2. Zasady oceniania. 1. Uczeń oceniany jest za prace pisemne, odpowiedzi ustne, pracę na lekcji, prace domowe, prace dodatkowe, osiągnięcia w



Podobne dokumenty
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I LICEUM OGÓLNOKSZTAŁCĄCE IM. MIKOŁAJA KOPERNIKA W KROŚNIE

WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI OBOWIĄZUJĄCY W SZKOLE PODSTAWOWEJ SIÓSTR URSZULANEK UR W LUBLINIE (KLASY IVb i VI)

Przedmiotowy system oceniania klasa II gimnazjum rok szkolny 2015/2016

Przedmiotowe Zasady Oceniania z przedmiotu Informatyka

SYSTEM OCENIANIA PRZEDMIOTÓW PRZYRODNICZYCH (FIZYKA, CHEMIA, BIOLOGIA, GEOGRAFIA) W GIMNAZJUM NR 18 W GDYNI.

WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI. Przedmiotowy system oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania

PRZEDMIOTOWY SYSTEM OCENIANIA Z PODSTAW PSYCHOLOGII W KLASIE DRUGIEJ. Ocenianie wewnątrzszkolne na przedmiocie podstawy psychologii ma na celu:

Przedmiotowy system oceniania z przedmiotu wiedza o społeczeństwie Publicznego Gimnazjum Sióstr Urszulanek UR we Wrocławiu w roku szkolnym 2015/2016

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ W WÓLCE HYŻNEŃSKIEJ

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

Przedmiotowe Zasady Oceniania

Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym.

TRZSZKOLNY SYSTEM OCENIANIA SZKOŁA POLICEALNA DLA DOROSŁYCH NR

PRZEDMIOTOWY SYSTEM OCENIANIA z teoretycznych przedmiotów zawodowych

PRZEDMIOTOWY SYSTEM OCENIANIA Z WIEDZY O SPOŁECZEŃSTWIE obowiązujący w Publicznym Gimnazjum w Złotnikach

Ocenianie bieżące polega na obserwacji pracy ucznia i zapisywanie ich w formie ocen, którym przypisane są opisy:

I. Formy i sposoby sprawdzania i oceniania wiedzy i umiejętności uczniów na lekcjach biologii:

PRZEDMIOTOWY SYSTEM OCENIANIA ZAJĘĆ TECHNICZNYCH. W SZKOLE PODSTAWOWEJ DLA KLASY 4. rok szkolny 2012/13

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W PUBLICZNYM GIMNAZJUM IM. JANUSZA KORCZAKA W LASKOWEJ

PRZEDMIOTOWE ZASADY OCENIANIA UCZNIÓW Z ZAJĘĆ TECHNICZNYCH Podstawa prawna do opracowania Przedmiotowych Zasad Oceniania: Rozporządzenie Ministra

Ocenianie, klasyfikowanie i promowanie uczniów

Ocenianie przedmiotowe

PRZEDMIOTOWE ZASADY OCENIANIA Z HISTORII I SPOŁECZEŃSTWA W KLASACH IV - VI SZKOŁY PODSTAWOWEJ W PROMNIKU

PRZEDMIOTOWY SYSTEM OCENIANIA Z HISTORII DLA KLAS IV VI

ZKP I G NR 20 SZKOŁA PODSTAWOWA NR 1 IM M. ZARUSKIEGO W GDAŃSKU ZAJĘCIA TECHNICZNE PRZEDMIOTOWY SYSTEM OCENIANIA ROK SZKOLNY 2015/2016

ZASADY OCENIANIA PRZEDMIOTOWEGO Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA GEOGRAFIA 2015/2016

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z FIZYKI DLA KL.I -III W PUBLICZNYM GIMNAZJUM SIÓSTR SALEZJANEK IM. ŚW. JANA BOSKO W OSTROWIE WIELKOPOLSKIM

Przedmiotowe zasady oceniania

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z JĘZYKA ANGIELSKIEGO W GIMNAZJUM ZESPÓŁ JĘZYKA ANGIELSKIEGO

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z biologii.

Przedmiotowy System Oceniania z edukacji dla bezpieczeństwa w Publicznym Gimnazjum nr 9 w Opolu

Przedmiotowy System Oceniania Język polski

WYMAGANIA EDUKACYJNE I PRZEDMIOTOWY SYSTEM OCENIANIA

Przedmiotowy system oceniania z religii Szkoła Podstawowa im. Janusza Korczaka w Przechlewie

Zasady Wewnątrzszkolnego Oceniania

PRZEDMIOTOWY SYSTEM OCENIANIA PLASTYKA KLASY IV VI SZKOŁA PODSTAWOWA Z ODDZIAŁAMI INTEGRACYJNYMI NR 10 IM. POLONII W SŁUPSKU

Przedmiotowy system oceniania z plastyki. Gimnazjum nr 1 w Pacanowie

JĘZYK ANGIELSKI. Przedmiotowy system oceniania w klasach 1-3

Przedmiotowy system oceniania z podstaw przedsiębiorczości

ZESPÓŁ SZKÓŁ W BESKU: SZKOŁA PODSTAWOWA W BESKU PRZDMIOTOWY SYSTEM OCENIANIA Z HISTORII I SPOŁECZEŃSTWA W KLASIE IV - VI. Mgr Joanna Bętkowska

PRZEDMIOTOWY SYSTEM OCENIANIA ETYKA: LICEUM OGÓLNOKSZTAŁCĄCE

PRZEDMIOTOWE ZASADY OCENIANIA - ChSP Salomon JĘZYK ANGIELSKI, KLASY IV VI ZGODNY Z WEWNĄTRZSZKOLNYM SYSTEMEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA

OCENIANIE OSIĄGNIĘĆ EDUKACYJNYCH SŁUCHACZY ZESPOŁU SZKÓŁ PONADGIMNAZJALNYCH IM. K. JAGIELLOŃCZYKA W ŁASINIE.

Zmiana Nr 1. Żywiec, dnia r. Wprowadza się następujące zmiany : 5 zmienia brzmienie :

Przedmiotowy system oceniania z języka angielskiego

Przedmiotowe Zasady Oceniania z języka angielskiego w roku szkolnym 2015/2016

Przedmiotowy system oceniania z geografii w Gimnazjum w Dębowie Na podstawie programu nauczania Planeta Nowa wydawnictwa Nowa Era

REGULAMIN OCENIANIA. Regulamin oceniania, klasyfikowania i promowania jest zgodny i opiera się na następujących aktach prawnych:

PRZEDMIOTOWE ZASADY OCENIANIA JĘZYKÓW NOWOŻYTNYCH W GIMNAZJUM

Przedmiotowy System Oceniania z Katechezy w Szkole Podstawowej w Trzebielu dla klas IV-VI zgodny z programem nauczania Odkrywamy tajemnice Bożego

Przedmiotowe Zasady Oceniania - religia. Kl. 5

Przedmiotowy system oceniania z języka niemieckiego i angielskiego

P R Z E D M I O T O W E Z A S A D Y O C E N I A N I A Z M A T E M A T Y K I

PRZEDMIOTOWE ZASADY OCENIANIA Z GEOGRAFII W KLASACH I III.

Wymagania edukacyjne i kryteria oceniania z religii dla klas 1-4 ZS nr 32 im. K. K. Baczyńskiego w Warszawie

Kryteria ocen z języka angielskiego

Przedmiotowe Zasady Oceniania z języka angielskiego w klasach 1-3 Szkoły Podstawowej w Wielowsi. Opracowała: Mirosława Piaskowska

PRZEDMIOTOWE OCENIANIE Z JĘZYKÓW OBCYCH

PRZEDMIOTOWY SYSTEM OCENIANIA Z WYCHOWANIA FIZYCZNEGO W LICEUM OGÓLNOKSZTAŁCĄCYM IM. W. POLA W CZERSKU

PRZEDMIOTOWE ZASADY OCENIANIA PLASTYKA

Przedmiotowy System Oceniania z języka angielskiego w klasach 1-3 w Szkole Podstawowej Zespołu Szkół w Laszkach

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU FIZYKA I ASTRONOMIA

PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII W GIMNAZJUM w ZESPOLE SZKÓ W SZTUTOWIE

PRZEDMIOTOWY SYSTEM OCENIANIA - JĘZYK ANGIELSKI CELE NAUCZANIA:

Przedmiotowy system oceniania z retoryki (elementy retoryki i edukacji teatralnej)

Regulamin realizacji projektu edukacyjnego w Gimnazjum w Niechobrzu.

Ocena dostateczna. Ocena dobra

Postanowienia ogólne. 1) regularne informowanie słuchacza o poziomie jego osiągnięć edukacyjnych, a także

Szkoła Podstawowa nr 4 im. M. Kopernika w Tarnobrzegu

PRZEDMIOTOWY SYSTEM OCENIANIA Z HISTORII I SPOŁECZEŃSTWA

PRZEDMIOTOWY SYSTEM OCENIANIA NA LEKCJACH MATEMATYKI W GIMNAZJUM i LICEUM

Przedmiotowe Zasady Oceniania z biologii od roku szkolnego 2015/2016

Aneks nr 3 do Statutu Zespołu Szkół Nr 3 wprowadzony uchwałą Rady Pedagogicznej z dnia 8 grudnia 2010r. Szkoła dzienna

Procedura uzyskiwania zwolnień z zajęć wychowania fizycznego w Zespole Szkół Sportowych w Tychach

WEWNĄTRZSZKOLNA PROCEDURA. zwalniania ucznia z zajęć wychowania fizycznego

PRZEDMIOTOWY SYSTEM OCENIANIA Z WYCHOWANIA FIZYCZNEGO

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA UCZNIÓW O SPECJALNYCH POTRZEBACH EDUKACYJNYCH

Przedmiotowy System Oceniania - zajęcia techniczne kl. IV, V, VI

Przedmiotowe Ocenianie z Wychowania Fizycznego

Przedmiotowy system oceniania na lekcjach historii ZSP w Starogardzie Gd.

Plan naprawczy. Sokółka 2006/2007. Opracowanie: Urszula Bronowicz Henryka Sarosiek ElŜbieta Plichta Katarzyna Dykiel Tomasz Mucuś

PRZEDMIOTOWY SYSTEM OCENIANIA. z Matematyki. Krysztof Jerzy

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI SZKOŁA PODSTAWOWA IM. JANUSZA KORCZAKA W PRZECHLEWIE I. Formy oceniania ucznia

PRZEDMIOTOWY SYSTEM OCENIANIA Praktyczne zajęcia edukacyjne, Praktyka zawodowa ZS nr 8 im. St. Staszica w Szczecinie

INFORMATYKA studia licencjackie*

PROCEDURA UZYSKIWANIA ZWOLNIENIA Z ZAJĘĆ w Gimnazjum nr 34 we Wrocławiu

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO DLA KLAS I - III

Przedmiotowy System Oceniania z zajęć komputerowych Szkoła Podstawowa nr 13 w Ostrowie Wielkopolskim w klasach IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z ZAJĘĆ KOMPUTEROWYCH

PRZEDMIOTOWY SYSTEM OCENIANIA Z HISTORII I SPOŁECZEŃSTWA W KLASACH IV-VI OBOWIĄZUJĄCY W SZKOLE PODSTAWOWEJ NR 3 OD r.

JĘZYK HISZPAŃSKI - PRZEDMIOTOWY SYSTEM OCENIANIA

ALEKSANDRA SŁABIAK. Przedmiotowy System Oceniania j. angielski kl. IV VI

Transkrypt:

Przedmiotowy system oceniania matematyka rok szkolny 2015/ 2016 Wykładnią do ustalania oceny z matematyki jest podstawa programowa z matematyki oraz przepisy Wewnątrzszkolnego Systemu Oceniania 1. Kryteria ocen. Ocenę celujący otrzymuje uczeń, który: a) posiadł wiedzę i umiejętności wyczerpujące wymagania podstawy programowej z matematyki realizowane w danej klasie i wcześniej na poziomie powyżej 95%, samodzielnie i twórczo rozwija własne uzdolnienia, oraz b) biegle posługuje się zdobytymi wiadomościami w rozwiązywaniu problemów teoretycznych lub praktycznych z programu nauczania matematyki danej klasy, proponuje rozwiązania nietypowe, rozwiązuje także zadania wykraczające poza poziom tej klasy, lub c) pogłębia swoja wiedzę, osiąga sukcesy w konkursach i olimpiadach przedmiotowych, kwalifikując się do finałów na szczeblu wojewódzkim lub posiada porównywalne osiągnięcia, d) sprawnie posługuje się językiem matematycznym. Ocenę bardzo dobry otrzymuje uczeń, który: a) opanował pełny zakres wiedzy i umiejętności określony podstawą programową z matematyki w danej klasie i poprzednich na poziomie 85%; 95% oraz b) sprawnie posługuje się językiem matematycznym oraz zdobytymi wiadomościami, rozwiązuje samodzielnie problemy teoretyczne, ujęte podstawą programową, potrafi zastosować posiadaną wiedzę do rozwiązywania zadań i problemów w nowych sytuacjach, Ocenę dobry otrzymuje uczeń, który: c) opanował wymagania zawarte w podstawie programowej przewidzianej do realizacji w danej klasie i poprzednich na poziomie i potrafi w sposób praktyczny posługiwać się wiadomościami, porządkować treści, wyciągać prawidłowe wnioski i rozwiązuje samodzielnie typowe zadania teoretyczne i praktyczne, c) poprawnie posługuje się językiem matematycznym. Ocenę dostateczny otrzymuje uczeń, który: a) opanował wiadomości i umiejętności określone programem nauczania matematyki w danej klasie i poprzednich zawartych w podstawie programowej na poziomie, oraz b) rozwiązuje (wykonuje) typowe zadania (teoretyczne i praktyczne) o średnim stopniu trudności. c) popełnia niewielkie błędy posługując się terminologią matematyczną. Ocenę dopuszczający otrzymuje uczeń, który: a) opanował wymagania zawarte w podstawie programowej z matematyki realizowane w danej klasie i poprzednich na poziomie oraz b) rozwiązuje /wykonuje typowe zadania teoretyczne i praktyczne o niewielkim stopniu trudności, c) nie popełnia rażących błędów w posługiwaniu się terminologią matematyczną. Ocenę niedostateczny otrzymuje uczeń, który: a) opanował wymagania zawarte w podstawie programowej z matematyki realizowane w danej klasie i poprzednich na poziomie nie przekraczającym 30%, a braki w wiadomościach i umiejętnościach uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu, oraz b) nawet z pomocą nauczyciela nie jest w stanie rozwiązać (wykonać) zadań o niewielkim stopniu trudności. 75%; 85% 30%; 50% 50%; 75% Trymestralna ocena niedostateczna z matematyki powinna zostać poprawiona poprzez wykonanie przez ucznia w domu pracy powtórzeniowej z zakresu trymestru oraz poprzez pisemny lub ustny sprawdzian wiedzy i umiejętności ucznia przeprowadzony przez nauczyciela.

2. Zasady oceniania. 1. Uczeń oceniany jest za prace pisemne, odpowiedzi ustne, pracę na lekcji, prace domowe, prace dodatkowe, osiągnięcia w konkursach matematycznych i z Ligi Naukowej. 2. Ocenę trymestralną wystawia nauczyciel z ocen cząstkowych uzyskanych przez ucznia w trymestrze, wśród których jedna jest oceną z egzaminu próbnego z matematyki (jeżeli w trymestrze taki został przeprowadzony) zawierającego wymagania określone w podstawie programowej zrealizowane od początku edukacji matematycznej do dnia egzaminu / waga 4/; co najmniej jedna jest za pracę pisemną (praca klasowa) na zakończenie działu /waga 3/ oraz co najmniej jedna jest za kartkówkę (10 15 minut /waga 1/ lub 15-20minut /waga 2/) obejmującą materiał nie większy niż trzy ostatnie tematy lekcji lub pracę samodzielną na lekcji waga 2/. Pozostałym kategoriom ocen przyporządkowana jest waga 1 Liczba ocen ucznia przy właściwej frekwencji na zajęciach w trymestrze powinna wynieść co najmniej 5. Poza ocenami w dzienniku odnotowana jest również liczba zgłoszeń nieprzygotowań oraz np jeśli uczeń nie pisał niezapowiedzianej pracy pisemnej z tego powodu zamiast oceny. 3. Ocena trymestralna wystawiana jest na podstawie średniej ważonej (obliczonej przez nauczyciela) z ocen cząstkowych według wag podanych w poprzednim podpunkcie w oparciu o poniższą skalę: Średnia ważona do 1,49 niedostateczny, 1,5 2,49 dopuszczający, 2,5 3,49 dostateczny, 3,5 4,49 dobry, 4,49 5,49 bardzo dobry, powyżej 5,5 celujący. 4. Poprawa oceny trymestralnej/rocznej odbywa się na warunkach określonych w punkcie 4. 5. Roczna ocena klasyfikacyjna z matematyki jest wystawiana na podstawie osiągnięć ucznia z trzech trymestrów z uwzględnieniem dokonanego przez niego postępu. 6. Tytuł laureata konkursu matematycznego stanowi podstawę wystawienia rocznej oceny celującej z matematyki. 7. Na ocenę celującą z każdego z etapów Ligi Naukowej uczniowie: - klasy pierwszej powinni rozwiązać przynajmniej trzy z sześciu zadań i obronić etap Ligi, - klasy drugiej powinni rozwiązać przynajmniej cztery z sześciu zadań i obronić etap Ligi, - klasy trzeciej powinni rozwiązać przynajmniej pięć z sześciu zadań i obronić etap Ligi, Za oddanie w terminie zadań Ligi Naukowej, uczeń otrzymuje odpowiednio do liczby prawidłowo rozwiązanych dla poziomu zadań ocenę z wagą jeden. Obronienie etapu Ligi Naukowej skutkuje podniesieniem wagi oceny na cztery 7.1 Obrona etapu Ligi polega na napisaniu sprawdzianu obejmującego zadania takie same lub bardzo podobne, o takim samym stopniu trudności jak oddane przez ucznia. Aby bronić ocenę z etapu Ligi uczniowie muszą rozwiązać w klasie I - jedno, w klasie II - dwa a w klasie III trzy, indywidualnie dobrane zadania z pośród oddanych. 7.2 Udział w zawodach Ligi Naukowej z matematyki stanowi podstawę wystawienia rocznej oceny o jeden stopień wyższej od oceny wynikającej z punktu 5 odpowiednio: a) z dopuszczający na dostateczny, jeśli uczeń otrzyma z obrony ligi Naukowej trzy oceny co najmniej dobre b) z dostateczny na dobry, jeśli uczeń otrzyma z obrony ligi Naukowej trzy oceny co najmniej bardzo dobre c) z dobry na bardzo dobry, jeśli uczeń otrzyma z obrony ligi Naukowej trzy oceny celujące d) z bardzo dobrej na celującą, jeżeli uczeń otrzyma z obrony ligi Naukowej trzy oceny celujące 7.3 Czytelnie zapisane rozwiązania zadań Ligi Naukowej z matematyki należy oddać nauczycielowi, na trwale połączonych kartkach papieru w kratkę formatu A4, w terminie określonym w harmonogramie. Prace zapisane niestarannie, na luźnych kartkach z odręcznymi rysunkami, z rozwiązaniami wymagającymi doprecyzowania, nie będą przyjmowane lub będą zwracane z adnotacją praca nieczytelna. 7.3 W przypadku stwierdzenia prac niesamodzielnych (przepisywanie) i obronie etapu Ligi bez prawidłowych rozwiązań uczeń nie otrzymuje oceny. 8. Ocenę na zakończenie nauki matematyki w gimnazjum wystawia nauczyciel z trzech ocen trymestralnych uzyskanych przez ucznia w klasie trzeciej. 9. Każda praca klasowa jest zapowiedziana i poprzedzona lekcją powtórzeniową. 10. Pracę pisemną klasową należy zaliczyć. Uczeń nieobecny musi ją napisać w ciągu 2 tygodni od dnia pojawienia się w szkole w terminie z nim uzgodnionym. Niedotrzymanie terminu może spowoduje otrzymanie oceny niedostatecznej z danej pracy.

11. Pracę pisemną (sprawdzian) na zakończenie działu można/należy poprawić w terminie 2 tygodni od oddania ocenionych prac, w terminie uzgodnionym z nauczycielem. Ocena z poprawy jest wpisywana do dziennika obok pierwszej oceny. 12. Uczeń może zgłosić nieprzygotowanie do lekcji 2 razy w trymestrze bez podania przyczyn. Brak pracy domowej po wykorzystaniu dwóch nieprzygotowań powoduje wstawienie oceny niedostatecznej. Nie dotyczy to lekcji na które zapowiedziano pracę pisemną lub kartkówkę. Powstałe braki uczeń jest zobowiązany uzupełnić na następną lekcję. 13. Każdy uczeń, który był nieobecny na lekcji poświęconej omówieniu wyników prac ma prawo wglądu do swoich prac na lekcji po ustaniu przyczyn absencji. 14. Jeżeli uczeń jest nieobecny na lekcji, na której zbierana jest praca domowa, ma obowiązek jej oddania na pierwszej lekcji po powrocie do szkoły. 15. W ocenie prac dodatkowych oprócz poprawności merytorycznej oceniana jest też forma pracy, poprawność językowa i sposób jej prezentowania. 16. Nauczyciel uwzględnia wszelkie informacje, zwolnienia od rodziców tylko gdy są wpisane w dzienniczku ucznia. 17. W przypadku szczególnych okoliczności powodujących usprawiedliwioną nieobecność ucznia wszelkie postanowienia dotyczące zasad oceniania będą ustalane z uczniem lub jego rodzicami. 18. Dostosowanie wymagań do indywidualnych potrzeb ucznia na podstawie opinii poradni p-p będzie uwzględniane przy wystawianiu oceny trymestralnej, przez obniżenie przedziałów średniej ważonej do wystawienia oceny pod warunkiem systematycznego udziału ucznia w zajęciach reedukacyjnych organizowanych przez szkołę. 3. Reguły otrzymywania i poprawiania ocen. 1. W celu uzyskania przez ucznia możliwie zobiektywizowanej oceny osiągnięcia edukacyjne uczniów będą sprawdzane w każdym realizowanym dziale edukacji matematycznej: lp. 1. 2. 3. 4. w następujących kategoriach/zadaniach: wyrywkowa kontrola ilościowa pracy domowej; sprawdzanie zeszytu ćwiczeń po zakończeniu działu kontrola jakościowa pracy domowej; prace klasowe na zakończenie działu egzaminy próbne kartkówki kontrolujące bieżącą pracę na lekcjach, w następujący sposób: Sprawdzanie w zeszycie przedmiotowym, indywidualna rozmowa z uczniem, kartkówka z pracy domowej. Wybrane ćwiczenia o zróżnicowanym stopniu trudności w liczbie zależnej od objętości działu. Każda praca klasowa składa się z zadań w liczbie i o stopniu trudności ustalonym przez nauczyciela. Egzamin trymestralny składa się z 10 zadań zamkniętych 10 zadań otwartych krótkiej odpowiedzi oraz i około 3 zadań otwartych rozszerzonej odpowiedzi z których suma punktów do uzyskania wynosi 30. W tabeli podane jest przeliczenie % rozwiązań na ocenę: % ocena % ocena % ocena 100% cel 6 80% db 4 45% dp+ 2+ 96% bdb + 5+ 75% db- 4 30% dp 2 93% bdb 5 70% dst+ 3+ 25% dp- 2-90% bdb- 5-55% dst 3 20% nast.+ 2 85% db+ 4+ 50% dst 3 < 20% ndst 1 Proste zadania sprawdzające opanowanie bieżącego materiału w liczbie i o stopniu trudności ustalonym przez nauczyciela.

5. dodatkowe zadania: Odpowiedzi ustne SLN, Inne (projekty, referaty) aktywny udział w lekcji. obejmujące rozwiązywanie zadań z aktualnie przerabianego działu. wg regulaminu SLN wg ustalonych każdorazowo przez nauczyciela zasad. praca ucznia na lekcji (lub jej brak) stanowi podstawę do wystawienia oceny adekwatnej do możliwości ucznia i stopnia jego zaangażowania. 2. - Oceny z prac pisemnych (prace klasowe, kartkówki) wystawiane są na podstawie stopnia procentowego wykonania zadań z danej pracy, w oparciu o powyższą tabelę pkt. 3. - Oceny z zeszytu ćwiczeń, zeszytu przedmiotowego, prac domowych wystawiane są w zależności od stopnia wykonania rozwiązań. Kryteria są każdorazowo określane przez nauczyciela w zależności od stopnia trudności materiału i liczby zadań. - Odpowiedzi ustne oceniane są na podstawie stopnia trudności pytania/zadania, płynności rozwiązania zaprezentowanego przez ucznia i ilości ingerencji nauczyciela w tok rozwiązania. 4. Warunki i tryb uzyskania wyższych niż przewidywane ocen trymestralnej, rocznej i końcowej. 1. Uczeń ma prawo ubiegać się o uzyskanie wyższej niż przewidywana oceny trymestralnej/ rocznej pod następującymi warunkami: brak nieusprawiedliwionych nieobecności na lekcjach matematyki; brak ocen niedostatecznych wynikających z nieobecności na pracach pisemnych; kompletny zeszyt przedmiotowy uzupełnione wszystkie braki wynikające z nieobecności; kompletny zeszyt ćwiczeń rozwiązane wszystkie zadane ćwiczenia. uzyskał z próbnego egzaminu gimnazjalnego/próbnych egzaminów gimnazjalnych ocenę/oceny co najwyżej o jeden niższą/niższe od tej, o którą chce się ubiegać. 2. Uczeń klasy III może uzyskać wyższą niż proponowana ocenę końcową z matematyki na podstawie egzaminu składającego się z zadań o poziomie trudności adekwatnym do oceny, o którą się ubiega i obejmujących materiał zrealizowany w II i III etapie edukacyjnym. Zdobycie powyżej 80% punktów z takiego egzaminu skutkuje podwyższeniem oceny końcowej z matematyki. 5. Sposoby informowania rodziców o postępach ucznia i pojawiających się trudnościach. 1. Bieżące wpisywanie ocen z odpowiedzi i oceny pracy na lekcji do zeszytu przedmiotowego ucznia. 2. Bieżące wpisywanie ocen ucznia do dziennika elektronicznego. 3. Kontakty indywidualne z rodzicami podczas zebrań/dni otwartych. 4. Zgłoszenie do wychowawcy pojawiających się trudności. 5. Zgłoszenie do pedagoga szkolnego pojawiających się trudności. 6. Wezwanie w trybie pilnym rodzica na rozmowę indywidualną. 6. Sposób udostępniania prac pisemnych uczniów. 1. Uczniowie otrzymują prace do wglądu na lekcji na której są omawiane jej wyniki 2. Po omówieniu prac uczniowie mają prawo zabrać prace do domu w celu przedstawienia wyników rodzicom. 3. Uczeń ma prawo zgłosić zapytania lub zastrzeżenia do oceny pracy. 2. Rodzice uczniów mają możliwość zapoznania się ze sprawdzonymi i ocenionymi pracami dostarczonymi przez ucznia do domu. 3. Nauczyciel uczący określa czy udostępniona praca pozostaje u ucznia / rodziców, czy też musi zostać zwrócona nauczycielowi z podpisem rodziców. W przypadku zwrotu prac są one przechowywane przez nauczyciela do końca roku szkolnego.

7. Sposoby informowania o wynikach szkolnych egzaminów próbnych uczniów i rodziców. Zespół nauczycieli matematyki opracowuje statystycznie wyniki egzaminów próbnych. Uczniowie otrzymują do wglądu prace na lekcji poświęconej omówieniu wyników i zadań. Rodzice otrzymują sprawdzone i ocenione prace z egzaminów trymestralnych / próbnych. Bogusław Szczodrak Marcin Koprysa