CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.



Podobne dokumenty
Własności i charakterystyki czwórników

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku

5 Filtry drugiego rzędu

WSTĘP DO ELEKTRONIKI

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Filtry. Przemysław Barański. 7 października 2012

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

Temat: Wzmacniacze operacyjne wprowadzenie

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

A-4. Filtry aktywne RC

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Charakterystyka amplitudowa i fazowa filtru aktywnego

Elektrotechnika teoretyczna

WSTĘP DO ELEKTRONIKI

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry

Wzmacniacze operacyjne

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych

Filtry aktywne filtr górnoprzepustowy

Filtry aktywne filtr środkowoprzepustowy

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

Ćwiczenie - 7. Filtry

Ćwiczenie F3. Filtry aktywne

Filtracja. Krzysztof Patan

H f = U WY f U WE f =A f e j f. 1. Cel ćwiczenia. 2. Wprowadzenie. H f

Wzmacniacz jako generator. Warunki generacji

Wzmacniacze. sprzężenie zwrotne

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTRONIKI Ćwiczenie nr 4. Czwórniki bierne - charakterystyki częstotliwościowe

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

Laboratorium Elektroniki

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0.

Temat: Wzmacniacze selektywne

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ

Przetwarzanie sygnałów

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD

Elektronika (konspekt)

Lekcja 14. Obliczanie rozpływu prądów w obwodzie

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych

Autorzy: Jan Szajdziński Michał Bujacz Karol Kropidłowski. Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy:

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Obwody elektryczne prądu stałego

Zastosowania liniowe wzmacniaczy operacyjnych

Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

SYNTEZA obwodów. Zbigniew Leonowicz

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym

KOMPUTEROWE SYSTEMY POMIAROWE

Tranzystor bipolarny

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

Obwody sprzężone magnetycznie.

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową

Ćwiczenie F1. Filtry Pasywne

INDEKS ALFABETYCZNY CEI:2002

Opracowała Ewa Szota. Wymagania edukacyjne. Pole elektryczne

WZMACNIACZ ODWRACAJĄCY.

LABORATORIUM ELEKTRONIKI

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści

Wzmacniacze, wzmacniacze operacyjne

13. ANALIZA CZĘSTOTLIWOŚCIOWA UKŁADÓW SLS

Sposoby modelowania układów dynamicznych. Pytania

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

Miernictwo I INF Wykład 13 dr Adam Polak

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Wzmacniacze selektywne Filtry aktywne cz.1

A U. -U Z Napięcie zasilania ujemne względem masy (zwykle -15V) Symbol wzmacniacza operacyjnego.

Projekt z Układów Elektronicznych 1

FILTR RC SYGNAŁÓW PRĄDOWYCH W UKŁADACH KONDYCJONOWANIA SYSTEMÓW POMIAROWYCH

Przetwarzanie sygnałów

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

UJEMNE SPRZĘŻENIE ZWROTNE wprowadzenie do ćwiczenia laboratoryjnego

Wykład 2 Projektowanie cyfrowych układów elektronicznych

WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH. (komputerowe metody symulacji)

Liniowe układy scalone. Wykład 2 Wzmacniacze różnicowe i sumujące

ĆWICZENIE 14 BADANIE SCALONYCH WZMACNIACZY OPERACYJNYCH

Wiadomości podstawowe

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

Transkrypt:

CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową, którymi energia jest do obwodu doprowadzana lub odprowadzana. W analizie szeregu zagadnień nie jest potrzebna dokładna znajomość rozpływu prądów i rozkładu napięć w obwodzie, wystarczy natomiast informacja o tym, co dzieje się na dwóch wybranych parach zacisków. Dla wyznaczenia własności takiego czwórnika należy określić związki między czterema wielkościami : prądem wejściowym, prądem wyjściowym, napięciem wejściowym oraz napięciem wyjściowym. KLASYFKACJA CZWÓRNKÓW. i mogą być klasyfikowane według różnorodnych cech. a. i liniowe i nieliniowe. Jeśli chociaż jeden z elementów czwórnika jest nieliniowy, to nie jest spełniona zasada superpozycji i czwórnik jest nieliniowy. b. i aktywne i pasywne. nazywamy aktywnym, jeśli wewnątrz znajdują się nieskompensowane źródła energii. c. i odwracalne. nazywamy odwracalnym, jeśli spełnia on zasadę wzajemności, np. czwórnik liniowy pasywny. d. i równoważne. Przez równoważność dwóch czwórników mających różną strukturę wewnętrzną rozumie się możliwość ich wzajemnej zamiany w obwodzie bez zmiany prądów i napięć w pozostałej części obwodu. e. i symetryczne.

nazywamy symetrycznym, gdy wzajemna zamiana miejscami jego zacisków wejściowych i wyjściowych nie zmienia prądów i napięć w pozostałej części obwodu, do którego włączony jest czwórnik. f. i stacjonarne i parametryczne. nazywamy parametrycznym, jeśli jeden z jego elementów zmienia się w czasie, np. C(t) C 0 + C cos(ω t). RÓWNANA CZWÓRNKÓW. Równania czwórników określają związki między prądami i napięciami na wej. i wyj. czwórnika. Wyróżniamy sześć postaci równań czwórnika:. mpedancyjną. Admitancyjną 3. Łańcuchowa prostą 4. Łańcuchową odwrotną 5. Hybrydową (mieszaną) 6. Hybrydową odwrotną. Postać impedancyjna; zmienne i są zależne od, z z + z + z ; z, z z, z parametry impedancyjne Postać admitancyjna; zmienne i są zależne od, y Y + y + y ; y, y y, y parametry admitancyjne. Postać łańcuchowa prosta; zmienne i są zależne od, A C + B + D ; A, B, C, D parametry łańcuchowe 3. Postać mieszana zwana hybrydową; zmienne i są zależne od, h h + h + h ; h, h h, h parametry hybrydowe

SCHEMATY ZASTEPCZE CZWÓRNKÓW. i, jako schematy zastępcze wielu urządzeń, można prawie zawsze przedstawić za pomocą trzech impedancji tworzących strukturę taką jak widać na rysunku niżej. STANY PRACY CZWÓRNKÓW. Do zacisków podłączone jest źródło napięciowe. Zaciski wyjściowe mogą być rozwarte i taki stan pracy nazywamy stanem jałowym, mogą być zwarte, ten stan nazywamy stanem zwarcia i wreszcie w przypadku dołączenia do zacisków wyjściowych impedancji Z 0, czwórnik znajduje się w stanie obciążenia. W stanie jałowym i zwarcia równania czwórnika ulegają uproszczeniu i można wtedy łatwo pomierzyć parametry czwórnika.

POŁĄCZENA CZWÓRNKÓW. Rozróżniamy trzy podstawowe układy połączeń czwórników: połączenia łańcuchowe 3 3 Zaciski wyjściowe pierwszego czwórnika są połączone z zaciskami wejściowymi drugiego czwórnika. połączenia równoległe Zaciski wejściowe pierwszego czwórnika są połączone z zaciskami wejściowymi drugiego czwórnika jak również zaciski wyjściowe pierwszego czwórnika są połączone z zaciskami wyjściowymi drugiego czwórnika. połączenie szeregowe Zaciski wejściowy pierwszego czwórnika jest połączony z zaciskiem wejściowym drugiego czwórnika jak również zacisk wyjściowy pierwszego czwórnika jest połączony z zaciskiem wyjściowym drugiego czwórnika.

FLTRY Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza bez tłumienia lub z małym tłumieniem napięcia i prądy o określonym paśmie częstotliwości, a tłumi napięcia i prądy leżące poza tym pasmem. Pasmo częstotliwości, które filtr przepuszcza bez tłumienia nazywamy pasmem przepustowym, a pasmo częstotliwości, które filtr tłumi nazywamy pasmem tłumieniowym. Częstotliwość, która oddziela pasmo przepustowe od pasma tłumieniowego nazywamy częstotliwością graniczną filtra. PODZAŁ FLTRÓW. Ze względu na przeznaczenie filtry można podzielić na cztery podstawowe rodzaje: dolnoprzepustowe górnoprzepustowe środkowoprzepustowe środkowozaporowe Ze względu na konstrukcję i rodzaj działania filtry można podzielić na: pasywne nie zawierają elementów dostarczających energii do obwodu drgającego, zawierają tylko elementy RLC o jednostopniowe o wielostopniowe aktywne zawierają zarówno elementy RLC, jak również i elementy dostarczające energię do filtrowanego układu np. wzmacniacze, układy nieliniowe. Filtry można również podzielić na typy obwodów w jakich są używane: analogowe cyfrowe

PARAMETRY FLTRÓW. Dziedzina częstotliwości: Charakterystyka amplitudowa- zależność wzmocnienia od częstotliwości; na rysunku przedstawiona jest charakterystyka amplitudowa filtru dolnoprzepustowego. Pasmo przepustowe - zakres częstotliwości sygnałów przechodzących przez filtr bez znacznego tłumienia. Najczęściej przyjmuje się, że krańcem pasma przepustowego jest częstotliwość, dla której wzmocnienie filtru maleje o 3dB. Są jednak filtry (o charakterystyce "równomiernie falistej") o nieco inaczej zdefiniowanej częstotliwości krańcowej pasma przepustowego. Charakterystyka amplitudowa filtru może nie być płaska, czyli może być nierównomierna (falista) w obrębie pasma przepustowego. Definiuje się więc nierównomierność charakterystyki w paśmie przepustowym, jak pokazano na rysunku. Częstotliwość graniczna - częstotliwość krańcowa pasma przepustowego. Sygnały o częstotliwościach z pasma zaporowego są znacząco tłumione przez filtr. Początek pasma zaporowego definiuje się przez przyjęcie pewnej minimalnej wartości tłumienia sygnałów. Może to być na przykład 40dB. Charakterystyka fazowa - zależność przesunięcia fazy sygnału wejściowego filtru względem sygnału doprowadzonego do jego wejścia od częstotliwości tych sygnałów. Przedmiotem zainteresowania jest zespolona charakterystyka częstotliwościowa filtru, oznaczana zwykle symbolem H(s), sjw, gdzie H, s i w są liczbami zespolonymi. Ważność charakterystyki fazowej filtru wynika z faktu, że jeśli składowe sygnału wyjściowego, których częstotliwości całkowicie mieszczą się w paśmie przepustowym filtru, są różnie opóźnione po przejściu przez filtr, to sygnał wyjściowy filtru będzie zniekształcony. Stałość czasu opóźnienia sygnałów o rożnych częstotliwościach odpowiada liniowemu narastaniu przesunięcia fazy w funkcji częstotliwości. Stąd termin filtr o liniowym przesunięciu fazy odnosi się do filtru o idealnej charakterystyce fazowej. Na rysunkach przedstawione są wykresy przesunięcia fazy oraz czasu opóźnienia w funkcji częstotliwości dla filtru dolnoprzepustowego, który jak widać nie jest filtrem o liniowym przesunięciu fazy. Charakterystyki fazowe najlepiej jest rysować dla liniowo wyskalowanej osi częstotliwości.

Dziedzina czasu: Podobnie jak wszystkie układy zmiennoprądowe, również filtry można charakteryzować parametrami w dziedzinie czasu: czasem narastania, amplitudą pierwszej oscylacji (przerzutem), czasem ustalania się odpowiedzi na wejściowy skok napięcia. Znajomość tych parametrów jest szczególnie ważna wtedy, gdy sygnałami wejściowymi filtru są skoki lub impulsy. Na poniższym rysunku przedstawiona jest typowa odpowiedź filtru na wejściowy sygnał skoku. Czas narastania - czas upływający między chwilą pojawienia się skoku na wejściu a chwilą, w której odpowiedź układu osiągnie 90% wartości stanu ustalonego. Czas ustalania - czas upływający do chwili, gdy odpowiedź znajduje się w uprzednio zdefiniowanym obszarze wokół wartości ustalonej i więcej poza granice tego obszaru nie wyjdzie. Oscylacje, amplituda pierwszej oscylacji - są to pojęcia nie wymagające specjalnych wyjaśnień. Występowanie oscylacji jest niepożądaną cechą odpowiedzi filtru.

Źródła: nternet: http://www.mival.friko.pl/pomiar_impedancji_czwornika.html http://www.elektrotechnika.po.opole.pl/cwiczenia/czworniki/czworniki.html http://pl.wikipedia.org/wiki/czw%c3%b3rnik_%8elektryka%9 http://pl.wikipedia.org/wiki/filtr_%8elektronika%9 http://klimkiewicz.zs37.waw.pl/cwiczenie5.doc http://www.kmg.ps.pl/to/podstawy_teorii_czwornikow/czworniki.html http://www.kmg.ps.pl/to/filtry_ak/ http://www.stareradia.pl/theory/filters.html http://www.elportal.pl/ea/filtry.html Literatura: Stanisław Bolkowski Elektrotechnika WSiP wydanie ósme; Warszawa 998 Autor: Tomasz Szopa