUNICZA, KRAKÓW Badania laboratoryjne układów kondycjonowania sygnału generatora elektromagnetycznego do zasilania
SYMULACJA I PROJEKT UKŁADU KONDYCJONOWANIA SYGNAŁU GENERATORA ELEKTROMAGNETYCZNEGO DO ZASILANIA TŁUMIKA MAGNETOREOLOGICZNEGO
MACIEJ ROSÓŁ, BOGDAN SAPIŃSKI ** SYMULACJA I PROJEKT UKŁADU KONDYCJONOWANIA SYGNAŁU GENERATORA ELEKTROMAGNETYCZNEGO DO ZASILANIA TŁUMIKA MAGNETOREOLOGICZNEGO SIMULATION AND DESIGN OF CONDITIONING SYSTEM
CHARAKTERYSTYKI TŁUMIKA MAGNETOREOLOGICZNEGO RD ZASILANEGO Z GENERATORA ELEKTROMAGNETYCZNEGO
BOGDAN SAPIŃSKI CHARAKTERYSTYKI TŁUMIKA MAGNETOREOLOGICZNEGO RD-1005-3 ZASILANEGO Z GENERATORA ELEKTROMAGNETYCZNEGO CHARACTERISTICS OF THE RD-1005-3 MAGNETORHEOLOGICAL DAMPER POWER-SUPPLIED FROM THE ELECTROMAGNETIC
ELEKTROMAGNETYCZNE PRZETWORNIKI ENERGII DRGAŃ AMORTYZATORA MAGNETOREOLOGICZNEGO
MODELOWANIE INŻYNIERSKIE ISSN 896-77X 4, s. 9-6, Gliwice ELEKTROMAGNETYCZNE PRZETWORNIKI ENERGII DRGAŃ AMORTYZATORA MAGNETOREOLOGICZNEGO BOGDAN SAPIŃSKI Katedra Automatyzacji Procesów, Akademia Górniczo-Hutnicza
STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi
STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi mgr inż. Łukasz Jastrzębski Katedra Automatyzacji Procesów - Akademia Górniczo-Hutnicza Kraków,
IDENTYFIKACJA STEROWANEGO UKŁADU KONDYCJONOWANIA SYGNAŁU GENERATORA ELEKTROMAGNETYCZNEGO
MODELOWANIE INŻYNIERSKIE ISSN 89-77X, s. 9-, Gliwice IDENTYFIKACJA STEROWANEGO UKŁADU KONDYCJONOWANIA SYGNAŁU GENERATORA ELEKTROMAGNETYCZNEGO MACIEJ ROSÓŁ *,BOGDAN SAPIŃSKI ** *AGH Akademia Górniczo-Hutnicza,Katedra
Badania laboratoryjne modelu semiaktywnego zawieszenia z odzyskiem energii
Badania laboratoryjne modelu semiaktywnego zawieszenia z odzyskiem energii Bogdan Sapiński*, Maciej Rosół**, Łukasz Jastrzębski* *Katedra Automatyzacji Procesów, AGH Akademia Górniczo-Hutnicza, **Katedra
Charakterystyki semiaktywnego układu redukcji drgań z odzyskiem energii
PAK vol. 56, nr 1/2010 1 Bogdan SAPIŃSKI, Maciej ROSÓŁ, Łukasz JASTRZĘBSKI AKADMIA GÓRNICZO-HUTNICZA, KRAKÓW Charakterystyki semiaktywnego układu redukcji drgań z odzyskiem energii Prof. dr hab. inŝ. Bogdan
Wyniki badań doświadczalnego generatora dla tłumika magnetoreologicznego o ruchu liniowym
Bogdan SAPIŃSKI, Andrzej MATRAS 2, Stanisław KRUPA 3, Łukasz JASTRZĘBSKI 4 Katedra Automatyzacji Procesów (, 4), Katedra Maszyn Elektrycznych (2), Akademia Górniczo-Hutnicza, Zakład Elektrotechniki (3),
Badania laboratoryjne modelu semiaktywnego zawieszenia z odzyskiem energii
Badania laboratoryjne modelu semiaktywnego zawieszenia z odzyskiem energii Bogdan Sapiński *, Maciej Rosół **, Łukasz Jastrzębski * * Katedra Automatyzacji Procesów AGH, ** Katedra Automatyki AGH Streszczenie:
REGULATOR PRĄDU SPRĘŻYNY MAGNETYCZNEJ CURRENT REGULATOR OF MAGNETIC SPRING
PIOTR HABEL, JACEK SNAMINA * REGULATOR PRĄDU SPRĘŻYNY MAGNETYCZNEJ CURRENT REGULATOR OF MAGNETIC SPRING Streszczenie Abstract Artykuł dotyczy zastosowania regulatora prądu do sterowania siłą sprężyny magnetycznej.
DYNAMIC STIFFNESS COMPENSATION IN VIBRATION CONTROL SYSTEMS WITH MR DAMPERS
MARCIN MAŚLANKA, JACEK SNAMINA KOMPENSACJA SZTYWNOŚCI DYNAMICZNEJ W UKŁADACH REDUKCJI DRGAŃ Z TŁUMIKAMI MR DYNAMIC STIFFNESS COMPENSATION IN VIBRATION CONTROL SYSTEMS WITH MR DAMPERS S t r e s z c z e
MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium. Ćwiczenie 2
MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium Ćwiczenie Hamulec magnetoreologiczny Katedra Automatyzacji Procesów Wydział Inżynierii Mechanicznej i Robotyki Akademia Górniczo-Hutnicza Ćwiczenie Cele:
UKŁAD KONDYCJONUJĄCO- PRZETWARZAJĄCY ELEKTROMECHANICZNEGO PRZETWORNIKA DRGAŃ
MODELOWANIE INŻYNIERSKIE nr 7, ISSN 896-77X UKŁAD KONDYCJONUJĄCO- PRZETWARZAJĄCY ELEKTROMECHANICZNEGO PRZETWORNIKA DRGAŃ Maciej Rosół a, Bogdan Sapiński b, Jakub Jasiński c AGH Akademia Górniczo-Hutnicza,
Rok akademicki: 2013/2014 Kod: RAR AM-s Punkty ECTS: 3. Kierunek: Automatyka i Robotyka Specjalność: Automatyka i metrologia
Nazwa modułu: Materiały i konstrukcje inteligentne Rok akademicki: 2013/2014 Kod: RAR-2-106-AM-s Punkty ECTS: 3 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Specjalność:
EXPERIMENTAL RESULTS OF FORCED VIBRATIONS OF THE BEAM WITH MAGNETORHEOLOGICAL FLUID
BOGDAN SAPIŃSKI, JACEK SNAMINA, MATEUSZ ROMASZKO WYNIKI BADAŃ DOŚWIADCZALNYCH DRGAŃ WYMUSZONYCH BELKI Z CIECZĄ MAGNETOREOLOGICZNĄ EXPERIMENTAL RESULTS OF FORCED VIBRATIONS OF THE BEAM WITH MAGNETORHEOLOGICAL
Autoreferat Rozprawy Doktorskiej
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Autoreferat Rozprawy Doktorskiej Krzysztof Kogut Real-time control
Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS
AGH Katedra Elektroniki Podstawy Elektroniki dla Tele-Informatyki Tranzystory unipolarne MOS Ćwiczenie 4 2014 r. 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora
BADANIE ELEMENTÓW RLC
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi
Laboratorium 7 Układ pomiarowo-sterujący czasu rzeczywistego zbudowany w oparciu o komputer PC i środowisko MATLAB/Simulink
Dr inż. Paweł Martynowicz, Katedra Automatyzacji Procesów, WIMiR, AGH Laboratorium 7 Układ pomiarowo-sterujący czasu rzeczywistego zbudowany w oparciu o komputer PC i środowisko MATLAB/Simulink Cele ćwiczenia
Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.
Ćwiczenie 1 Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Środowisko symulacyjne Symulacja układu napędowego z silnikiem DC wykonana zostanie w oparciu o środowisko symulacyjne
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Moduł wejść/wyjść VersaPoint
Analogowy wyjściowy napięciowo-prądowy o rozdzielczości 16 bitów 1 kanałowy Moduł obsługuje wyjście analogowe sygnały napięciowe lub prądowe. Moduł pracuje z rozdzielczością 16 bitów. Parametry techniczne
R 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1.
EROELEKR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 9/ Rozwiązania zadań dla grupy elektrycznej na zawody stopnia adanie nr (autor dr inŝ. Eugeniusz RoŜnowski) Stosując twierdzenie
WZMACNIACZ NAPIĘCIOWY RC
WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości
Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Tranzystory unipolarne MOS Ćwiczenie 3 2014 r. 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora unipolarnego
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe
WYNIKI BADAŃ SYMULACYJNYCH UKŁADU STEROWANIA NAPIĘCIEM ZASILANIA SPRĘŻYNY MAGNETYCZNEJ
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 43, s. 61-68, Gliwice 1 WYNIKI BADAŃ SYMULACYJNYCH UKŁADU STEROWANIA NAPIĘCIEM ZASILANIA SPRĘŻYNY MAGNETYCZNEJ PIOTR HABEL AGH Akademia Górniczo-Hutnicza, Wydział
Wyjścia analogowe w sterownikach, regulatorach
Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)
UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE
UKŁAD AUOMAYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU SAŁEGO KONFIGUROWANY GRAFICZNIE Konrad Jopek (IV rok) Opiekun naukowy referatu: dr inż. omasz Drabek Streszczenie: W pracy przedstawiono układ regulacji
OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2008 Seria: TRANSPORT z. 64 Nr kol. 1803 Rafał SROKA OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA Streszczenie. W
DIODY PÓŁPRZEWODNIKOWE
Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym
Źródła zasilania i parametry przebiegu zmiennego
POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz
PRZEŁĄCZANIE DIOD I TRANZYSTORÓW
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów
E107. Bezpromieniste sprzężenie obwodów RLC
E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie
Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych
ZP/UR/46/203 Zał. nr a do siwz Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych Przedmiot zamówienia obejmuje następujące elementy: L.p. Nazwa Ilość. Zestawienie komputera
Dioda półprzewodnikowa
COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie
Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp)
Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny
Komputerowe systemy pomiarowe. Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium
Komputerowe systemy pomiarowe Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium 1 - Cel zajęć - Orientacyjny plan wykładu - Zasady zaliczania przedmiotu - Literatura Klasyfikacja systemów pomiarowych
WZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
Ćwiczenie 4 Badanie wpływu napięcia na prąd. Wyznaczanie charakterystyk prądowo-napięciowych elementów pasywnych... 68
Spis treêci Wstęp................................................................. 9 1. Informacje ogólne.................................................... 9 2. Zasady postępowania w pracowni elektrycznej
Proste układy wykonawcze
Proste układy wykonawcze sterowanie przekaźnikami, tyrystorami i małymi silnikami elektrycznymi Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne
Ćw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R
Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"
Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.
Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika
Prostowniki. Prostownik jednopołówkowy
Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego
AC/DC. Jedno połówkowy, jednofazowy prostownik
AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej
OBSZARY BADAŃ NAUKOWYCH
OBSZARY BADAŃ NAUKOWYCH WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI OKRĘTOWEJ SYSTEMY MODUŁOWYCH PRZEKSZTAŁTNIKÓW DUŻEJ MOCY INTEGROWANYCH MAGNETYCZNIE Opracowanie i weryfikacja nowej koncepcji przekształtników
Technik elektronik 311[07] moje I Zadanie praktyczne
1 Technik elektronik 311[07] moje I Zadanie praktyczne Firma produkująca sprzęt medyczny, zleciła opracowanie i wykonanie układu automatycznej regulacji temperatury sterylizatora o określonych parametrach
Ćw. 7 Przetworniki A/C i C/A
Ćw. 7 Przetworniki A/C i C/A 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadami przetwarzania sygnałów analogowych na cyfrowe i cyfrowych na analogowe poprzez zbadanie przetworników A/C i
PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 209493 (13) B1 (21) Numer zgłoszenia: 382135 (51) Int.Cl. G01F 1/698 (2006.01) G01P 5/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Podstawy Elektroniki dla Informatyki. Generator relaksacyjny
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki 2015 r. Generator relaksacyjny Ćwiczenie 5 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów
Elektronika. Wzmacniacz tranzystorowy
LABORATORIUM Elektronika Wzmacniacz tranzystorowy Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych i charakterystyk graficznych tranzystorów bipolarnych.
Regulacja adaptacyjna w anemometrze stałotemperaturowym
3 Prace Instytutu Mechaniki Górotworu PAN Tom 8, nr 1-4, (2006), s. 3-7 Instytut Mechaniki Górotworu PAN Regulacja adaptacyjna w anemometrze stałotemperaturowym PAWEŁ LIGĘZA Instytut Mechaniki Górotworu
BADANIE WYŁĄCZNIKA RÓŻNICOWOPRĄDOWEGO
PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2010 z. V M. Drabik, A. Roman Akademia im. Jana Długosza w Częstochowie BADANIE WYŁĄCZNIKA RÓŻNICOWOPRĄDOWEGO
Ćwiczenie 4- tranzystor bipolarny npn, pnp
Ćwiczenie 4- tranzystor bipolarny npn, pnp Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny
Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny
Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny Sterowanie układem hydraulicznym z proporcjonalnym zaworem przelewowym Opracowanie: Z. Kudźma, P. Osiński, M. Stosiak 1 Proporcjonalne elementy
Projektowanie systemów pomiarowych
Projektowanie systemów pomiarowych 03 Konstrukcja mierników analogowych Zasada działania mierników cyfrowych Przetworniki pomiarowe wielkości elektrycznych 1 Analogowe przyrządy pomiarowe Podział ze względu
13 K A T E D R A F I ZYKI S T O S O W AN E J
3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony
SDD287 - wysokoprądowy, podwójny driver silnika DC
SDD287 - wysokoprądowy, podwójny driver silnika DC Własności Driver dwóch silników DC Zasilanie: 6 30V DC Prąd ciągły (dla jednego silnika): do 7A (bez radiatora) Prąd ciągły (dla jednego silnika): do
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
CYFROWY REGULATOR PRĄDU DIOD LED STEROWANY MIKROKONTROLEREM AVR *)
Wojciech WOJTKOWSKI Andrzej KARPIUK CYFROWY REGULATOR PRĄDU DIOD LED STEROWANY MIKROKONTROLEREM AVR *) STRESZCZENIE W artykule przedstawiono koncepcję cyfrowego regulatora prądu diody LED dużej mocy, przeznaczonego
ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) WSTĘP Układy z pętlą sprzężenia fazowego (ang. phase-locked loop, skrót PLL) tworzą dynamicznie rozwijającą się klasę układów, stosowanych głównie
Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny
AGH Katedra Elektroniki Podstawy Elektroniki dla Teleinformatyki 2014 r. Generator relaksacyjny Ćwiczenie 6 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów
ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA
Zeszyty Problemowe Maszyny Elektryczne Nr 4/2014 (104) 89 Zygfryd Głowacz, Henryk Krawiec AGH Akademia Górniczo-Hutnicza, Kraków ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU
BADANIA I MODELOWANIE DRGAŃ UKŁADU WYPOSAŻONEGO W STEROWANY TŁUMIK MAGNETOREOLOGICZNY
MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 361-368, Gliwice 2006 BADANIA I MODELOWANIE DRGAŃ UKŁADU WYPOSAŻONEGO W STEROWANY TŁUMIK MAGNETOREOLOGICZNY MICHAŁ MAKOWSKI LECH KNAP JANUSZ POKORSKI Instytut
PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12
PL 218560 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218560 (13) B1 (21) Numer zgłoszenia: 393408 (51) Int.Cl. H03F 3/18 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 5 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego - Zasada
WZORCOWANIE MOSTKÓW DO POMIARU BŁĘDÓW PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH ZA POMOCĄ SYSTEMU PRÓBKUJĄCEGO
PROBLEMS AD PROGRESS METROLOGY PPM 18 Conference Digest Grzegorz SADKOWSK Główny rząd Miar Samodzielne Laboratorium Elektryczności i Magnetyzmu WZORCOWAE MOSTKÓW DO POMAR BŁĘDÓW PRZEKŁADKÓW PRĄDOWYCH APĘCOWYCH
Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Badanie układu regulacji prędkości obrotowej silnika DC
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr. 7 Badanie układu regulacji prędkości obrotowej silnika DC Laboratorium z przedmiotu: PODSTAWY AUTOMATYKI 2 Kod:
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
Generatory sinusoidalne LC
Ćw. 5 Generatory sinusoidalne LC. Cel ćwiczenia Tematem ćwiczenia są podstawowe zagadnienia dotyczące generacji napięcia sinusoidalnego. Ćwiczenie składa się z dwóch części. Pierwsza z nich, mająca charakter
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH
Inżynieria Rolnicza 2(100)/2008 METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH Krzysztof Nalepa, Maciej Neugebauer, Piotr Sołowiej Katedra Elektrotechniki i Energetyki, Uniwersytet Warmińsko-Mazurski w Olsztynie
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Przyrządy i przetworniki pomiarowe
Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów
ROBOT STEROWANY TRZYOSIOWYM DŻOJSTIKIEM DOTYKOWYM Z CIECZĄ MAGNETOREOLOGICZNĄ
dr inż. Piotr Gawłowicz mgr Marcin Chciuk mgr inż. Paweł Bachman Uniwersytet Zielonogórski ROBOT STEROWANY TRZYOSIOWYM DŻOJSTIKIEM DOTYKOWYM Z CIECZĄ MAGNETOREOLOGICZNĄ W artykule przedstawiono konstrukcję
Systemy i architektura komputerów
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...
Automatyka przemysłowa na wybranych obiektach. mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław
Automatyka przemysłowa na wybranych obiektach mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław 2 Cele prezentacji Celem prezentacji jest przybliżenie automatyki przemysłowej
ANALIZA EKSPERYMENTALNA WŁAŚCIWOŚCI DYNAMICZNYCH UKŁADU REDUKCJI DRGAŃ LINY Z TŁUMIKIEM MAGNETOREOLOGICZNYM
MARCIN MAŚLANKA, BOGDAN SAPIŃSKI, JACEK SNAMINA ANALIZA EKSPERYMENTALNA WŁAŚCIWOŚCI DYNAMICZNYCH UKŁADU REDUKCJI DRGAŃ LINY Z TŁUMIKIEM MAGNETOREOLOGICZNYM EXPERIMENTAL ANALYSIS OF A VIBRATION REDUCTION
(54) (12) OPIS PATENTOWY (19) PL (11) (13) B1 PL B1 C23F 13/04 C23F 13/22 H02M 7/155
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 169318 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 296640 (22) Data zgłoszenia: 16.11.1992 (51) IntCl6: H02M 7/155 C23F
Sprzęt i architektura komputerów
Krzysztof Makles Sprzęt i architektura komputerów Laboratorium Temat: Elementy i układy półprzewodnikowe Katedra Architektury Komputerów i Telekomunikacji Zakład Systemów i Sieci Komputerowych SPIS TREŚCI
REJESTRACJA WARTOŚCI CHWILOWYCH NAPIĘĆ I PRĄDÓW W UKŁADACH ZASILANIA WYBRANYCH MIESZAREK ODLEWNICZYCH
WYDZIAŁ ODLEWNICTWA AGH ODDZIAŁ KRAKOWSKI STOP XXXIII KONFERENCJA NAUKOWA z okazji Ogólnopolskiego Dnia Odlewnika 2009 Kraków, 11 grudnia 2009 r. Eugeniusz ZIÓŁKOWSKI, Roman WRONA, Krzysztof SMYKSY, Marcin
WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
LABORATORIUM WIBROAUSTYI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia Zadanie 1. Jednym z najnowszych rozwiązań czujników
Double Conversion On-Line UPS Zasilacze pracujące w trybie on-line (true) Delta Conversion On-Line UPS
JAKOŚĆ ENERGII ELEKTRYCZNEJ Analiza pracy bezprzerwowych układów zasilania UPS z wykorzystaniem rejestratora TOPAS 1000 dr inż. Andrzej Firlit 11.06.2014 1 Rodzaje UPS-ów Standby UPS Zasilacze pracujące
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 Zastosowania wzmacniaczy operacyjnych w układach
Pomiar indukcyjności.
Pomiar indukcyjności.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami pomiaru indukcyjności, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich właściwego
PL B1. GRZENIK ROMUALD, Rybnik, PL MOŁOŃ ZYGMUNT, Gliwice, PL BUP 17/14. ROMUALD GRZENIK, Rybnik, PL ZYGMUNT MOŁOŃ, Gliwice, PL
PL 223654 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223654 (13) B1 (21) Numer zgłoszenia: 402767 (51) Int.Cl. G05F 1/10 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.
ĆWICZENIE 3 Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie małosygnałowych parametrów tranzystorów bipolarnych na podstawie ich charakterystyk
Moduł wejść/wyjść VersaPoint
Moduł obsługuje wyjściowe sygnały dyskretne 24VDC. Parametry techniczne modułu Wymiary (szerokość x wysokość x głębokość) Rodzaj połączeń 12.2mm x 120mm x 71.5mm (0.480in. x 4.724in. x 2.795in.) 2-, 3-
Laboratorium Elementów i Układów Automatyzacji
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Instytut Technologii Mechanicznej Laboratorium Elementów i Układów Automatyzacji Wzmacniacz pomiarowy Instrukcja do ćwiczenia OGÓLNE ZASADY BEZPIECZEŃSTWA
KOMPUTEROWA ANALIZA PRACY UKŁADÓW PROSTOWNICZYCH WYKORZYSTANYCH W PRZEMYŚLE ROLNO-SPOŻYWCZYM
Inżynieria Rolnicza 7(125)/2010 KOMPUTEROWA ANALIZA PRACY UKŁADÓW PROSTOWNICZYCH WYKORZYSTANYCH W PRZEMYŚLE ROLNO-SPOŻYWCZYM Marek Ścibisz, Piotr Ścibisz Katedra Podstaw Techniki, Uniwersytet Przyrodniczy
Próby ruchowe dźwigu osobowego
INSTYTUT KONSTRUKCJI MASZYN KIERUNEK: TRANSPORT PRZEDMIOT: SYSTEMY I URZĄDZENIA TRANSPORTU BLISKIEGO Laboratorium Próby ruchowe dźwigu osobowego Functional research of hydraulic elevators Cel i zakres
Podzespoły i układy scalone mocy część II
Podzespoły i układy scalone mocy część II dr inż. Łukasz Starzak Katedra Mikroelektroniki Technik Informatycznych ul. Wólczańska 221/223 bud. B18 pok. 51 http://neo.dmcs.p.lodz.pl/~starzak http://neo.dmcs.p.lodz.pl/uep
FREQUENCY ANALYSIS OF VIBRATION ISOLATION SYSTEM WITH MAGNETIC SPRING
JACEK SNAMINA, PIOTR HABEL ANALIZA CZĘSTOTLIWOŚCIOWA UKŁADU WIBROIZOLACJI ZE SPRĘŻYNĄ MAGNETYCZNĄ FREQUENCY ANALYSIS OF VIBRATION ISOLATION SYSTEM WITH MAGNETIC SPRING S t r e s z c z e n i e A b s t r