Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina
Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak czastki zderzajace się. W szczególności: m 1 = m 1 i m 2 = m 2 W zderzeniach czastek wysokiej energii jest to jednak wyjatek Zderzenia nieelastyczne W oddziaływaniach czastek elementarnych, zwłaszcza przy wysokiej energii, obserwujemy bardzo wiele reakcji, w których powstaja nowe czastki: Produkcja pojedyńczej czastki (tzw. rezonansu ): a + b c Produkcja dwóch czastek: a + b c + d jedna z nich może być czastk a stanu poczatkowego Produkcja wielu czastek: a + b X gdzie X oznacza dowolny stan wieloczastkowy A.F.Żarnecki Wykład XIX 1
Zderzenia relatywistyczne Masa niezmiennicza Niezmiennik transformacji Lorenza, (nie zależy od wyboru układu odniesienia) M 2 c 4 = s = E 2 p 2 c 2 Dla dowolnego izolowanego układu fizycznego masa niezmiennicza jest zachowana (nie zmienia się w czasie). Wynika to z zasady zachowania energii i pędu. podstawowe pojęcie w analizie zderzeń relatywistycznych, zwłaszcza w procesach nieelastycznych (produkcja nowych czastek) Masa niezmiennicza jest tożsama z energia układu w układzie środka masy (P = 0). Dla zderzajacych się czastek mówimy o energii dostępnej w układzie środka masy. A.F.Żarnecki Wykład XIX 2
Zderzenia e + e Zderzenia relatywistyczne Przekrój czynny na produkcję hadronów w funkcji dostępnej energii: 10 7 ω φ J/ψ ψ(2s) σ(e + e _ qq hadrons) [pb] 10 6 10 5 10 4 10 3 10 2 ρ Z 1 10 10 2 s (GeV) A.F.Żarnecki Wykład XIX 3
Zderzenia relatywistyczne Zderzenia e + e W całym zakresie zbadanych energii mamy niezerowy przekrój czynny na produkcję kwarków. Proces ten opisujeny jako anihilację e + e w wirtualny foton, który następnie rozpada sie na parę q q e e + γ q _ q Produkcja rezonansów Przy pewnych wartościach s obserwujemy wzrost produkcji kwarków o kilka rzędów wielkości. Jest to efekt rezonansowej produkcji czastek e e + J/ Ψ Aby w zderzeniu dwóch czastek powstała jedna, (np: e + e J/Ψ q q ) masa niezmiennicza zderzajacych się czastek musi być równa masie czastki która produkujemy ( s = m J/Ψ ) q _ q A.F.Żarnecki Wykład XIX 4
Zderzenia relatywistyczne Produkcja rezonansów Produkcja bozonu Z w eksperymencie L3 (LEP) e + e Z q q Maksimum przekroju czynnego obserwujemy dla s = mz ale ma ono skończona szerokość: (rozkład Breita-Wignera) σ(s) M 2 Z Γ2 (s M 2 Z )2 + M 2 Z Γ2 Szerokość rezonansu wiaże się z czasem życia: Γ τ = h (zasada nieoznaczoności) A.F.Żarnecki Wykład XIX 5
Zderzenia relatywistyczne Produkcja wielu czastek LEP 08/07/2001 Preliminary Aby w zderzeniu dwóch czastek powstały dwie lub więcej nowych czastek, np: e + e W + W masa niezmiennicza zderzajacych się czastek musi być większa lub równa sumie mas produkowanych czastek: s i m i σ WW [pb] 20 15 10 5 RacoonWW / YFSWW 1.14 no ZWW vertex (Gentle 2.1) only ν e exchange (Gentle 2.1) Mierzony przekrój czynny e + e W + W s 2 mw 160 GeV 0 160 170 180 190 200 210 E cm [GeV] A.F.Żarnecki Wykład XIX 6
Zderzenia relatywistyczne Energia dostępna Mase niezmiennicza zderzajacych się czastek s określamy też jako energię dostępna w układzie środka masy. Energia dostępna jest to część energii kinetycznej, która może zostać zamieniona na masę (energię spoczynkowa) nowych czastek. s mówi nam ile energii możemy zużyć na wyprodukowanie nowych czastek. Przykład Aby wyprodukować antyproton w reakcji p p p p p p musimy mieć s 4 mp liczymy wszystkie czastki w stanie końcowym, także czastki pierwotne A.F.Żarnecki Wykład XIX 7
Zderzenia relatywistyczne Określona wartość energii dostępnej możemy uzyskać na rózne sposoby: Zderzenia z tarcza Czastka pocisk o energii E uderza w nieruchoma tarczę: Wiazki przeciwbieżne Zderzenia wiazek o energiach E 1 i E 2 : s = 2 E 1 m 2 + m 2 1 + m2 2 w granicy E 1 m 1 m 2 s = 2 E 1 E 2 + 2 p 1 p 2 + m 2 1 + m2 2 w granicy E 1 E 2 m 1 m 2 Przykład s 2 E 1 m 2 Wiazka protonów o energii 50 GeV ( 50 m p ) s 4 E 1 E 2 Dużo wyższe wartości!!! na tarczy wodorowej (protony): s 2Em p 10GeV 10 m p dwie wiazki przeciwbieżne: s 4E E = 2 E = 100GeV 100 m p A.F.Żarnecki Wykład XIX 8
Energia progowa Zderzenia z tarcza Minimalna energia wiazki E min przy której możliwa jest dana reakcja. Minimalna masa niezmiennicza: W zderzeniach z nieruchoma tarcza: s min = minimalna energia całkowita pocisku: i 2 m i s min = 2 E min m 2 + m 2 1 + m2 2 E min = s min (m 2 1 + m2 2 ) = ( 2 m 2 minimalna energia kinetyczna pocisku: i m i ) 2 (m 2 1 + m2 2 ) 2 m 2 E k,min = E min E = ( i m i ) 2 (m 1 + m 2 ) 2 2 m 2 A.F.Żarnecki Wykład XIX 9
Energia progowa Zderzenia z tarcza Zwiazek minimalnej energii kinetycznej pocisku z przyrostem masy: 2 m 2 E k,min = i 2 m i i 2 m i energia kinetyczna pocisku jest zużywana na zwiększenie masy układu... Przykład 1 Produkcja anty-protonów w reakcji pp ppp p i m i = 4m p M = 2m p E min = (4 m p) 2 (m 2 p + m2 p ) 2 m p = 7 m p E k,min = E min m p = 6 m p 5.63 GeV A.F.Żarnecki Wykład XIX 10
Wiazki przeciwbieżne Energia progowa Dla wiazek przeciwbieżnych: dla uproszczenia przyjmujemy E 1 = E 2, m 1 = m 2 s min 4 E 1 E 2 = 4 E 2 min E min = 1 smin = 1 2 2 E k,min = 1 2 i m i ( i m i ) 2 = 1 2 m i i m i i energia rośnie liniowo z masa produkowanego stanu (na tarczy: kwadratowo) dużo niższe energie potrzebne do wytworzenia tego samego stanu Przykład 1 (c.d.) Produkcja anty-protonów w reakcji p p p p p p i m i = 4 m p E k,min = 1 2 [4m p 2m p ] = m p 0.94 GeV 5.63 GeV A.F.Żarnecki Wykład XIX 11
Energia progowa Wiazki przeciwbieżne Przykład 2 Produkcja par bozonów W + W w zderzeniach elektron-pozyton: e + e W + W Gdybyśmy chcieli użyć pojedyńczej wiazki pozytonów i tarczy i m i = 2 m W E min = (2 m W ) 2 (m 2 e + m 2 e ) 2 m2 W 25 300 000 GeV 2 m e m e m W = 80.4 GeV m e = 0.000511 GeV Tak ogromnych energii nie jesteśmy w stanie wytworzyć! Dotychczas wiazki pozytonów E 100 GeV, projektowane E 1000 5000 GeV... Dla przeciwbieżnych wiazek elektron-pozyton: s 4 E 2 E min = 1 smin = 1 2 2 i 2 m i = 1 2 i m i = m W 80 GeV Takie energie to już nie problem... A.F.Żarnecki Wykład XIX 12
Rozpady czastek Rozawżmy rozpad czastki o masie M na n czastek o masach m i (i = 1... n). Masa niezmiennicza przed rozpadem: M i = M. Masa niezmiennicza po rozpadzie: M 2 f = i = i E 2 i 2 E i + 2 i i p i 2 j>i E i E j i p 2 i 2 i j>i p i p j Dla dowolnej pary czasteh i, j mamy: Ei 2 = p2 i + m2 i E i E j = (p 2 i + m2 i )(p2 j + m2 j ) = (p i p j + m i m j ) 2 + (p i m j p j m i ) 2 Ostatecznie: M 2 f i p i p j + m i m j E i E j p i p j E i E j p i p j m i m j m 2 i + 2 i j>i m i m j = i 2 m i = s min A.F.Żarnecki Wykład XIX 13
Rozpady czastek Warunek konieczny, aby mógł mieć miejsce rozpad: M i m i = s min Dla rozpadu dwuciałowego, w układzie czastki: p 1 = p 2 Jaka będzie wartość pędu produktów rozpadu: p = p 1 = p 2? M 2 = (E 1 + E 2 ) 2 (p 1 p 2 ) 2 = m 2 1 + m2 2 + 2 (p 2 + m 2 1 )(p2 + m 2 2 ) + 2p2 (M 2 m 2 1 m2 2 2p2 ) 2 = 4(p 2 + m 2 1 )(p2 + m 2 2 ) 4M 2 p 2 = (M 2 m 2 1 m2 2 )2 4m 2 1 m2 2 p = (M 2 (m 1 + m 2 ) 2 )(M 2 (m 1 m 2 ) 2 ) 2 M A.F.Żarnecki Wykład XIX 14
Rozpady czastek Przypadek równych mas: m 1 = m 2 = m (M 2 4m 2 )M 2 p = = 2 M (M ) 2 m 2 E = M 2 2 W granicy, gdy jeden z produktów rozpadu jest bardzo lekki: m 1 m 2 M (M 2 m 2 2 p )2 = M 2 M 2 m2 2 E 1 2M m 2 2 2M - energia tracona na odrzut drugiego ciała Energie czastek po rozpadzie nie sa równe! Mierzac pęd (lub energię) jednego z produktów rozpadu, możemy wnioskować o masach pozostałych czastek. A.F.Żarnecki Wykład XIX 15
Rozpad β Neutrina W rozpadach β, np. 60 28 Co 60 29 Ni + e +? obserwujemy ciagłe widmo energii e : Wykres Kurie Dla masy neutrina m ν =0 oczekujemy liniowej zależności skalowanej liczby przypadków od energii elektronu E nie może to być rozpad dwuciałowy! Hipoteza Pauliego: istnienie niezwykle słabo oddziałujacej czastki - neutrina. (n) (p) + e + ν e Ewentualne odstępstwa pomiar m ν =0 A.F.Żarnecki Wykład XIX 16
Masa neutrina Neutrina Najnowsze wyniki pomiarów widma elektronów z rozpadu trytu (Mainz, 2001): T 3 He + e + ν e ograniczenie na masę ν e m ν < 2.2 ev (95% CL) Dla pozostałych neutrin: 4.3 10 6 m e m νµ < 170 kev 0.0018 m µ m ντ < 15.5 MeV 0.01 m τ z bezpośredniego pomiaru Do niedawna zakładalismy, że neutrina sa bezmasowe... A.F.Żarnecki Wykład XIX 17
Neutrina Na masy neutrin istnieja też liczne ograniczenia astrofizyczne i kosomologiczne Supernowa SN 1987A W roku 1987 zaobserwowano krótki błysk neutrin z wybuchu odległej o ok. 170 000 lat świetlnych supernowej ( t <10 s). Gdyby neutrina miały masę m ν 0, poruszałyby się z różna prędkościa, zależnie od energii. Jednoczesna rejestracja neutrin o różnych energiach (10 < E ν < 40 MeV ) m ν < 20 ev A.F.Żarnecki Wykład XIX 18
Supernowa 1987A Pierwsza supernowa zarejestrowana na Ziemi od 1604 roku! Wybuch gwiazdy (błękitnego olbrzyma) SK-69202 w Wielkim Obłoku Magellana (niewielka galaktyka, około 196 000 lat świetlnych od Słońca) SK-69202 23 lutego 1987 SN1987A dziś za tysiac lat? Mgławica Kraba pozostałość po supernowej z 1054 r, A.F.Żarnecki Wykład XIX 19
Masy neutrin Neutrina atmosferyczne Pierwotne promieniowanie kosmiczne jest izotropowe. W wyniku jego oddziaływania z atmosfera produkuja się liczne neutrina. Ponieważ neutrina praktycznie nie oddziałuja z Ziemia, strumienie neutrin do dołu i do góry powinny być sobie równe. Wyniki pomiarów wskazuja, że przy przechodzeniu przez Ziemię ubywa neutrin mionowych: zamieniaja się w neutrina taonowe (oscylacje neutrin) neutrina musza mieć masę!... A.F.Żarnecki Wykład XIX 20