WPŁYW CZASU KONTAKTU NA AKTYWNOŚĆ KATALIZATORA PLATYNOWEGO W REAKCJI UTLENIANIA WYBRANYCH LOTNYCH ZWIĄZKÓW ORGANICZNYCH



Podobne dokumenty
BADANIA AKTYWNOŚCI KATALIZATORÓW MONOLITYCZNCH W UTLENIANIU WYBRANYCH LOTNYCH ZWIĄZKÓW ORGANICZNYCH

Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18

WPŁYW SPOSOBU PREPARATYKI NA AKTYWNOŚĆ UKŁADÓW La Mg O. THE EFFECT OF PREPARATION OF La Mg O CATALYSTS ON THEIR ACTIVITY

WYDZIAŁ CHEMICZNY POLITECHNIKI WARSZAWSKIEJ KATEDRA TECHNOLOGII CHEMICZNEJ. Laboratorium PODSTAWY TECHNOLOGII CHEMICZNEJ

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji

Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

KATALIZA I KINETYKA CHEMICZNA

Synteza Nanoproszków Metody Chemiczne II

Zaawansowane techniki utleniania. Mokre utlenianie powietrzem Adriana Zaleska-Medynska. Wykład 9

Dr inż. Barbara Kucharczyk. Katalizatory monolityczne na bazie tlenków typu perowskitu w utlenianiu metanu i monotlenku węgla

Podstawowe pojęcia i prawa chemiczne

a) jeżeli przedstawiona reakcja jest reakcją egzotermiczną, to jej prawidłowy przebieg jest przedstawiony na wykresie za pomocą linii...

LABORATORIUM SPALANIA I PALIW

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18

Ćwiczenie 26 KATALITYCZNE ODWODNIENIE HEPTANOLU

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

UTLENIANIE KWASU 2,4-DICHLOROFENOKSYOCTOWEGO Z UDZIAŁEM KATALIZATORA MONOLITYCZNEGO

OTMAR VOGT, JAN OGONOWSKI *, BARBARA LITAWA. Streszczenie

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz

WYTWARZANIE NOWEJ GENERACJI KATALIZATORÓW METODAMI NANOTECHNOLOGII

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

PL B1. INSTYTUT KATALIZY I FIZYKOCHEMII POWIERZCHNI IM. JERZEGO HABERA POLSKIEJ AKADEMII NAUK, Kraków, PL

KATALITYCZNE ODWODORNIENIE HEPTANU

WPŁYW RODZAJU PROMOTORA I DODATKU REDUKTORÓW NA AKTYWNOŚĆ KATALIZATORÓW PALLADOWYCH W UTLENIANIU METANU W POWIETRZU WENTYLACYJNYM KOPALŃ

WPŁYW RODZAJU PROMOTORA I DODATKU REDUKTORÓW NA AKTYWNOŚĆ KATALIZATORÓW PALLADOWYCH W UTLENIANIU METANU W POWIETRZU WENTYLACYJNYM KOPALŃ

metody nanoszenia katalizatorów na struktury Metalowe

BADANIA SYMULACYJNE I EKSPERYMENTALNE UTLENIAJĄCEGO REAKTORA KATALITYCZNEGO SYSTEMU FILTRA CZĄSTEK STAŁYCH W PROGRAMIE AVL BOOST

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.

Wykład 5. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemiczne podstawy procesów przemysłu

KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Wpływ wybranych czynników na efektywność procesu

Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42

WYDZIAŁ CHEMICZNY POLITECHNIKI WARSZAWSKIEJ KATEDRA TECHNOLOGII CHEMICZNEJ. Laboratorium LABORATORIUM Z TECHNOLOGII CHEMICZNEJ

MECHANIZMY REAKCJI CHEMICZNYCH. REAKCJE CHARAKTERYSTYCZNE GRUP FUNKCYJNYCH ZWIĄZKÓW ORGANICZNYCH

Wykład 5. Anna Ptaszek. 9 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 5. Anna Ptaszek 1 / 20

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(97)/2014

Kinetyka. Kinetyka. Stawia dwa pytania: 1)Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? energia swobodna, G. postęp reakcji.

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Kinetyka. energia swobodna, G. postęp reakcji. stan 1 stan 2. kinetyka

Efektywność pracy dwufazowego reaktora z membraną enzymatyczną w oparciu o model sieciowy

BADANIA PODATNOŚCI ŚCIEKÓW Z ZAKŁADU CUKIERNICZEGO NA OCZYSZCZANIE METODĄ OSADU CZYNNEGO

EKOLOGIA I OCHRONA ŚRODOWISKA W TRANSPORCIE LABORATORIUM Ćwiczenie 5. Temat: Ocena skuteczności działania katalitycznego układu oczyszczania spalin.

a) 1 mol b) 0,5 mola c) 1,7 mola d) potrzebna jest znajomość objętości zbiornika, aby można było przeprowadzić obliczenia

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH: PROCESY ESTRYFIKACJI NA PRZYKŁADZIE OTRZYMYWANIA WYBRANYCH PLASTYFIKATORÓW

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści

Inżynieria procesów przetwórstwa węgla, zima 15/16

Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

Metody wytwarzania elementów półprzewodnikowych

Zadanie: 2 (4 pkt) Napisz, uzgodnij i opisz równania reakcji, które zaszły w probówkach:

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1144

WPŁYW DODATKÓW PALIWOWYCH NA SKŁAD SPALIN SILNIKÓW O ZAPŁONIE SAMOCZYNNYM

Sposób wytwarzania katalizatora wanadowo-wolframowego do rozkładu związków organicznych zawierających chlor, a zwłaszcza dioksyn i furanów

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

KINETYKA REAKCJI CO 2 Z WYBRANYMI TYPAMI AMIN W ROZTWORACH WODNYCH

Katalityczna redukcja tlenków azotu ze spalin biomasowych kotłów małej mocy

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

Kuratorium Oświaty w Lublinie

57 Zjazd PTChem i SITPChem Częstochowa, Promotowany miedzią niklowy katalizator do uwodornienia benzenu

PROCESY ADSORPCYJNE W USUWANIU LOTNYCH ZWIĄZKÓW ORGANICZNYCH Z POWIETRZA

ODWODORNIENIE IZOBUTANU DO IZOBUTENU W OBECNOŚCI DITLENKU WĘGLA NA KATALIZATORZE WANADOWYM NANIESIONYM NA WĘGIEL AKTYWNY

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru

Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych

Podstawy elektrochemii

WZBOGACANIE BIOGAZU W METAN W KASKADZIE MODUŁÓW MEMBRANOWYCH

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami.

wykład monograficzny O niektórych sposobach udoskonalania procesów katalizowanych metalami i ich związkami

1. REAKCJA ZE ZWIĄZKAMI POSIADAJĄCYMI KWASOWY ATOM WODORU:

Ilościowa analiza mieszaniny alkoholi techniką GC/FID

... Nazwisko, imię zawodnika; Klasa Liczba punktów. ... Nazwa szkoły, miejscowość. I Podkarpacki Konkurs Chemiczny 2008/09

Pochodne węglowodorów, w cząsteczkach których jeden atom H jest zastąpiony grupą hydroksylową (- OH ).

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1426

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej

PL B1. Sposób epoksydacji (1Z,5E,9E)-1,5,9-cyklododekatrienu do 1,2-epoksy-(5Z,9E)-5,9-cyklododekadienu

Samopropagująca synteza spaleniowa

XX KONKURS CHEMICZNY KLAS TRZECICH GIMNAZJALNYCH ROK SZKOLNY 2012/2013

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych

Inżynieria Biomedyczna

Wstęp. Szkodliwość LZO. Oczyszczanie gazów odlotowych z zanieczyszczeń organicznych. Dezodoryzacja.

Zjawiska powierzchniowe

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów dotychczasowych gimnazjów województwa śląskiego w roku szkolnym 2017/2018

KATALITYCZNE ODWODNIENIE ALKOHOLU

Nowoczesne metody wędzenia ryb w świetle nowych przepisów UE

Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 073

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II

WYBRANE METODY MODYFIKACJI ASFALTÓW. Prof. dr hab. inż. Irena Gaweł emerytowany prof. Politechniki Wrocławskiej

Pracownia. Cwiczenie 23

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1134

Transkrypt:

Agnieszka BORZĘCKA, Anna MUSIALIK-PIOTROWSKA* kataliza, platyna, lotne związki organiczne WPŁYW CZASU KONTAKTU NA AKTYWNOŚĆ KATALIZATORA PLATYNOWEGO W REAKCJI UTLENIANIA WYBRANYCH LOTNYCH ZWIĄZKÓW ORGANICZNYCH W artykule przedstawiono preparatykę monolitycznych katalizatorów na bazie Pt oraz wyniki badań ich aktywności w reakcji utleniania wybranych lotnych związków organicznych. Badania skuteczności utleniania LZO prowadzono na pojedynczej kształtce katalizatora przy obciążeniu 10000 h -1 oraz na dwóch monolitach ułożonych szeregowo jeden na drugim przy obciążeniu 10000 i 5000 h -1. Dla tego samego czasu kontaktu, niezależnie od sposobu prowadzenia reakcji na jednym lub dwóch monolitach, uzyskano podobne przereagowanie n heptanu, acetonu i octanu etylu. Reakcja spalania toluenu przebiegała łatwiej na dwóch kształtkach katalizatora i była niezależna od czasu kontaktu, co można tłumaczyć odmiennym mechanizmem utleniania tego związku od pozostałych. 1. WSTĘP Utlenianie katalityczne stanowi jeden ze skuteczniejszych sposobów usuwania lotnych związków organicznych (LZO) z gazów odlotowych zarówno ze źródeł stacjonarnych jak i spalin silnikowych. W skład LZO oprócz węglowodorów aromatycznych i alifatycznych często wchodzą związki tlenopochodne aldehydy, ketony, alkohole, estry. Najwyższą aktywność w tych procesach wykazują katalizatory bazujące na metalach szlachetnych (szczególnie platynie) nanoszonych w niewielkich ilościach (max. 1% mas.) na nośniki, najczęściej γ Al 2 O 3 [1]. Reakcja katalityczna zachodzi na miejscach aktywnych zlokalizowanych w strukturze porowatej warstwy pośredniej. Na etapy procesu katalizy heterogenicznej na kontaktach porowatych składają się reakcje chemiczne i procesy fizyczne [2]. Są to: dyfuzja substratów ze strumienia gazów do powierzchni katalizatora (dyfuzja zewnętrzna); dyfuzja substratów do wnętrza porów (dyfuzja wewnętrzna); * Politechnika Wrocławska, Wydział Inżynierii Środowiska, Instytut Inżynierii Ochrony Środowiska, pl. Grunwaldzki 9, 50-377 Wrocław

Wpływ czasu kontaktu na aktywność katalizatora platynowego w reakcji utleniania 77 adsorpcja substratów na miejscach aktywnych; reakcja chemiczna; dyfuzja produktów ze struktury porowatej do powierzchni zewnętrznej katalizatora; dyfuzja produktów z powierzchni katalizatora do strumienia gazów. Aktywność katalizatorów powinna być badana w takich warunkach, aby szybkość reakcji katalitycznej nie była zależna od wpływu procesów fizycznych (przenoszenia masy i ciepła), lecz była równa szybkości reakcji chemicznej zachodzącej na centrach aktywnych [3]. Parametrami procesu, które wpływają na to, czy zachodzi on w obszarze dyfuzyjnym, w którym dyfuzja reagentów ogranicza ogólną szybkość reakcji, czy w obszarze kinetycznym są strumień objętości gazów, stopień wymieszania reagentów, wielkość ziaren katalizatora, czas kontaktu, temperatura oraz reakcje uboczne, konkurencyjne w stosunku do oczekiwanych [3, 4]. Jeżeli proces prowadzony jest przy małych prędkościach przepływu gazu może to prowadzić do niewystarczającego wymieszania reagentów, co utrudnia ich efektywny transport do centrów aktywnych katalizatora. Również zbyt krótki czas kontaktu między reagentami, a katalizatorem wpływa niekorzystnie na przenoszenie substratów w głąb porów. Na rys. 1 przedstawiono typową zależność stałej szybkości reakcji od temperatury procesu. Rys. 1. Wykres Arrheniusa dla różnych obszarów reakcji; Ea energia aktywacji Na wykresie Arrheniusa (rys. 1) można zauważyć wzrost wpływu dyfuzji ze wzrostem temperatury reakcji [5]. W obszarze dyfuzji zewnętrznej (a) szybkość reakcji jest praktycznie równa szybkości dyfuzji i jest niezależna od temperatury (Ea=0) [3]. Jedynie w niższych temperaturach, w obszarze, gdzie wpływ dyfuzji zewnętrznej i wewnętrznej jest pomijalnie mały (c) można stosować równanie Arrheniusa do obliczeń energii aktywacji reakcji katalitycznej.

78 A. BORZĘCKA, A. MUSIALIK-PIOTROWSKA Problem dyfuzji wewnętrznej związany jest z koniecznością wykorzystania wszystkich miejsc aktywnych, nawet tych znajdujących się wewnątrz struktury porowatej nośnika. W przypadku katalizatorów monolitycznych grubość warstwy pośredniej (γ Al 2 O 3 ) stanowiącej właściwy nośnik katalizatora, w której zlokalizowane są centra aktywne, jest bardzo mała (10 50 μm) [5]. Można przyjąć, że wpływ dyfuzji wewnętrznej w reakcji głębokiego utleniania na katalizatorach monolitycznych jest niewielki. Wadą katalizatorów monolitycznych jest zwykle laminarny charakter ruchu gazu, co może utrudniać proces wymiany masy transport reagentów ze strumienia gazu do powierzchni katalizatora. Obszar wpływu dyfuzji zewnętrznej można określić w testach, w których strumień objętości gazu przepływającego przez reaktor zwiększa się proporcjonalnie do objętości katalizatora, w taki sposób, aby czas kontaktu katalizatora z substratami pozostał stały. W wyniku otrzymuje się zależność konwersji utlenianego związku dla różnych objętości katalizatora przy stałym obciążeniu. Przy braku ograniczeń dyfuzyjnych należy spodziewać się niezmienionych wartości konwersji i szybkości reakcji dla tego samego czasu kontaktu [3, 4]. 2. ZAKRES I METODYKA BADAŃ 2.1. PREPARATYKA KATALIZATORÓW Do badań wykonano dwa katalizatory monolityczne, zawierające ten sam czynnik aktywny katalitycznie platynę. Szkielet katalizatorów wykonano ze stali żaroodpornej typu 00H20J5 o grubości 0,05 mm. Gładkie i plisowane folie zwinięto w walce o średnicy 21 mm i wysokości 20 mm, długość boku kanaliku wynosiła 2 mm. Następnie nośnik odtłuszczono i trawiono w 10% roztworze kwasu siarkowego (VI). Jako warstwę pośrednią zastosowano γ Al 2 O 3, który nanoszono metodą zol żel. Następnie nośniki suszono w 120 C przez 1h i kalcynowano w 400 C przez 3h. Ilość γ Al 2 O 3 wynosiła ok. 1,7% mas. Również platynę nanoszono metodą zol żel. Jako prekursor zastosowano azotan platyny, a jego ilość dobrano w taki sposób, aby zawartość platyny w gotowym katalizatorze wynosiła 0,05% mas. Po naniesieniu czynnika aktywnego katalizatory suszono w 120 C przez 1 h i kalcynowano w 500 C przez 3 h. 2.2. TESTY AKTYWNOŚCI KATALIZATORÓW Aktywność wykonanych katalizatorów przebadano w reakcji utleniania wybranych LZO w reaktorze kwarcowym o średnicy 21 mm ogrzewanym elektrycznie. Jako

Wpływ czasu kontaktu na aktywność katalizatora platynowego w reakcji utleniania 79 V 1 = 70 dm 3 /h), co odpowiada cza- przedstawiciela węglowodorów alifatycznych wybrano n heptan, aromatycznych toluen, a związków tlenopochodnych aceton i octan etylu. Stężenie utlenianego związku wynosiło 1 g/m 3 (± 0,2 g/m 3 ), temperaturę reakcji zmieniano w zakresie 180 400 C, a obciążenie katalizatora wynosiło 10000 lub 5000 h -1. Stężenie utlenianych związków analizowano chromatograficznie na GC Perkin Elmer 3920 z detektorem typu FID. Warunki analizy dobrano tak, aby wykryć ewentualne produkty pośrednie reakcji, głównie aldehyd octowy. Testy składały się z trzech etapów: 1. przebadanie skuteczności utleniania wytypowanych związków na każdej kształtce katalizatora osobno przy obciążeniu 10000 h -1 ( sowi kontaktu τ= 0,356 s; 2. przebadanie skuteczności przereagowania każdego ze związków na dwóch katalizatorach równocześnie, umieszczonych szeregowo, co przy podwojeniu strumienia objętości gazów ( τ = τ*; 3. przebadanie skuteczności przereagowania każdego związku na dwóch katalizatorach (jak w p. 2) przy podwojeniu czasu kontaktu (2τ*) uzyskanego przez obniżenie strumienia objętości gazów do, co powodowało również zmianę obciążenia do 5000 h -1. V 2 =2 V 1 ), gwarantowało zachowanie tego samego czasu kontaktu V 1 3. WYNIKI BADAŃ W badaniach wstępnych stwierdzono, że obydwa katalizatory platynowe wykazują bardzo zbliżoną aktywność w utlenianiu wszystkich wybranych LZO. Wyniki badań skuteczności przereagowania węglowodorów i pochodnych tlenowych przedstawiono odpowiednio na rys. 2 i 3, natomiast w tabeli 1 zestawiono temperatury 50 i 90% konwersji utlenianych związków. Katalizatory wykazały wyższą aktywność w utlenianiu obu węglowodorów niż pochodnych tlenowych, co jest cechą charakterystyczną dla platyny [6]. Reaktywność spalanych związków malała zgodnie z szeregiem: toluen > n heptan > aceton > octan etylu Najłatwiej utleniającym się związkiem był toluen. W najmniej korzystnych warunkach prowadzenia reakcji na pojedynczej kształtce przy obciążeniu wynoszącym 10000 h -1 T 50% i T 90% wynosiły odpowiednio 215 i 250 C. Wydłużenie drogi przepływu reagentów poprzez dołożenie drugiej kształtki katalizatora spowodowało wzrost skuteczności układu. Niezależnie od obciążenia i czasu kontaktu temperatury

80 A. BORZĘCKA, A. MUSIALIK-PIOTROWSKA 50 i 90% przereagowania były niższe niż dla pojedynczego katalizatora i wynosiły odpowiednio 200 i 225 C (rys. 2). Dwukrotny wzrost czasu kontaktu, uzyskany poprzez zmniejszenie obciążenia katalizatora do 5000 h -1 nie spowodował obniżenia tych temperatur. Może to sugerować, że na przebieg reakcji utleniania toluenu większy wpływ ma powierzchnia kontaktu niż czas. Należy podkreślić laminarny charakter przepływu gazu przez kanaliki monolitu (dla strumienia objętości gazu 70 dm 3 /h liczba Reynoldsa wynosi 85). Taki przebieg reakcji może sugerować, że toluen reaguje z fazy gazowej z tlenem zaadsorbowanym na miejscach aktywnych katalizatora, co stwierdzono również w innych badaniach [7]. W przypadku pozostałych związków obserwowano odmienny niż dla toluenu przebieg procesu. Nie stwierdzono zmiany skuteczności konwersji w badaniach prowadzonych przy tym samym czasie kontaktu (τ = τ*). Jego podwojenie do 2τ*, uzyskane poprzez zmniejszenie obciążenia do 5000 h -1, spowodowało obniżenie temperatury zainicjowania reakcji (wyrażanej jako T 50% ) o 10 15 deg zarówno dla n heptanu, jak i obu pochodnych tlenowych, a T 90% o 15 35 deg. Na utlenianie tych związków istotny wpływ ma czas kontaktu, co może sugerować mechanizm utleniania ich poprzez reakcję zaadsorbowanych reagentów na miejscach aktywnych katalizatora. Rys. 2. Zależność skuteczności przereagowania toluenu oraz n-heptanu od temperatury reakcji dla różnych czasów kontaktu τ

Wpływ czasu kontaktu na aktywność katalizatora platynowego w reakcji utleniania 81 Rys. 3. Zależność skuteczności przereagowania acetonu oraz octanu etylu od temperatury reakcji dla różnych czasów kontaktu τ; stężenie aldehydu octowego w gazach poreakcyjnych (produkt uboczny utleniania octany etylu) Tabela 1. Temperatury ( C) 50% i 90% konwersji LZO na wykonanych katalizatorach Jedynie utlenianie octanu etylu przebiegało z wytworzeniem aldehydu octowego, typowego produktu niepełnego spalania, szczególnie połączeń tlenopochodnych (rys. 3) [8, 9]. Aldehyd może tworzyć się bezpośrednio z octanu, bądź w wyniku częściowej hydrolizy z wytworzeniem alkoholu etylowego, który następnie utleniany jest poprzez aldehyd octowy (AO) do CO 2 i wody wg schematu [10]: W temperaturze 90% konwersji octanu etylu (T 90% = 350 C) stężenia aldehydu octowego w gazach poreakcyjnych dla czasu kontaktu τ = τ* wyniosło 0,010 i 0,006 g/m 3 odpowiednio na jednym i dwóch katalizatorach. Różnica stężeń

82 A. BORZĘCKA, A. MUSIALIK-PIOTROWSKA AO, pomimo tych samych wartości czasu kontaktu, może być tłumaczona większą powierzchnią kontaktu, a co za tym idzie, większą dostępnością miejsc aktywnych dla reagentów. Wydłużenie czasu kontaktu do 2τ* spowodowało obniżenie stężeń AO w całym zakresie przebadanych temperatur. W warunkach 90% przereagowania octanu etylu (T 90% = 335 C) aldehydu nie wykryto, jego najwyższe stężenie 0,008 g/m 3 stwierdzono w najniższej przebadanej temperaturze 265 C w warunkach 25% przereagowania octanu, a powyżej 340 C nie wykrywano go w gazach poreakcyjnych. 4. WNIOSKI Na podstawie przeprowadzonych badań stwierdzono, że podczas utleniania par acetonu, octanu etylu i n heptanu wydłużony czas kontaktu powoduje zwiększenie aktywności katalizatora i obniżenie temperatury zarówno zainicjowania reakcji, jak też 90% konwersji. Utlenianie tych związków na jednej bądź dwóch kształtkach, ale z zachowaniem jednakowego czasu kontaktu nie zmieniło przereagowania związku. Wyniki badań wskazują na niewielki wpływ dyfuzji zewnętrznej na ogólną szybkość reakcji utlenianych związków. Odmienny przebieg ma utlenianie toluenu. Przypuszczalnie reaguje on z fazy gazowej z tlenem zaadsorbowanym na miejscach aktywnych katalizatora, wg mechanizmu Rideal Eley a, co znajduje potwierdzenie w literaturze [7, 11]. LITERATURA [1] BOHNET M., Ullmann s encyclopedia of industrial chemistry, wydanie VI, Weinheim: Wiley- VCH (2003) Vol. 4 Automobile Exhaust Control 225-239, Vol. 27 Platinum Group Metals and Compounds Heterogeneous Catalysts 674 677. [2] KLAEWKLA R., AREND M., HOELDERICH W., A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems, Mass Transfer - Advanced Aspects (2011) InTech. [3] GRZYBOWSKA-ŚWIERKOSZ B., Elementy Katalizy Heterogenicznej, Wydawnictwo Naukowe PWN, Warszawa (2003). [4] NAJBAR M., Fizykochemiczne metody badań katalizatorów kontaktowych, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków (2000). [5] JOSHI S. Y., HAROLD M., BALAKOTAIAH V., Overall mass transfer coefficients and controlling regimes in catalytic monoliths, Chemical Engineering Science 65 (2010) 1729 1747. [6] MUSIALIK PIOTROWSKA A., Wpływ platyny na aktywność perowskitu LaMnO 3 w utlenianiu mieszanin lotnych związków organicznych, Ochrona powietrza w teorii i praktyce, wyd. IPIŚ PAN Zabrze (2008) 143 150. [7] BURGOS N., PAULIS M., ANTXUSTEGI M., MONTES M., Deep oxidation of VOC mixtures with platinum supported on Al 2 O 3 /Al monoliths, Applied Catalysis B: Environmental 38 (2002) 251 258.

Wpływ czasu kontaktu na aktywność katalizatora platynowego w reakcji utleniania 83 [8] BORZĘCKA A., MUSIALIK-PIOTROWSKA A., Badania aktywności monolitycznego katalizatora perowskitowego LaMnO 3 w reakcji utleniania wybranych lotnych związków organicznych, Inżynieria i Aparatura Chemiczna (2013) R. 52, nr 5, s. 399-400. [9] SAHEB V., HOSSEINI S., Theoretical studies on the kinetics and mechanism of multi-channel gasphase unimolecular reaction of ethyl acetate, Computational and Theoretical Chemistry (2013) 1009, 43 49. [10] BLASIN-AUBE V., BELKOUCH J., MONCEAUX L., General study of catalytic oxidation of various VOCs over La 0.8 Sr 0.2 MnO 3+x perovskite catalyst influence of mixture, Applied Catalysis B: Environmental 43 (2003) 175 186. [11] AGUERO F., BARBERO B., GAMBARO L., CADUS L., Catalytic combustion of volatile organic compounds in binary mixtures over MnO x /Al 2 O 3 catalyst, Applied Catalysis B: Environmental 91 (2009) 108 112. EFFECT OF THE CONTACT TIME ON THE ACTIVITY OF PLATINUM CATALYSTS IN THE OXIDATION OF SELECTED VOLATILE ORGANIC COMPOUNDS The article presents the preparations of monolithic catalysts based on Pt and their activity in the oxidation of chosen volatile organic compounds. The tests were carried out on the single catalyst with a load of 10000 h -1 and the two monoliths laid one above the other with a load of 10000 and 5000 h -1. Regardless of whether the reaction was conducted on one or two monoliths, the same contact time resulted the similar activity of n heptane, acetone and ethyl acetate. The reaction of toluene combustion proceeded more easily on two catalyst and was independent from the contact time. It could be explained by a different mechanism of oxidation of this compound from others.