Podstawy Konstrukcji Maszyn Część Wykład nr. 1 1. Podstawowe prawo zazębienia I1 przełożenie kinematyczne 1 i 1 = = ω ω r r w w1 1
. Rozkład prędkości w zazębieniu 3 4
3. Zarys cykloidalny i ewolwentowy 5 4. Zarys ewolwentowy 6 3
5. Zalety i wady zarysu ewolwentowego + nieczułe na zmianę odległości pomiędzy osiami kół współpracujących, + koła o różnej ilości zębów a takim samym module można obrabiać tymi samymi narzędziami, + kierunek siły międzyzębnej jest stały(ważne ze względu na wytrzymałość zmęczeniową) + zamienność kół o różnej ilości zębów a jednakowych cechach geometrycznych, -- wysoka sprawność ale niższa niż w zarysie cykloidalnym, -- duże naciski na powierzchni zębów (stykają się pow. wypukłe), -- znaczne poślizgi na powierzchni zębów (niższa sprawność). 7 6. Zalety i wady zarysu cykloidalnego + geometria zazębienia zapewnia duże pole pow. styku z czego wynikają niskie naciski powierzchniowe, małe poślizgi międzyzębne a w związku z tym małe zużycie i wysoką sprawność, -- niedopuszczalna zmiana odległości między osiami, -- skomplikowana obróbka kształtowymi narzędziami które nie gwarantują wysokiej dokładności, -- specyfika zarysu sprawia, że siła międzyzębna zmienia swoją wartość w czasie co wywołuje drgania, -- kształt zarysu zależy od średnicy koła. 8 4
7. Podsumowanie kwestii wyboru zarysu Zarys ewolwentowy powszechnie stosowany ze względu na swoje zalety Zarys cykloidalny - stosowany jedynie w przypadku niskich prędkości obwodowych i mocy (np. zegary) 9 8. Współpraca kół o zarysie ewolwentowym P,P punkty przyporu N1N - linia przyporu E1E odcinek przyporu Wskaźnik zazębienia (liczba zębów w przyporze) ε = E 1 E p b pb podziałka zasadnicza 10 5
9. Obróbka kół zębatych o zarysie ewolwentowym metoda kształtowa Koła mogą być frezowane, dłutowane, przeciągane lub szlifowane. Jest to metoda pracochłonna i niedokładna, często stosowana jako obróbka zgrubna. 11 10. Metody obwiedniowe Metoda Maaga (obróbka zębatką) Metoda Fellowsa (tzw. dłutak modułowy) 1 6
13 Frezowanie obwiedniowe frezem ślimakowym. 14 7
Zazębienie narzędzia z obrabianym kołem przy użyciu 15 frezowania zębatką (Maaga) i dłutakiem modułowym (Fellowsa) 11. Zalety metody obwiedniowej + Jest to metoda wydajna i dokładna, + narzędzia są uniwersalne dla kół o jednakowym module, + narzędzia obróbcze mają stosunkowo proste kształty co wpływa na ich cenę. 16 8
13. Graniczna liczba zębów Metoda Maaga Metoda Fellowsa Wykonanie na kole zębatym zbyt małej liczby zębów może spowodować niekorzystne podcięcie podstawy zębów co może mieć negatywny wpływ na wytrzymałość. 17 13. Cd. graniczna liczba zębów (zg) (metoda Maaga) Graniczna liczba zębów z = Praktyczna graniczna liczba zębów * g h a sin ( α) 5 z g '= z 6 g sin(α) = r b r 18 9
13. Cd. graniczna liczba zębów (metoda Fellowsa) z z gf = z 0 * 4ha + sin ( α) * ( zo + ha ) z0 Z0 ilość zębów narzędzia 19 13. Cd. Graniczna liczba zębów Dla następujących parametrów zg i z g wynoszą o = 0 } o z = 17 α = 15 } z g g = 30 h * ' = 1 z = 14 h * ' a = 1 zg = 5 α a g Jednak można zauważyć trend zmierzający do zwiększania liczby zębów. Ma to szereg zalet takich jak: - Zmniejsza się poślizg międzyzębny mniejsze straty tarcia, - zmniejsza się zdolność do zatarcia zębów, - wzrasta cichobieżność i płynność pracy, - maleją koszty obróbki kół. Niestety powoduje to zmniejszenie wytrzymałości zębów 0 10
14. Przesunięcie zarysu Zabieg przesunięcia zarysu polega na przybliżeniu lub oddaleniu narzędzia od osi obrabianego koła. Ewentualne przesunięcie zarysu może mieć szereg zalet: Umożliwia nacięcie zębów o ilości mniejszej od granicznej bez podcinania stóp. Poprawia warunki pracy zęba przez zwiększenie jego wytrzymałości i zmniejszenie poślizgu. Umożliwia uzyskanie dowolnej w pewnym zakresie odległości pomiędzy osiami kół współpracujących. 1 15. Cd. przesunięcie zarysu (przy z<zg). Dla uniknięcia podcięcia stopy przy liczbie zębów mniejszej od granicznej, linia podziałowa zębatki musi być odsunięta o wartość xm od linii tocznej. 11
16.Cd. przesunięcie zarysu Bezwymiarowe przesunięcie zarysu X rzeczywiste przesunięcie w [mm], m moduł [mm] Znak współczynnika x przyjmuje się następująco: x>0 - przy odsunięciu narzędzia od koła, x<0 przy dosunięciu narzędzia do koła x = X m Warunek niepodcinania zębów w kole walcowym o zębach prostych obrabianych metodą Maaga: z > z g = sin * ( h x) a ( α) 3 17. Cd. przesunięcie zarysu Kształt zęba przy różnych wartościach X (metoda Maaga) 4 1