Ć W I C Z E N I E N R E-17



Podobne dokumenty
WYZANCZANIE STAŁEJ DIELEKTRYCZNEJ RÓŻNYCH MATERIAŁÓW. Instrukcja wykonawcza

WYZNACZANIE WZGLĘDNEJ PRZENIKALNOŚCI DIELEKTRYCZNEJ RÓŻNYCH MATERIAŁÓW DIELEKTRYCZNYCH

elektryczna. Elektryczność

Metrologia Techniczna

Badanie transformatora

Zadanie 1. Rozwiązanie. opracował: Jacek Izdebski.

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

Badanie transformatora

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5

Badanie rozkładu pola elektrycznego

Ć W I C Z E N I E N R E-5

Badanie rozkładu pola elektrycznego

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie stałej Kerra

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa

Instrukcja do laboratorium Materiały budowlane Ćwiczenie 12 IIBZ ĆWICZENIE 12 METALE POMIAR TWARDOŚCI METALI SPOSOBEM BRINELLA

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

Podstawy fizyki wykład 8

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

KOOF Szczecin:

Badanie rozkładu pola magnetycznego przewodników z prądem

Wyznaczanie stosunku e/m elektronu

Badanie rozkładu pola elektrycznego

Wyznaczanie krzywej ładowania kondensatora

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

BADANIE EFEKTU HALLA. Instrukcja wykonawcza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Ćwiczenie nr 43: HALOTRON

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek

ZJAWISKO PIEZOELEKTRYCZNE.

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

BADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

BADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA

Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa

Badanie diody półprzewodnikowej

Badanie wzmacniacza operacyjnego

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 2. Badanie własności ferroelektrycznych soli Seignette a

Podstawy fizyki sezon 2 2. Elektrostatyka 2

1. Podstawowe pojęcia w wymianie ciepła

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

WYDZIAŁ.. LABORATORIUM FIZYCZNE

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

SYSTEM DO POMIARU STRUMIENIA OBJĘTOŚCI WODY ZA POMOCĄ ZWĘŻKI

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Pomiar podstawowych parametrów liniowych układów scalonych

Wytrzymałość układów uwarstwionych powietrze - dielektryk stały

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Lekcja 40. Obraz graficzny pola elektrycznego.

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY

Bierne układy różniczkujące i całkujące typu RC

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

2 K A T E D R A F I ZYKI S T O S O W AN E J

OPTOELEKTRONIKA IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH.

Badanie transformatora

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym

Relacje Kramersa Kroniga

Badanie wzmacniacza niskiej częstotliwości

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

ELEKTROSTATYKA. cos tg60 3

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Ć W I C Z E N I E N R E-15

Ć W I C Z E N I E N R M-2

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Pomiar parametrów tranzystorów

Elektronika. Wzmacniacz operacyjny

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

WYKŁAD V. Elektrostatyka

O nauczaniu oceny niepewności standardowej

MECHANIKA PŁYNÓW LABORATORIUM

3.5 Wyznaczanie stosunku e/m(e22)

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu

ĆWICZENIE 41 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ MIKROSKOPU. Kraków, luty kwiecień 2015

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

WZMACNIACZ NAPIĘCIOWY RC

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Badanie tranzystorów MOSFET

BADANIE EFEKTU HALLA. Instrukcja wykonawcza

CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE

1 Ćwiczenia wprowadzające

E12. Mostek Wheatstona wyznaczenie oporu właściwego

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Transkrypt:

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-17 WYZNACZANIE STAŁEJ DIELEKTRYCZNEJ RÓŻNYCH MATERIAŁÓW

I. Zaganienia o przestuiowania 1. Prawa elektrostatyki 2. Stała ielektryczna (przenikalność elektryczna) 3. Pojemność konensatora płaskiego 4. Polaryzacja ielektryka II. Wstęp teoretyczny Energię możemy magazynować w postaci energii potencjalnej np. przez rozciąganie cięciwy łuku, ściskanie sprężyny, sprężanie gazu lub ponoszenie w górę przemiotu. Można też magazynować energię w postaci energii potencjalnej w polu elektrycznym i właśnie o tego celu służy konensator. W zisiejszej obie elektroniki i mikroelektroniki konensatory mają wiele innych zastosowań niż magazynowanie energii potencjalnej. Są one na przykła istotnymi elementami w obwoach, które służą o ostrajania naawczej i obiorczej aparatury raiowej i telewizyjnej. Mikroskopijne konensatory tworzą pamięci komputerów. Te barzo małe urzązenia są wtey ważne nie ze wzglęu na zmagazynowaną w nich energię, ale ze wzglęu na informację binarną, jakiej ostarcza obecność lub brak pola elektrycznego. Tyy ukła zwany konensatorem płaskim skłaa się z wóch równoległych, przewozących okłaek o polu ierzchni S, umieszczonych w oległości. Symbol jakiego używamy o oznaczenia konensatora ( ) wzorowany jest na buowie konensatora płaskiego, lecz stosujemy go o oznaczenia konensatorów o owolnej geometrii. Gy konensator jest nałaowany, jego okłaki, mają łaunki +Q i Q o jenakowych wartościach, lecz przeciwnych znakach. Łaunkiem konensatora nazywa się Q czyli bezwzglęną wartość łaunków na okłakach (Q nie jest całkowitym łaunkiem na konensatorze, bo taki wynosi zero). Okłaki konensatora są przewonikami, a więc są ierzchniami ekwipotencjalnymi (wszystkie punkty na okłace mają ten sam potencjał elektryczny). Różnica potencjałów mięzy wiema okłakami oznaczana jest jako U. Łaunek Q i różnica potencjałów U la konensatora są o siebie proporcjonalne, zgonie ze wzorem: Q C U (1) Stałą proporcjonalności C nazywamy pojemnością konensatora. Jej wartość zależy o geometrii okłaek, a nie o ich łaunku, czy różnicy potencjałów. Pojemność jest miarą ilości łaunku, jaki należy umieścić na okłakach, aby wytworzyć pewną różnicę potencjałów mięzy nimi: im większa pojemność, tym więcej potrzeba łaunku. Jenostką pojemności w ukłazie SI jest fara (F): 1 fara = 1 F = 1 kulomb na wolt = 1 C/V W praktyce używa się powielokrotności F: mikrofara (1 μf = 1-6 F) lub pikofara (1 pf = 1-12 F). 2

Do zjawisk elektrostatycznych stosuje się wa prawa elektrostatyki, które w postaci całkowej równań Maxwell a (w przypaku statycznym) można zapisać w postaci: s Q E s (2) E l (3) gzie E jest natężeniem pola elektrycznego, Q łaunkiem zawartym w obszarze ograniczonym zamkniętą ierzchnią s, przenikalnością ielektryczną próżni, natomiast owolną zamkniętą pętlą. Równanie (2) jest prawem Gaussa, które wiąże ze sobą natężenie pola elektrycznego mięzy okłakami konensatora i łaunek Q zgromazony na każej z okłaek. Różnica potencjałów U może być efiniowana jako praca na jenostkę łaunku oatniego wykonana przy przenoszeniu go pomięzy ujemną i oatnią okłaką konensatora. Tę zależność możemy zapisać, wykorzystując wzór (3), jako: U El (4) gzie - i + oznacza, że tor całkowania zaczyna się na okłace ujemnej i kończy na okłace oatniej. Rys. 1. Schematyczny obraz linii sił pola elektrycznego w konensatorze płaskim wypełnionym ietrzem. Jeśli przyjmiemy, że ierzchnia Gaussa obejmuje całkowicie łaunek na oatniej okłace konensatora (rys. 1), wówczas wzór (2) przyjmuje postać: Q ES (5) 3

gzie S jest polem ierzchni okłaki. Dla takiego przypaku wzór (4) przyjmuje postać: U El E l E (6) We wzorze (6) natężenie pola E można wyłączyć prze znak całki, bo jest stałe; ruga całka jest równa oległości mięzy okłakami konensatora. Przyrównując ze sobą natężenie pola E ze wzorów (5) i (6) otrzymamy zależność: Q U S Q U S (7) Łącząc (1) i (7) otrzymujemy wzór na pojemność konensatora: C S (8) Wiać, że pojemność zależy tylko o wielkości geometrycznych, a mianowicie pola ierzchni okłaki S i oległości mięzy okłakami. Wiać również, że pojemność C wzrasta, jeśli zwiększamy pole ierzchni okłaki S lub zmniejszymy oległość. Rys. 2. Schematyczny obraz linii sił pola elektrycznego w konensatorze płaskim wypełnionym ielektrykiem. Pole elektryczne zmienia się po umieszczeniu materiału izolacyjnego (ielektryka) pomięzy okłakami konensatora. W ielektryku nie występują swobone łaunki, jak to ma miejsce w przewonikach. W zewnętrznym polu elektrycznym, pierwotnie nie spolaryzowane cząsteczki ielektryka, wskutek eformacji łok elektronowych, stają się stacjonarnymi ipolami ułożonymi zgonie z liniami sił pola w rezultacie, ielektryk wykazuje pewien ierzchniowy łaunek przeciwnego znaku niż łaunek na okłakach konensatora. Skutkiem polaryzacji ielektryka (rys. 2) 4

natężenie pola elektrycznego maleje w nim w porównaniu o pola, jakie wystąpiłoby w próżni (ietrzu) i wynosi: E ielektryk E próżnia r (9) gzie r jest tzw. wzglęną przenikalnością ielektryczną materiału ielektryka. Wzór (7) opisujący zależność łaunku Q na konensatorze o przyłożonego napięcia U oraz wzór (8) na pojemność C konensatora wypełnionego ietrzem (próżnią) przyjmują teraz postać (po uwzglęnieniu (9)): Q S r U (1) C S r (11) III. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przenikalności elektrycznej ietrza i płyty wykonanej z ielektryka oraz wyznaczenie pojemności konensatora płaskiego wypełnionego ietrzem i ielektrykiem. IV. Aparatura pomiarowa Aparatura stosowana w ćwiczeniu i pokazana na zjęciu (rys. 3) skłaa się z: 1. wzmacniacza z konensatorem C = 218 nf, 2. regulatora oległości mięzy okłakami, 3. baanego konensatora C o promieniu okłaek r = 13 cm, 4. miernika napięcia U, 5. baanego ielektryka, 6. zasilacza wysokiego napięcia 7. przełącznika Ł-P (przełącza ukła mięzy trybem łaowania konensatora Ł i trybem pomiaru P). 5

Rys. 3. Aparatura pomiarowa o wyznaczania stałej ielektrycznej. Rys. 4. Schemat ukłau pomiarowego. Zasaa pomiaru Silnie izolowana płyta (gniazo A na rysunku 4) konensatora płaskiego C, który tworzą wie kołowe tarcze metalowe o śrenicy 26 cm, połączona jest o górnego gniaza wysokonapięciowego zasilacza poprzez 1 MΩ rezystor zabezpieczający. Śrokowe gniazo wysokonapięciowego zasilacza, ruga (ujemnie nałaowana) płyta konensatora i konensator pomiarowy C są uziemione. Przełącznik Ł-P ustawić w pozycji Ł - łaowanie. Po nałaowaniu konensatora płaskiego C wybranym napięciem U ustawić przełącznik Ł-P w pozycję P - pomiar. W ramach bezpieczeństwa, po przełączeniu ukłau w tryb pomiaru, pokrętłem zasilacza zmniejszamy napięcie o zera. Pomiar łaunku 6

na konensatorze C obywa się poprzez zmierzenie napięcia U na zaciskach konensatora C, a następnie skorzystanie z zależności przybliżonej: Q U C która jest obarczona zaniebywalnym błęem systematycznym (poniżej,25%) w przypaku oległości pomięzy okłakami większej o,1 cm, pojemności C = 218 nf oraz ierzchni płyt S r m 2 2, 531. V. Przebieg ćwiczenia UWAGA!!! Poczas wykonywania ćwiczenia zabrania się otykać nieizolowanych części zestawu pomiarowego. Sprawzić ustawienia wzmacniacza pomiarowego: rezystancja 1 13 Ω, wzmocnienie 1, stała czasowa. Pomiary la stałej oległości mięzy okłakami konensatora C: 1. Przełącznik Ł-P ustawić w pozycji Ł łaowanie. 2. Ustawić stałą oległość pomięzy okłakami z przeziału,2,5 cm. 3. Nałaować konensator o napięcia początkowego U =,5 kv. 4. Przełącznik Ł-P ustawić w pozycję P i zmniejszyć pokrętłem zasilacza napięcie o zera. 5. Po ustaleniu równowagi oczytać napięcie U za pomocą miernika (zakres miernika obrać tak, żeby oczytywana wartość była za połową zakresu). 6. Wyzerować miernik przyciskiem. 7. Przeprowazić kolejne pomiary zwiększając napięcie zasilające U o,5 kv o wartości 5 kv. Wyniki wpisać o tabeli nr 1. 8. Powtórzyć pomiary opisane w punktach 2-5 la konensatora szczelnie wypełnionego ielektrykiem (tikowa płyta). Uwaga: prze zamontowaniem płyty mięzy okłakami rozłaować konensator i wyłączyć zasilacz wysokonapięciowy. Oległość mięzy okłakami konensatora oczytać z poziałki noniusza z okłanością o,1 cm. Prze oczytaniem napięcia U oczekać 6 sekun na ustalenie równowagi. Wyniki wpisać o tabeli nr 2. 7

Pomiary la stałego napięcia zasilającego U: 1. Przełącznik Ł-P ustawić w pozycji Ł łaowanie. 2. Ustawić początkową oległość pomięzy okłakami konensatora C =,2 cm. 3. Ustawić napięcie U zasilające konensator płaski na poziomie wybranej wartości z przeziału 2, 5, kv. 4. Nałaować konensator o ustalonego wcześniej napięcia. 5. Przełącznik Ł-P ustawić w pozycję P i zmniejszyć pokrętłem zasilacza napięcie o zera. 6. Po ustaleniu równowagi oczytać napięcie U za pomocą miernika (zakres miernika obrać tak, żeby oczytywana wartość była za połową zakresu). 7. Wyzerować miernik przyciskiem. 8. Przeprowazić kolejne pomiary zwiększając oległość mięzy okłakami konensatora o,5 cm o wartości,65 cm. Wyniki wpisać o tabeli nr 3. VI. Tabele pomiarowe Tabela 1. Wyniki pomiarów przy stałej oległości mięzy okłakami la ietrza U [kv] U [V] Q U C [ na s],5 1, 4,5 5, =... [cm] C = 218 nf Współczynniki wyznaczone przy użyciu programu REGRESJA : a1 =... [ ] σ a 1 =... [ ] b1 =... [ ] σ b 1 =... [ ] 8

Tabela 2. Wyniki pomiarów la konensatora wypełnionego ielektrykiem (tikowa płyta) U [kv] U [V] Q U C [ na s],5 1, 4,5 5, = [cm] Współczynniki wyznaczone przy użyciu programu REGRESJA : C = 218 nf a2 =... [ ] σ a 2 =... [ ] b2 =... [ ] σ b 2 =... [ ] Tabela 3. Wyniki pomiarów przy zaanej wartości napięcia zasilającego la ietrza [cm] U [V] 1/ [cm -1 ] Q U C [ na s],2,25,6,65 U = [kv] Współczynniki wyznaczone w programie REGRESJA : C = 218 nf a3 =... [ ] σ a 3 =... [ ] b3 =... [ ] σ b 3 =... [ ] Tabela 4. Wyniki pomiarów la stałej oległości mięzy okłakami konensatora Dla ietrza Dla tiku ( C C )[ pf] ( C C )[ pf] pf pf ( )[ ] ( )[ ] m m Tabela 5. Wyniki pomiarów la stałej wartości napięcia zasilającego U Dla ietrza ( C C )[ pf] pf ( )[ ] m 9

VII. Opracowanie ćwiczenia 1. Na postawie wyników pomiarów (zamieszczonych w tabelach nr 1 i 2) sporzązić na papierze milimetrowym (format A4) wykresy zależności Q f ( U ) la ietrza i tiku. 2. Wykorzystując równanie nr (1): i postawiając C Q C U a, Q y i U x otrzymuje się zależność liniową: y ax b 3. Wartość współczynnika a i jego ochylenia stanarowego a obliczyć metoą najmniejszych kwaratów za pomocą znajującego się w pracowni komputera wyposażonego w program REGRESJA. 4. Znając wartość współczynnika regresji liniowej, który jest zarazem równy pojemności konensatora ( a C), wyznaczyć przenikalność elektryczną la ietrza ( ) i tiku ( ) przy wykorzystaniu wzoru nr (8): C a (12) S S gzie: C pojemność konensatora, (oienio la ietrza i la tiku), oległość mięzy okłakami konensatora, S pole ierzchni okłaki. 5. Otrzymane wyniki obliczeń wpisać o tabeli nr 4. (Pamiętać o spełnieniu zasa zaokrągleń wyników) 6. Przenikalność ielektryczna ietrza jest w barzo obrym przybliżeniu równa przenikalności ielektrycznej próżni ( ). Wyznaczyć wzglęną przenikalność ielektryczną tiku, ze wzoru: r( ) (13) 7. Na postawie wyników pomiarów (zamieszczonych w tabeli nr 3) sporzązić, na papierze milimetrowym (format A4), wykres zależności Q f (1/ ). 8. Współczynnik kierunkowy a3 liniowej zależności Q f (1/ ), wykorzystując wzór nr (7), jest równy: a3 S U (14) ponieważ: 1 1 Q S U Q a3 Wartość współczynnika a3 i jego ochylenia stanarowego a 3 obliczyć metoą najmniejszych 1

kwaratów za pomocą znajującego się w pracowni komputera wyposażonego w program REGRESJA. 9. Wykorzystując wzór nr (14), wyznaczyć przenikalność elektryczną la ietrza ze wzoru: a3 U S gzie: U napięcie zasilające (napięcie oprowazone o okłaek konensatora), S pole ierzchni okłaki konensatora. C 1. W celu porównania wartości, wyznaczonej obiema metoami pomiarowymi, wyznaczyć pojemność konensatora (la oległości mięzy okłakami przyjętej za stałą w pierwszej części ćwiczenia) korzystając ze wzorów nr (8) i (15): C (15) a3 U (16) 11. Otrzymane wyniki obliczeń wpisać o tabeli nr 5. (Pamiętać o spełnieniu zasa zaokrągleń wyników) VIII. Rachunek błęu 1. Korzystając ze wzoru nr (12) oszacować błą przenikalności elektrycznej (ietrza i tiku) la pomiarów przy stałej oległości mięzy okłakami metoą pochonej logarytmicznej: C S C S (17) gzie: C ; C a;,1mm ; S 2 r r ; r 2mm. a 2. Korzystając ze wzorów nr (16) i (15) oszacować błą pojemności konensatora i przenikalności elektrycznej ietrza la pomiarów przy stałej wartości napięcia zasilającego ze wzorów: a3 U C C a3 U a3 U S a3 U S gzie: a3 a 3; U,1kV ;,1mm ; S 2 r r ; r 2mm. (18) (19) Literatura 1. Resnick R., Halliay D., Walker J. Postawy fizyki, PWN 25. 2. Orear Fizyka J., T.1 i T.2, WNT Warszawa 199 3. Lech J., Opracowanie wyników pomiarów w laboratorium postaw fizyki, Wyawnictwo Wyziału Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej PCz, Częstochowa 25. 11