Ćwiczenie A1 : Linia długa

Podobne dokumenty
Stosując tzw. równania telegraficzne możemy wyznaczyć napięcie i prąd w układzie: x x. x x

A-1. Linia długa (opóźniająca)

A3 : Wzmacniacze operacyjne w układach liniowych

Ćwiczenie A2 : Filtry bierne

Badanie przebiegów falowych w liniach długich

Badanie przebiegów falowych w liniach długich

A6: Wzmacniacze operacyjne w układach nieliniowych (diody)

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

WSTĘP DO ELEKTRONIKI

Bierne układy różniczkujące i całkujące typu RC

Wzmacniacze operacyjne

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

A-2. Filtry bierne. wersja

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego

Własności dynamiczne przetworników pierwszego rzędu

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego

u(t)=u R (t)+u L (t)+u C (t)

Rys. 1. Wzmacniacz odwracający

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru

I= = E <0 /R <0 = (E/R)

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Badanie działania bramki NAND wykonanej w technologii TTL oraz układów zbudowanych w oparciu o tę bramkę.

Wzmacniacz operacyjny

Analiza właściwości filtra selektywnego

Ćwiczenie - 7. Filtry

POLITECHNIKA POZNAŃSKA

WZMACNIACZ NAPIĘCIOWY RC

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

PROFESJONALNY MULTIMETR CYFROWY ESCORT-99 DANE TECHNICZNE ELEKTRYCZNE

Badanie obwodów z prostownikami sterowanymi

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Tranzystor bipolarny LABORATORIUM 5 i 6

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

Zaprojektowanie i zbadanie dyskryminatora amplitudy impulsów i generatora impulsów prostokątnych (inaczej multiwibrator astabilny).

PRACOWNIA ELEKTRONIKI

Ćwiczenie 22. Temat: Przerzutnik monostabilny. Cel ćwiczenia

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

A4: Filtry aktywne rzędu II i IV

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych

U 2 B 1 C 1 =10nF. C 2 =10nF

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1

Filtry aktywne filtr górnoprzepustowy

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

4.2 Analiza fourierowska(f1)

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor)

Państwowa Wyższa Szkoła Zawodowa

LABORATORIUM OBWODÓW I SYGNAŁÓW. Stany nieustalone

Katedra Elektrotechniki Teoretycznej i Informatyki

Tranzystory w pracy impulsowej

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Filtry aktywne filtr środkowoprzepustowy

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

Podstawowe układy pracy tranzystora bipolarnego

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

Modulatory PWM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE

5 Filtry drugiego rzędu

WZMACNIACZ OPERACYJNY

Laboratorium Elektroniczna aparatura Medyczna

Czym jest oporność wejściowa anteny i co z tym robić?

Przyjazna instrukcja obsługi generatora funkcyjnego Agilent 33220A

Laboratorium Telewizji Cyfrowej

Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego

Instrukcja do ćwiczenia laboratoryjnego nr 6b

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Analiza właściwości filtrów dolnoprzepustowych

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych

Szeregowy obwód RLC. u(t)=u R (t)+u L (t)+u C (t) U L = R U U L C U C DOBROĆ OBWODU. Obwód rezonansowy szeregowy - częstość rezonansowa = 1.

PRACOWNIA ELEKTRONIKI

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

2.6.3 Interferencja fal.

Ćwiczenie nr 65. Badanie wzmacniacza mocy

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRACOWNIA ELEKTRONIKI

Wzmacniacze różnicowe

Oscyloskop. Dzielnik napięcia. Linia długa

Laboratorium Podstaw Elektrotechniki i Elektroniki

Podstawowe zastosowania wzmacniaczy operacyjnych

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1

Ćw. 8 Bramki logiczne

Badanie diod półprzewodnikowych

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

Badanie właściwości multipleksera analogowego

Pojęcia podstawowe obwodów prądu zmiennego

Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi:

Ćwiczenie 16. Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC

Transkrypt:

Ćwiczenie A1 : Linia długa Jacek Grela, Radosław Strzałka 19 kwietnia 2009 1 Wstęp 1.1 Wzory Podstawowe wzory i zależności które wykorzystywaliśmy w trakcie badania linii: 1. Rezystancja falowa Gdzie: L indukcyjność, C pojemność dla pojedynczych ogniw. R f = L/C (1) 2. Współczynnik odbicia ρ = R/R f 1 R/R f + 1 Gdzie: R obciążenie końca linii, R f rezystancja falowa zdefiniowana wzorem powyżej. W zależności od wartości rezystancji obciążającej uzyskujemy trzy przypadki: ˆ dopasowanie linii (ρ = 0, R = R f ) - fala przechodzi bez odbicia ˆ odbicie z fazą przeciwną (ρ = 1, R = 0) - wygaszenie w wyniku superpozycji fali biegnącej i odbitej ˆ odbicie ze zgodną fazą (ρ = 1, R = ) - superpozycja konstruktywna, podwojenie sygnału na końcu linii 3. Parametry czasowe Dla sztucznej linii opóźniającej złożonej z łańcucha n ogniw możemy zdefiniować: Czas opóźnienia t 0 : t 0 = n LC (3) Czas narastania impulsu t r : Czas narastania w związku z częstotliwością graniczną f g : t r = 1.1 n 1/3 LC (4) t r = 1.1 πf g (5) (2) Związek czasu narastania ze stałą czasową: Złożenie czasów narastania: t r = 2.2τ (6) t 2 out = t 2 in + t 2 wew (7) 1

sectionćwiczenie 1.2 Impulsy prostokątne o czasie mniejszym niż opóźnienie linii W tym podpunkcie zbadaliśmy linię długą posługując się modelem utworzonym z n = 50 ogniw LC (L = 100 [µh], C = 100 [pf ]). Ze wzorów (1) i (3) wyznaczyliśmy czas t 0 = 5 [µs] oraz rezystancję falową R f = 1 [kω]. Nasz układ składał się z generatora napięcia o rezystancji wewnętrznej R w = 50 [Ω] więc w układzie linii ustawiamy rezystancję wejściową 950 [Ω]. Wykonaliśmy pomiar w dziewięciu wariantach (dla trzech charakterystycznych oporów w trzech punktach linii). Na wejściu podaliśmy sygnał prostokątny o amplitudzie A = 4.28 [V ] i czasie trwania 4 [µs]. W wyniku dopasowania na wejściu na linii długiej odkłada się jedynie połowa napięcia (wynika to z dzielnika napięć). Poniżej przedstawiamy schematyczne obrazy z oscyloskopu: 1.2.1 Linia dopasowana Rys.1 Linia dopasowana, R = R f. Z Rys.1 odczytujemy wartość uzyskaną opóźnienia linii t 0 = 5.16 [µs] który zgadza się mniej więcej z przewidywaniem teoretycznym. 2

1.2.2 Linia wygaszona Rys.2 Wygaszenie, R =. Z Rys.2 wnioskujemy, że linia nie jest idealna. Występują na niej straty energii przejawiające się w spadku amplitudy sygnału po przejściu przez linię i poszerzeniu impulsu odbitego. Z rysunku odnoszącego się do początku linii odczytujemy, że odległość czasowa między impulsami wynosi 4.08 + 6.12 = 10.2 [µs] co stanowi podwojoną wartość t 0. Jest to zrozumiałe, bo fala odbita przechodzi dodatkowo jeszcze raz przez linię. Z rysunku pochodzącego ze środka linii widzimy, że natrafiliśmy dokładnie na faktyczny środek. Wnioskujemy tak z przesunięcia impulsu pierwotnego o połowę czasu opóźnienia (2.6 [µs]). Impuls odbity powraca do nas po czasie równym 4.08 + 1.16 [µs] czyli czasie t 0. W ostatnim wariancie (pomiarze na końcu linii) mamy do czynienia z podwojeniem sygnału (4.06 2 2.20 [V ]). Możemy także odczytać wartość t 0 = 5.24 [µs]. 3

1.2.3 Linia wzmocniona Rys.3 Wzmocnienie, R = 0. Dyskusja Rys.3 jest podobna do tej przeprowadzonej powyżej, z tym wyjątkiem, że faza fali odbitej jest przeciwna. Z tego powodu na końcu linii dochodzi do wygaszenia, jednakże zauważamy sygnały resztkowe. Wzięły się one z faktu, że impuls powracający jest nieco szerszy niż pierwotny i nastąpiło dodatkowe przesunięcie. 1.3 Impulsy prostokątne o czasie znacznie większym niż opóźnienie linii W tym przypadku ustawiliśmy czas trwania impulsu na 15.6 [µs], czyli więcej niż t 0. Amplituda sygnału wynosi wciąż A = 4.28 [V ]. Impuls badamy jedynie na początku linii. Rys.4 R = 0. Na Rys.4 w dalszym ciągu obserwujemy straty sygnału na linii, możemy odczytać ich wartość jako 0.48 [V ] po przejściu przez linię (różnica amplitudy fali pierwotnej i odbitej). Czas opóźnienia jest równy 10.3+5.28 = 15.58 [µs]. Wynika to z faktu, że fala pierwotna interferuje z falą odbitą zanim dobiegnie do początku linii. Z rysunku można także, analogicznie do przypadków dyskutowanych w 2.1, odczytać wartość 10.2 = 2 t 0 [V ]. 4

Rys.5 R =. Na Rys.5 mamy sytuację, gdy powracająca fala ma zgodną fazę więc zamiast wygaszenia w obszarze środkowym mamy wzmocnienie. Dalsza dyskusja jest analogiczna. Rys.6 Efekt pojemnościowy. Podczas badania efektu pojemnościowego czas trwania sygnału ustawiamy na maksymalnie długi (w idealnym przypadku nieskończony). Obserwowane na Rys.6 schodki powstają w wyniku nakładania się kolejnych odbitych sygnałów do fali na wejściu. Szerokość każdego jest taka sama i wynosi 2t 0. Rezystancja wejściowa w tym przypadku musi być dużo większa od rezystancji falowej R f, w naszym przypadku wyniosła 10 [kω]. W takim razie, na naszej linii odkłada się napięcie A 0 = 1/11A (z dzielnika napięć). To jest stały sygnał wejściowy, który za każdym razem będzie składową sygnału odczytywanego. Odbicie od początku linii obliczymy ze wzoru (2), czyli ρ = 10/1 1 10/1+1 = 9 11. W wyniku kolejnych odbić na końcu linii zbierany sygnał A n będzie zależał od sygnału go poprzedzającego. Wydaje się, że powinien on być powiększony o wyraz ρa n 1, bo taka jest wartość amplitudy sygnału wracającego po odbiciu. Jednak w takim przypadku 2-krotnie dodawalibyśmy składową odbitą każdej poprzedzającej składowej A n 2. Dlatego szereg, którym opiszemy sumaryczny sygnał, jest dany wzorem rekurencyjnym: A n = A n 1 + ρ(a n 1 A n 2 ) Można by mieć obawę, czy nie odjęliśmy za dużo, np. n trzeciej składowej. Składowe A n 1, A n 2 w powyższej relacji obie zawierają wyraz A n 3, co się kompensuje. Podobnie dla dalszych wyrazów. Problem jest tylko przy pierwszej składowej w naszym szeregu: A 1 = A 0 + ρ(a 0 A?? 1). Pierwsza składowa będzie, owszem, zawierała A 0 oraz ρa 0, ale wejdzie do niej drugi raz A 0. Poniżej zapisujemy kolejne wyrazy rekurencji i obliczone przy ich pomocy wartości amplitudy po kolejnych stopniach odbić: A 0 = 1 11A = 0.39 [V ] A 1 = A 0 + ρa 0 + A 0 = 1.10 [V ] A 2 = A 1 + ρ(a 1 A 0 ) = (A 0 + ρa 0 + A 0 ) + ρ(ρa 0 + A 0 ) = 1.68 [V ] A 3 = A 2 + ρ(a 2 A 1 ) = [(A 0 + ρa 0 + A 0 ) + ρ(ρa 0 + A 0 )] + ρ(ρ(ρa 0 + A 0 )) = 2.15 [V ] A 4 = A 3 + ρ(a 3 A 2 ) = {[(A 0 + ρa 0 + A 0 ) + ρ(ρa 0 + A 0 )] + ρ(ρ(ρa 0 + A 0 ))} + ρ(ρ(ρ(ρa 0 + A 0 ))) = 2.53 [V ] A 5 = A 4 + ρ(a 4 A 3 ) = (...) = 2.83 [V ] Ogólnie: A n = { A 0 n = 0 2A 0 n 1 i=0 ρi + ρ n A 0 n 0 Co w granicy n daje amplitudę asymptotyczną równą wejściowej amplitudzie sygnału A. Jeżeli teraz przyjrzymy się wartościom uzyskanym w pomiarze, zauważymy bardzo dobrą zgodność. Odchylenia są rzędu 1-2% wartości. Tak więc zaobserwowaliśmy efekt pojemnościowy w naszej linii długiej, co potwierdza występowanie schodkowego wzrostu amplitudy sygnału po kolejnych odbiciach, który asymptotycznie zmierza do ustalonej wartości - czyli zupełnie podobnie jak w przypadku zależności U(t) dla układu z kondensatorem w obwodzie. 5

1.4 Efekty spowodowane nieidealnymi własnościami przewodu W tej części badaliśmy straty sygnału w rzeczywistym układzie linii długiej. Ze względu na niezerową rezystancję linii i jej ograniczone pasmo przenoszenia, sygnał odbity staje się zniekształcony względem padającego. Pomiar zaproponowany w tym punkcie wykonaliśmy w ćw. 2.2 dla linii dopasowanej na wejściu i zwartej na końcu. Suma amplitud fali padającej i odbitej powinna być zero. Jednak zauważyliśmy dodatnią pozostałość - 0.48 [V]. Pomiar powtórzyliśmy i tym razem również nie wygasła do zera - pozostała wartość ok. 0.5 [V]. Zatem linia ma opory. W takim razie tłumienie k = U1 A 0 gdzie U 1 i A 0 oznaczają kolejno amplitudę po przejściu przez linię i amplitudę początkową (obydwie wielkości są widoczne na Rys.4 ). Tłumienie k = 1.8 [db]. W celu zbadania efektu częstotliwościowego zmierzyliśmy czasy narastania impulsu dla fali padającej i odbitej. Dokonaliśmy tego dla zbocza o szerokości odpowiadającej 10% i 90% wartości amplitudy. Otrzymane czasy narastania: ˆ Fala padająca: t rin = 97 [ns] ˆ Fala odbita: t rout = 387 [ns] Stałe czasowe możemy obliczyć ze związku (6). Teoretycznie, czas narastania t rout jest (wzór (4)) równy t rteor = 405 [ns] tak więc zgodność obu podejść jest dobra. Widzimy, że czas narastania impulsu odbitego jest 4-krotnie większy niż padającego. Zatem impuls staje się bardziej rozmyty. Na oscyloskopie widzimy go jako szeroki, o łagodniejszych zboczach. Ze wzoru (7) i (5) wyznaczamy częstotliwość graniczną: 1.1 f g = π t 2 rout t 2 rin = 0.93 [MHz] 1.5 Zbadanie kabla koncentrycznego Ostatnim ćwiczeniem które wykonaliśmy było zbadanie kabla koncentrycznego - wyznaczenie jego charakterystycznej rezystancji falowej, czasów narastania impulsów oraz jednostkową indukcyjność i pojemność. Do tych celów użyliśmy prostokątnego sygnału o amplitudzie A = 4.28 [V ] oraz czasie trwania t = 100 [ns]. Obiektem badań był kabel o długości d = 66.6 [m]. Wykorzystując brak odbicia sygnału uzyskaliśmy rezystancję falową R f = 79.314 [Ω]. Czas opóźnienia wyniósł t 0 = 670 [ns]. Wyznaczyliśmy również opóźnienie na 1 metr bieżący kabla t 01 = t 0 2d = 5 [ns/m]. Podobnie jak w podpunkcie 2.3, wyznaczyliśmy czasy narastania impulsów na wejściu i wyjściu układu równe τ in = 11.6 [ns] oraz τ out = 29.6 [ns]. Są one znacznie mniejsze niż w linii sztucznej, świadczy to o lepszej charakterystyce kabla koncentrycznego. Częstotliwość graniczna (ze wzoru (5)) wyniosła f g = 5.37 [MHz]. Tłumienie wynikające ze stratności linii obliczyliśmy jako różnicę amplitudy impulsu na wejściu U in = 2.46 [V ] i na wyjściu U out = 2.27 [V ]. Jest ono równe V = 0.19 [V ]. W zestawieniu z wynikami dla linii sztucznej, sygnał ulega mniejszemu osłabieniu. Tłumienie sygnału na 100 metrów bieżących wyniosło k = 1.05 [db/100m]. Ostatnią częścią tego podpunktu jest wyznaczenie parametrów L oraz C. Wykonamy to poprzez zestawienie w układ równań (1) oraz (3). Należy przy tym pamiętać, że zmierzone w doświadczeniu wielkości reprezentują parametry całego obwodu (korzystamy z R f oraz t 0 ). Do powyższych wzorów należy wstawić gęstości liniowe owych. Tworzy to układ równań: { R f = L/C t 0 /2 = d LC Obranie połowy czasu t 0 bierze się z tego, że zmierzony czas jest przejściem tam i z powrotem przez linię. Po wykonaniu obliczeń uzyskujemy jednostkowe wartości indukcyjności i pojemności: { L = 3.26 [µh] C = 0.52 [nf ] 6