PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 113 Transport 2016 Artur Florowski, Jacek Skorupski OCENA WYBRANEGO ALGORYTMU POWIETRZNYCH : Streszczenie: skomplikowane manewry w est ocena wybranego algorytmu szeregowania model ruchu lotniczego w postaci kolorowanej sieci Petriego. Do oceny wybrano literaturowy algorytm szeregowania. wyniki do praktyki Wskazuje to na procesie S szeregowania 1. WPROWADZENIE z przestrzeni powietrznej oraz lotnisk. w jednostce czasu nizacji strumienia imalna separacja radarowa wynosi 5 mil morskich (NM) (ICAO, 2007;
164 Artur Florowski, Jacek Skorupski deterministyczny cie cych. W tych przypadkach wietrzne. Uszeregowania uzyskane w grupowej (Skorupski, 2014b). W niniejszej pracy podejmujemy zagadnienie oceny wybranego algorytmu szeregowania. Jest to kontynuacja pracy (Florowski i Skorupski, 2015a), gdzie i Skorupski 2014). Sölveling i Clarke (2014) opracowali algorytm do wyznaczenia optymalnego mami NP- i Ignaccolo (2004), gdzie wykorzystano algorytmy genetyczne d bne metody zastosowano w pracy Hansena (2004). patrywana metodami probabilistycznymi. W pracy (Tavakkoli-Moghaddam i in. 2012) organizacji ruchu lotniczego, jego oceny, wspomagania procesu szeregowania danymi z ncepcje planowania ruchu lotniczego i przestrzeni po-, 2014a). blem ten, (Boursier i in. 2007) oraz (Zhu i in regowania samolo- i in kompleksowe w tym zakresie prezentuje np. praca (Weigang i in. 2008). Opracowanie SESAR,, 2013). uszeregowania. W niniejszej odmienne. Oceniona zost algorytmu opartego o metod automatów komórkowych (Sheng-Peng Yua i in. 2011), mi powietrznymi granicy obszaru i
165 2. AUTOMATÓW KOMÓRKOWYCH W pracy (Sheng-Peng Yua i in. 2011) zaproponowano wania Ogólnie, proces optymalizac na 2 etapy: poszukiwanie dobrej permutacji h oraz, w drugim etapie, branej permutacji. Autorzy zaproponowali algorytm s komórkowych CAO (Cellular Automaton based Optimization), który bliskie optymalnemu usz. Metoda automatów komórkowych polega na tworzeniu modelu systemu, w którym po- pojedyncze komórki zlokalizowane obok siebie., w której stanów, których liczba jest dowolnie Z. Pierwsza wykorzystuje bazowy automat komórkowy opracowany kwencji docelowej, lokaln strategi wyszukiwania do dalszej optymalizacji uszeregowania. W tym celu wykorzystywany jest algorytm genetyczny. W porównaniu z innymi pracami, gdzie poszukuj a statków powietrznych w krótkim czasie. tów komórkowych wykorzystywany jest do symulacji wektorowania lotó w celu doprowadzenia ich bezpiecznie do lotniska z sytuacji ruchowej. Ma to na celu wygenerowanie sekwencji nych docelowej. Natomiast w rzeprowadzana jest optymalizacja em jest zminimalizowanie czasu potrzebnego na wykonanie. 3. POMIARY RUCHU LOTNICZEGO W celu dokonania oceny oraz porównania rzeczywistego przez kontrolerów ruchu lotniczego niewspomaganymi przez komputerowe systemy doradcze z algorytmem CAO, dokonano pomiarów ruchu lotniczego w TMA Warszawa.
166 Artur Florowski, Jacek Skorupski Rys. 1. Schemat blokowy algorytmu CAO : Sheng-Peng Yua, in. 2011
167 Zgromadzone dane zawiera numery identyfikacyjne statków powietrznych, jako punkt oddalony o 8 NM od progu drogi startowej, go, jako punkt, w któ- dopiero w chwili, gdy, utworzona przez kontrolera przedstawiona w tabeli 1. Tablica 1 R, TMA Warszawa, RWY 11 (6 lipca 2012 r.) Numer identyfikacyjny Szeregowanie Czas Dystans Koniec LOT456 07:25:09 13 07:26:35 07:31:15 LOT270 07:27:30 13 07:28:58 07:33:01 LOT215 07:29:29 11 07:30:49 07:34:57 LOT3AW 07:31:40 17 07:33:14 07:37:11 LOT165 07:33:49 12 07:35:22 07:37:55 SAS751 07:34:16 21 07:38:05 07:41:18 Ta sama sekwencja CAO 1. racji. Tablica 2 omocy algorytmu CAO Numer identyfikacyjny Szeregowanie Czas Dystans Koniec LOT165 07:33:49 12 07:37:22 07:38:35 LOT215 07:29:29 11 07:38:41 07:42:58 LOT456 07:25:09 13 07:40:35 07:44:15 LOT270 07:27:30 13 07:42:58 07:48:21 LOT3AW 07:31:40 17 07:45:24 07:49:06 SAS751 07:34:16 21 07:48:11 07:50:40 1 Autorzy Sheng-Peng Yua za pomoc w wygenerowaniu sekwencji zgodnie z algorytmem CAO.
168 Artur Florowski, Jacek Skorupski 4. OCENA Oceny prezentowanych sekwencji (Skorupski i Florowski, 2016) s( ) = (1) gdzie: i-, s,, chwila nia, liczba samolotów w sekwencji. Wszystkie statki powietrzne bazowej utworzonej przez kontrolera odpowiednio co jest osowanie przez kontrolera strategii szeregowania dodawaniu pewnego intuicyjnego zapasu. Przeprowadzone obliczenia y na okre- (1) dla omawianej sekwencji wynosi 150 sekund., takich samych jakimi, w Przeprowadzone badanie na wykonanie operacj cymi obu zaplanowanych bardzo wysokie. rejonie lotniska oraz strategii sterowania ruchem wykorzystywanych przez praktyce oni pewien dodatkow. W przypadku sekwencji bazowej przedstawionej w tablicy 1, dodatkowym bufor przepisami wynosi
169, ponad dwukrotnie odle- W drugim przypadku (sekwencja CAO) mamy do czynienia z tym samym strumieniem jednak w tym wypadku przy wykorzystaniu algorytmu automatów komórkowych W o dodatkowe 70 sekund. We (Florowski i Skorupski, 2015b) przeprowadzono. Symulo- W a sytuacji normalnej, Zastosowanie Wskazuje to na istnienie procesie szeregowania samolot. Bibliografia 1. Boursier, L., Favennec, B., Hoffman, E., Trzmiel, A., Vergne, F., Zeal, K. 2007. Merging Arrival Flows Without Heading Instructions, 7th USA/Europe Air Traffic Management Rand Seminar. 2. Capri, S., Ignaccolo, M. 2004. Genetic algorithms for solving the aircraft-sequencing problem, the introduction of departures into the dynamic model, Journal of Air Transport Management 10: 345-351. 3. Florowski A., Skorupski J., 2015a. Koncepcja implementacji systemu oceny procesu szeregowania sa- Scientific Journal of Silesian University of Technology. Series Transport 87: 5-10. 4. Florowski A., Skorupski J., 2015b. Quality assessment of the traffic flow management process in the vicinity of the airport. W: Podofillini i in. (red.) Safety and Reliability of Complex Engineered Systems: 745-751, Taylor & Francis Group, London. 5. Hansen, J. V. 2004. Genetic search methods in air traffic control. Computers & Operations Research 31: 445-459. 6. ICAO, 2007. Procedures for Air Navigation Services Air Traffic Management, Doc. 4444, International Civil Aviation Organization. Montreal, Canada. 7. Kwasiborska, A., Skorupski, J. 2014. blemu sekwencjonowania samolotów, Prace Naukowe Politechniki Warszawskiej. Transport 101: 55-62. 8. PANSA. 2013. APP Warsaw Operational Manual. Warsaw Polish Air Navigation Services Agency. 9. SESAR. 2013. Annual Report 2012, Brussels, SESAR Joint Undertaking. 10. Sheng-Peng Yua, Xian-Bin Cao, Jun Zhang, 2011. A real-time schedule method for Aircraft Landing Scheduling problem based on Cellular Automaton. Applied Soft Computing 11: 3485 3493. 11. Skorupski, J. (red.). 2014a. - modele i metody. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa. 12. Skorupski, J. 2014b. Multi-criteria group decision making under uncertainty with application to air traffic safety. Expert Systems with Applications 41: 7406-7414. 13. Skorupski, J. 2015. The risk of an air accident as a result of a serious incident of the hybrid type. Reliability Engineering & System Safety 140: 37-52.
170 Artur Florowski, Jacek Skorupski 14. Skorupski J., Florowski A., 2016. Method for evaluating the landing aircraft sequence under disturbed conditions with the use of Petri nets. The Aeronautical Journal, 120 (1227): 819-844. 15. Sölveling, G., Clarke, J. 2014. Scheduling of airport runway operations using stochastic branch and bound methods. Transportation Research Part C: Emerging Technologies 45: 119-137. 16. Tavakkoli-Moghaddam, R., Yaghoubi-Panah, M., Radmehr, F. 2012. Scheduling the sequence of aircraft landings for a single runway using a fuzzy programming approach. Journal of Air Transport Management 25: 15-18. 17. Van Leeuwen, P., Hesselink, H., Rohling, J. 2002. Scheduling Aircraft Using Constraint Satisfaction. Electronic Notes in Theoretical Computer Science 76: 252-268. 18. Weigang, L., de Souza, B. B., Crespo, A. M. F., Alves, D. P. 2008. Decision support system in tactical air traffic flow management for air traffic flow controllers, Journal of Air Transport Management 14: 329-336. 19. Zhu, K.H., Berge, M.E., Haraldsdottir, A., Scharl, J. 2012. The Generalized Arrival Planner (GARP) modeling and analysys for arrival planing, 28th International Congress of the Aeronautical Sciences, Brisbane, Australia. ASSESSMENT OF THE SELECTED ALGORITHM FOR LANDING AIRCRAFT SCHEDULING Summary: Managing air traffic in terminal areas is one of the biggest challenges for air traffic management services. The reason for that is a high number of aircraft performing complex maneuvers in limited airspace. The process of landing aircraft scheduling is sometimes supported with computer systems that implement algorithms, which aim is to achieve the aircraft traffic flow with the best performance. The aim of this paper is to assess the reliability of selected scheduling algorithm with the use of the method based on the air traffic flow model in the form of a colored Petri net. Cellular automata-based scheduling algorithm found in the literature has been selected for an assessment. Comparing the results to the practice of Warsaw TMA, where no controller support system within the scope of landing aircraft scheduling was implemented, one can notice a beneficial impact of the application of the scheduling algorithm. Application of the examined algorithm would allow for both increasing capacity and reliability of timely execution of planned operations. This indicates the existence of high potential for implementation of systems supporting the controller in landing aircraft scheduling process. Keywords: air traffic, airport capacity, scheduling quality