PRZYKŁAD TWORZENIA KART KONTROLNYCH W STATISTICA



Podobne dokumenty
PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU

ANALIZA SYSTEMU POMIAROWEGO (MSA)

EFEKTYWNE STATYSTYCZNE STEROWANIE PROCESAMI (SPC) Z WYKORZYSTANIEM PAKIETU STATISTICA. Wprowadzenie

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW

WALIDACJA METOD POMIAROWYCH

CO STATYSTYKA I WYKRESY MOGĄ POWIEDZIEĆ O PROCESIE?

Zarządzanie jakością ćwiczenia

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Statystyczne sterowanie procesem

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej

Wprowadzenie. Typowe i nietypowe sytuacje

POLITECHNIKA OPOLSKA

STATISTICA ENTERPRISE JAKO PLATFORMA ANALITYCZNA DLA CAŁEJ ORGANIZACJI

STEROWANIE JAKOŚCIĄ PROCESU O WIELU WŁAŚCIWOŚCIACH: WIELOWYMIAROWE KARTY KONTROLNE I INNE NARZĘDZIA

DATA MINING W STEROWANIU PROCESEM (QC DATA MINING)

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica

Wykład 4: Statystyki opisowe (część 1)

Wykład 5: Statystyki opisowe (część 2)

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne.

Wstęp 7 Rozdział 1. OpenOffice.ux.pl Writer środowisko pracy 9

1. Szybko o MSA dla narzędzi pomiarowych.

KTÓRY PROCES JEST NAJLEPSZY PRZYKŁAD PRAKTYCZNEGO WYKORZYSTANIA KART KONTROLNYCH I ANALIZY ZDOLNOŚCI DO OCENY PROCESÓW

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ

ZARZĄDZANIE DANYMI W STATISTICA

Konsorcjum FEN Sp. z o.o. ul. Dąbrowskiego 273A, Poznań Mateusz Zapotoczny support [at] fen.pl

POLITECHNIKA OPOLSKA

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

POLITECHNIKA OPOLSKA

Analiza regresji - weryfikacja założeń

Uruchom polecenie z menu Wstaw Wykres lub ikonę Kreator wykresów na Standardowym pasku narzędzi.

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Tworzenie, zapisywanie oraz otwieranie pliku... 23

SZYBKA ŚCIEŻKA OD BAZ DANYCH I LIMS DO RAPORTÓW, CZYLI STATISTICA ENTERPRISE W DZIAŁANIU

Wprowadzenie do analizy korelacji i regresji

POLITECHNIKA OPOLSKA

Rys.1. Technika zestawiania części za pomocą polecenia WSTAWIAJĄCE (insert)

Generator recept. Program pomagający tworzyć wypełnione wydruki recept lekarskich. Instrukcja obsługi użytkownika

Sterowanie jakością badań i analiza statystyczna w laboratorium

Teresa Topolnicka, Instytut Chemicznej Przeróbki Węgla. Michał Iwaniec, StatSoft Polska Sp. z o.o.

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Automatyzacja i robotyzacja procesów technologicznych

Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.

TWORZENIE I STOSOWANIE MODELU DATA MINING ZA POMOCĄ PRZEPISÓW STATISTICA DATA MINER NA PRZYKŁADZIE WYKRYWANIA NADUŻYĆ

1. Otwórz pozycję Piston.iam

Naszym zadaniem jest rozpatrzenie związków między wierszami macierzy reprezentującej poziomy ekspresji poszczególnych genów.

Wykład 10 ( ). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

ANALIZA TRENDÓW DANYCH MIKROBIOLOGICZNYCH Z ZASTOSOWANIEM KART KONTROLNYCH

3.7. Wykresy czyli popatrzmy na statystyki

EXCEL. Diagramy i wykresy w arkuszu lekcja numer 6. Instrukcja. dla Gimnazjum 36 - Ryszard Rogacz Strona 20

Zarządzanie procesami

Rozkład Gaussa i test χ2

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny

Dlaczego stosujemy edytory tekstu?

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

INSTALACJA DOSTĘPU DO INTERNETU

Konfigurowanie PPP dla Windows 7

STATYSTYKA W LABORATORIUM BADAWCZYM I POMIAROWYM. dr inż. Roman Tabisz, Politechnika Rzeszowska; Laboratorium Badań i Kalibracji LABBiKAL

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Metrologia: powtarzalność i odtwarzalność pomiarów. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

plansoft.org Zmiany w Plansoft.org Panel wyszukiwania PLANOWANIE ZAJĘĆ, REZERWOWANIE SAL I ZASOBÓW

Analiza Statystyczna

KALIBRACJA LINIOWA W ZAGADNIENIU WALIDACJI METOD POMIAROWYCH

Edytor tekstu OpenOffice Writer Podstawy

7.4 Automatyczne stawianie prognoz

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

7. Podstawy zarządzania szablonami

Weryfikacja hipotez statystycznych

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

INFORMATYKA W SELEKCJI

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Systemy zapewnienia jakości w laboratorium badawczym i pomiarowym

Wprowadzenie do analizy dyskryminacyjnej

Metodyka wykonania kartogramu z podziałem na klasy wg punktów charakterystycznych wraz z opracowaniem kartogramicznej legendy.

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego

WSPIERANIE ZADAŃ ANALITYCZNYCH Z ZASTOSOWANIEM STATISTICA NA PRZYKŁADZIE BIOTON S.A.

1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych.

4. Średnia i autoregresja zmiennej prognozowanej

Edytor tekstu OpenOffice Writer Podstawy

PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA

PRZEWODNIK PO PRZEDMIOCIE

Wymiarowanie, kreskowanie, teksty

MODELOWANIE PROCESÓW PRODUKCYJNYCH

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 4

Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1

Obserwacje w Agrinavia MOBILE OGÓLNE INFORMACJE

ROLA JAKOŚCI POMIARÓW W SYSTEMIE SPC PRAKTYCZNE PODEJŚCIE DO MSA

Tworzenie prezentacji w MS PowerPoint

Jedną z ciekawych funkcjonalności NOLa jest możliwość dokonywania analizy technicznej na wykresach, które mogą być otwierane z poziomu okna notowań:

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide.

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

ZASTOSOWANIE KART SHEWHARTA DO KONTROLI JAKOŚCI PRODUKCJI ELEMENTÓW UZBROJENIA

Obliczanie wartości średniej i odchylenia standardowego średniej w programie Origin

POLITECHNIKA WARSZAWSKA

Ustawienia ogólne. Ustawienia okólne są dostępne w panelu głównym programu System Sensor, po kliknięciu ikony

Wykresy statystyczne w PyroSim, jako narzędzie do prezentacji i weryfikacji symulacji scenariuszy pożarowych

Kolory elementów. Kolory elementów

Transkrypt:

PRZYKŁAD TWORZENIA KART KONTROLNYCH W STATISTICA Tomasz Demski, StatSoft Polska Sp. z o.o. Karty kontrolne są jednym z najczęściej wykorzystywanych narzędzi analizy danych. Zaproponowane w latach dwudziestych XX wieku, okazały się niezwykle użyteczne w wielu dziedzinach i są fundamentem statystycznego sterowania jakością (ang. Statistical Process Control SPC). Podstawowe zastosowanie kart kontrolnych to wykrywanie nielosowych zmian w procesach. Innymi słowy chcemy odróżnić własną zmienność procesu (wynikająca z przyczyn losowych) od zmienności powodowanej przez przyczyny specjalne, takie które możemy usunąć, aby proces był bardziej stabilny i przewidywalny. Opracowano wiele rodzajów kart kontrolnych dostosowanych do różnych zadań; opis różnych typów kart i szczegóły obliczeniowe przedstawiono w podręczniku [1] oraz artykułach [2] i [3]. Przedstawimy kilka przykładów tworzenia kart kontrolnych, ilustrujących niektóre możliwości STATISTICA w tej dziedzinie. Naszym celem jest zbadanie, czy pewien proces jest stabilny. Z procesu pobierane były czteroelementowe próbki jego właściwości. Proces jest na etapie projektowania, tzn. położenie linii centralnej i linii kontrolnych nie jest ustalone. Na początek zastosujemy najpopularniejszą kratę X-średnie i R. Przyjmiemy (zgodnie z sugestią norm, por. [4]), że linie kontrolne leżą w odległości ± 3σ od linii centralnej odpowiadającej średniej wartości badanej właściwości. Copyright StatSoft Polska, 2005 www.statsoft.pl/spc.html www.statsoft.pl/czytelnia.html 67

Po uruchomieniu programu STATISTICA i otwarciu pliku danych z menu Statystyka wybieramy polecenie Statystyki przemysłowe Karty kontrolne. Na ekranie otworzy się okno Karty kontrolne sterowania jakością, w którym zaznaczamy Karty X-średnie i R przy ocenie liczbowej (tak jak na rysunku powyżej) i naciskamy OK (lub klawisz Enter). Następnie w oknie Definiowanie zmiennych dla kart kontrolnych określamy zmienne oraz liczność próbek. Program STATISTICA umożliwia umieszczanie na kartach kontrolnych dodatkowych informacji: przyczyn, działań, komentarzy oraz pomijania wskazanych próbek w obliczeniach i na kartach kontrolnych. Informacje te zapisywane są razem z pomiarami w pliku danych, w zmiennych wskazanych przez użytkownika. Ułatwia to prowadzenie dalszych analiz, np. badanie częstości poszczególnych przyczyn rozregulowań i zapewnia dokumentację analiz (zwróćmy uwagę, że dodatkowe informacje w przypadku systemu SEWSS, są zapisywane w centralnej bazie danych). Zmienne do zapisu dodatkowych informacji wskazujemy po kliknięciu przycisku Ustawienia przyczyn, działań, komentarzy i uwzględniania próbek na karcie Etykiety, przyczyny, działania okna Definiowanie zmiennych dla kart kontrolnych. Na ekranie pojawi się (widoczne poniżej) okno Ustawienia przyczyn, działań i eksploracji danych, w którym wskazujemy zmienne dla dodatkowych informacji. 68 www.statsoft.pl/czytelnia.html www.statsoft.pl/spc.html Copyright StatSoft Polska 2005

Po wskazaniu zmiennych klikamy OK w oknie Definiowanie zmiennych dla kart kontrolnych. Utworzona zostanie karta kontrolna z domyślnymi ustawieniami odpowiadającymi zaleceniom polskiej normy (por. [4]) właśnie taka, jakiej potrzebujemy. 8,0 7,9 7,8 7,7 7,6 7,5 7,4 7,3 7,2 7,1 7,0 6,9 Histogram średnich 6,8 0 1 2 3 4 5 6 7 8 9 10 11 Karta X-średnie i R; zmienna: Pomiar X-śr.: 7,4430 (7,4430); Sigma:,26243 (,26243); n: 4, 7,8367 7,4430 7,0494 1,4 Histogram rozstępów Rozstęp:,54028 (,54028); Sigma:,23089 (,23089); n: 4, 1,2 1,2330 1,0 0,8 0,6 0,4,54028 0,2 0,0 0,0000-0,2 0 5 10 15 20 25 30 Copyright StatSoft Polska, 2005 www.statsoft.pl/spc.html www.statsoft.pl/czytelnia.html 69

Ustawienia domyślne kart kontrolnych są zgodne z sugestiami norm, jednak równie ważną zaletą jest możliwość dobrania odpowiednich ustawień nieomal każdego parametru kart kontrolnych. Karty kontrolne konfigurujemy w oknie wyników X-śr./R towarzyszącym utworzonej karcie kontrolnej. Na karcie mamy jeden sygnał o rozregulowaniu: na torze średniej dla czwartej próbki. Przyjrzymy się bliżej temu sygnałowi. W tym celu tworzymy niezależną kartę X-średnie i włączamy tryb eksploracji karty, klikając przycisk Eksploruj w oknie wyników kart kontrolnych. Po wskazaniu punktu sygnalizującego rozregulowanie uzyskujemy podstawowe statystyki dla próbki: liczbę pomiarów w próbce, średnią i rozstęp (zob. rysunek poniżej). Rozkład poszczególnych pomiarów tworzących próbkę może ułatwić nam zdiagnozowanie problemu. W panelu Eksploracja klikamy Pokaż pojedyncze obserwacje, wynikowa karta widoczna jest poniżej. Poszczególne pomiary są sobie bliskie, wydaje się jakby cała próbka została przesunięta w dół. Może być wiele przyczyn takiego zjawiska, w tym konkretnym wypadku okazało się, że zawiniło złe ustawienie miernika, które zostało zresztą skorygowane przed następnymi pomiarami. 70 www.statsoft.pl/czytelnia.html www.statsoft.pl/spc.html Copyright StatSoft Polska 2005

Karta X-średnie; zmienna: Pomiar X-śr.: 7,4430 (7,4430); Sigma:,26243 (,26243); n: 4, 8,0 7,9 7,8367 7,8 7,7 7,6 7,5 7,4430 7,4 7,3 7,2 7,1 7,0494 7,0 6,9 6,8 6,7 Informację o przyczynie i podjętym działaniu umieszczamy na karcie, klikając odpowiednie przyciski panelu Eksploracja. W przypadku znalezienia przyczyny rozregulowania zaleca się, aby próbka nie była brana pod uwagę przy wyliczaniu położenia linii kontrolnych (zob. np. [5]). 8,0 Karta X-średnie; zmienna: Pomiar X-śr.: 7,4511 (7,4511); Sigma:,26567 (,26567); n: 4, 7,9 7,8 7,8496 7,7 7,6 7,5 7,4511 7,4 Miernik 7,3 7,2 7,1 7,0526 7,0 6,9 6,8 Kalibracja Po sprawdzeniu podstawowego testu, tj. próbek poza liniami kontrolnymi, powinniśmy sprawdzić, czy nie pojawiają się nielosowe sekwencje punktów na karcie kontrolnej. Zastosujemy do tego testy konfiguracji (zwane też testami wzorca przebiegu, ang. runs tests, zob. [1]). Wyniki zastosowania testów wzorca przebiegu widzimy w tabeli poniżej. Copyright StatSoft Polska, 2005 www.statsoft.pl/spc.html www.statsoft.pl/czytelnia.html 71

Testy konfiguracji możemy pokazać na karcie kontrolnej (zob. rysunek poniżej). Podejrzane sekwencje punktów są na wykresie wyróżniane ciągłą linią i innym kształtem znacznika punktów. 8,0 Karta X-średnie; zmienna: Pomiar X-śr.: 7,4511 (7,4511); Sigma:,26567 (,26567); n: 4, 7,9 7,8 7,8496 7,7 7,6 7,5 7,4511 7,4 Miernik 7,3 7,2 7,1 7,0526 7,0 6,9 6,8 Kalibracja Testy konfiguracji unaoczniają nam, iż od pewnego momentu mamy jakby za dużo niskich wartości właściwości. Sugeruje to przesunięcie średniej. Do sprawdzenia, czy wystąpiło przesunięcie średniej procesu wykorzystamy kratę EWMA. Karta EWMA pokazuje, jak bieżąca próbka i wcześniejsze od niej odchylają się od linii centralnej. Położenie punktu na karcie wyliczane jest według wzoru: z i = λx i + (1-λ)z i-1 We wzorze z oznacza położenie punktu na karcie EWMA, x wartość średnią w próbce, a λ to parametr karty (w STATISTICA domyślnie przyjmowana jest wartość 0,1). Wzór ten można odczytać w ten sposób, że badamy, jak zmienia się wartość w bieżącej próbce, ale również w poprzedzających ją obserwacjach, przy czym wpływ coraz wcześniejszych obserwacji jest coraz mniejszy. Takie podejście eliminuje szum losowy i umożliwia zauważenie nawet niewielkich przesunięć średniej i trendów. Więcej informacji o karcie EWMA przedstawiono w podręczniku [1]. 72 www.statsoft.pl/czytelnia.html www.statsoft.pl/spc.html Copyright StatSoft Polska 2005

Kartę EWMA określamy podobnie jak kartę X-średnie i R. Widzimy ją na rysunku poniżej. Karta wykazała klika sygnałów o rozregulowaniu, mamy też wyraźną tendencję: najpierw stały wzrost od 4 do 24 próbki, a potem gwałtowny spadek od próbki 24 do 32. Takie zachowanie ma miejsce, jeśli wartość oczekiwana właściwości uległa trwałemu przesunięciu. Zadaniem inżyniera jest teraz znalezienie przyczyny tej zmiany, co ułatwia przybliżone określenie momentu jej wystąpienia, przez czas zajścia sygnału o rozregulowaniu (zazwyczaj karta EWMA reaguje z pewnym opóźnieniem). 7,60 Karta EWMA X-śred.; zmienna: Pomiar EWMA X-śred.: 7,4430 (7,4430); Sigma:,26243 (,26243); n: 4, 7,55 7,5333 7,50 7,45 7,4430 7,40 7,35 7,3527 7,30 W naszym przypadku zmiana nastąpiła dokładnie dla 25 próbki, a było nią zastosowanie nowego materiału. Tę zmianę o specjalnej przyczynie (nielosową) uwzględnimy, definiując na karcie zbiory. Dzięki temu na jednym wykresie mamy karty o różnych specyfikacjach. 8,1 Karta X-średnie; zmienna: Pomiar X-śr.: 7,3904 (7,3904); Sigma:,25187 (,25187); n: 4, 8,0 7,9 7,8 7,7682 7,7 7,6 7,5 7,4 Miernik 7,3904 7,3 7,2 7,1 7,0 7,0126 6,9 6,8 Kalibracja 1 Zmiana materiału Copyright StatSoft Polska, 2005 www.statsoft.pl/spc.html www.statsoft.pl/czytelnia.html 73

Taką właśnie kartę widzimy powyżej. Istotnie, począwszy od próbki nr 25 nastąpiło zauważalne zmniejszenie średniej procesu. Moment zmiany materiału oznaczyliśmy na karcie wprowadzając komentarz. Na karcie nie ma próbek poza granicami kontrolnym (poza próbką nr 4, którą zajęliśmy się na początku), jednak gdy włączymy testy konfiguracji, to pojawią się sygnały o rozregulowaniu. Aby wykryć ich przyczynę zastosujemy dodatkową linię średniej ruchomej naniesioną na kartę. Na karcie powyżej ośmiopunktowa linia średniej ruchomej oznaczona jest rombami. Rzuca się w oczy, że po zmianie materiału linia średniej ruchomej przebiega bardzo regularnie, przypomina falę. Takie zachowanie jest typowe, jeśli mamy pewną przyczynę pojawiającą się w regularnych odstępach czasu. W naszym przypadku przyczyną falowania okazali się operatorzy. W tabeli poniżej widzimy statystyki opisowe pomiarów dokonywanych przez operatorów. Widzimy, że średnia dla operatora B jest niższa niż dla operatora A, natomiast różnica w odchyleniach standardowych jest niewielka. Wykres jest zwykle łatwiejszy w interpretacji i przemawia mocniej od tabeli. Poniżej widzimy wykres ramka-wąsy, prezentujący średnie i błędy standardowe dla operatorów: różnica średniej pomiarów jest bardzo wyraźna. Dla pewności istotność różnicy średnich sprawdzimy jeszcze testem ANOVA (lub testem t, w przypadku dwóch grup są one sobie równoważne). Test ANOVA pozwala odrzucić hipotezę o równości średnich dla obu operatorów na poziomie istotności równym nawet 0,01. 7,60 7,55 7,50 7,45 Pomiar 7,40 7,35 7,30 7,25 7,20 Op A Operator Op B Średnia Średnia±Błąd std Średnia±1,96*Błąd std 74 www.statsoft.pl/czytelnia.html www.statsoft.pl/spc.html Copyright StatSoft Polska 2005

Narzuca się teraz pytanie: co powoduje różnicę w średnich z pomiarów? Mogą być co najmniej dwie przyczyny: operator B wytwarza nieco inny produkt (o mniejszej średniej wartości właściwości) albo nieco inaczej wykonuje pomiary. Do sprawdzenia, czy obaj operatorzy wykonują pomiary tak samo, służą badania Powtarzalności i odtwarzalności (ang. Gage R&R). W dużym skrócie polegają one na tym, że operatorzy kilkakrotnie mierzą pewną liczbę tych samych obiektów (części), dzięki czemu możemy ocenić dokładność pomiarów, a także odnieść je do zmienności wytwarzanych elementów. Więcej informacji o tej metodzie można znaleźć w artykule [7]. Zauważmy, że w zasadzie badanie powtarzalności i odtwarzalności pomiarów należy przeprowadzić przed uruchomieniem kart kontrolnych, a potem regularnie powtarzać je, tak aby zapewnić poprawność pomiarów. Program STATISTICA umożliwia nam przygotowanie arkusza dla potrzeb badania powtarzalności i odtwarzalności pomiarów oraz przeprowadzenie analizy wyników (funkcje te dostępne są w pakiecie Analiza procesu). Wykres poniżej przedstawia wyniki analizy powtarzalności i odtwarzalności pomiarów. Pokazuje on wyraźnie, że operator B dostawał inne, niższe wyniki pomiarów tych samych części, co było źródłem zmienności widocznej na karcie kontrolnej. 0,10 Wykres powtarzalności i odtwarzalności Liczba operatorów: (zmienna: OPERATOR) Liczba części: 3 (zmienna: CZĘŚĆ) Liczba prób: 3 (zmienna: PRÓBA) 0,08 0,06 Odchylenie od średniej 0,04 0,02 0,00-0,02-0,04-0,06-0,08 Op. A Op. B W niniejszym przykładzie wykorzystaliśmy tylko niektóre karty kontrolne i związane z nimi analizy. Jednak naszą intencją było pokazanie, jak pomagają one w wykrywaniu przyczyn zmienności procesu i poprawianiu jego stabilności. Więcej przykładów można znaleźć w zaproponowanej literaturze (zob. poniżej). Copyright StatSoft Polska, 2005 www.statsoft.pl/spc.html www.statsoft.pl/czytelnia.html 75

Literatura 1. T. Greber, Statystyczne sterowanie procesami, StatSoft 2000. 2. J. Koronacki, Statystyka w kompleksowym zarządzaniu jakością, www.statsoft.pl/czytelnia/jakosc/wprowjak.html. 3. J. Koronacki, Metody statystycznego sterowania jakością, www.statsoft.pl/czytelnia/jakosc/wprowjak.html. 4. Polska norma, Karty kontrolne Shewharta, PN-ISO 8258+AC1. 5. Statistical Process Control. Reference Manual, A.I.A.G 1991. 6. O. Hryniewicz, Efektywne statystyczne sterowanie procesami (SPC) z wykorzystaniem pakietu STATISTICA, www.statsoft.pl/czytelnia/jakosc/wprowjak.html. 7. R. Tabisz, Zapewnianie wiarygodności analizowanych danych Podstawy analizy MSA w Statystyka i data mining w praktyce, StatSoft 2004. 76 www.statsoft.pl/czytelnia.html www.statsoft.pl/spc.html Copyright StatSoft Polska 2005