Oznaczenia:
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa w najgorszym przypadku.
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa w najgorszym przypadku.
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa w najgorszym przypadku. Gwarancja, że algorytm nigdy nie będzie działał dłużej
Warto pamiętać! Może się zdarzyć, że algorytm o pesymistycznej złożoności czasowej rzędu nlgn będzie dla większości danych wejściowych działał wolniej niż algorytm o pesymistycznym czasie działania rzędu n2. Istnieją algorytmy o pesymistycznej złożoności czasowej rzędu wykładniczego, które często działają szybciej niż algorytm o złożoności wielomianowej, a nawet liniowej (np. tzw. metoda simplex programowania liniowego).
Miara wrażliwości pesymistycznej algorytmu bada, na ile wielkość Tmax(n) odzwierciedla rzeczywisty czas działania algorytmu.
Zachowanie algorytmu dla losowych danych wejściowych określa średnia (lub oczekiwana) złożoność.
Zachowanie algorytmu dla losowych danych wejściowych określa średnia (lub oczekiwana) złożoność.
Zachowanie algorytmu dla losowych danych wejściowych określa średnia (lub oczekiwana) złożoność. Przypomnienie!
Podsumowanie: Miara wrażliwości pesymistycznej i miara wrażliwości oczekiwanej informują, jak bardzo zachowanie algorytmu dla rzeczywistych danych wejściowych może odbiegać od zachowania opisanego za pomocą pesymistycznej i oczekiwanej złożoności czasowej. Im większe są te wartości, tym algorytm jest bardziej wrażliwy na dane wejściowe.
Przykład: Rozważmy zbiór danych ZDWn jako n-wyrazowych ciągów uporządkowanych liczb naturalnych. Rozważmy dalej typowy algorytm w rodzaju dziel i zwyciężaj sprawdzenia, czy liczba naturalna x jest elementem ciągu zdw ZDWn.
Przykład: Rozważmy zbiór danych ZDWn jako n-wyrazowych ciągów uporządkowanych liczb naturalnych. Rozważmy dalej typowy algorytm w rodzaju dziel i zwyciężaj sprawdzenia, czy liczba naturalna x jest elementem ciągu zdw ZDWn. Rozwiązanie: Przyjmijmy, że ilość n elementów ciągu {a1,a2, an} jest potęgą dwójki, czyli n=2k, gdzie k jest pewną liczba naturalną. Sprawdzamy, czy x==an/2. Jeśli tak, to algorytm kończy działanie, jeśli nie, to po sprawdzeniu, że x<an/2 przechodzimy do przeszukania lewej połowy ciągu o ilości elementów równej n/2; jeśli spełniona jest nierówność przeciwna, to przeszukujemy prawą połowę ciągu. Maksymalną pesymistyczną liczbę porównań otrzymamy, gdy kolejne zagłębienia rekurencyjne doprowadzą do zbioru dwuelementowego, dla którego dwa porównania dadzą ostateczną odpowiedź dla zadania rozwiązywanego tym algorytmem.
Zatem dla Otrzymujemy: Tmax(n)=Tmax(n/2)+2, gdzie 2 stanowią dwa dodatkowe porównania na każdym etapie.
Zatem dla Otrzymujemy: Tmax(n)=Tmax(n/2)+2, gdzie 2 stanowią dwa dodatkowe porównania na każdym etapie. Dostajemy po rozwinięciu postać funkcji pesymistycznej złożoności czasowej: Tmax(n)=Tmax(n/2)+2=Tmax(2k-1)+2=Tmax(2k-2)+2+2= = =Tmax(2k-(k-1))+(k-1)*2=Tmax(2)+(k-1)*2=2+(k-1)*2=2*k.
Zatem dla Otrzymujemy: Tmax(n)=Tmax(n/2)+2, gdzie 2 stanowią dwa dodatkowe porównania na każdym etapie. Dostajemy po rozwinięciu postać funkcji pesymistycznej złożoności czasowej: Tmax(n)=Tmax(n/2)+2=Tmax(2k-1)+2=Tmax(2k-2)+2+2= = =Tmax(2k-(k-1))+(k-1)*2=Tmax(2)+(k-1)*2=2+(k-1)*2=2*k. Ponieważ k=log2n, zatem Tmax(n)=2*(log2n)
Policzmy teraz pesymistyczną wrażliwość tego algorytmu. Przypomnijmy, że
Policzmy teraz pesymistyczną wrażliwość tego algorytmu. Przypomnijmy, że Jest to zatem kres górny zbioru liczb, które powstają jako różnice ilości operacji dominujących. Zatem od liczby największej z możliwych należy odjąć najmniejszą z możliwych, żeby otrzymać taki kres górny. Ponieważ najmniejszą ilością porównań dla dowolnego n jest jedno porównanie, a największa ilość wyraża się obliczoną właśnie Tmax(n)=2*(log2n), to = =2*(log2n)-1
Policzmy teraz pesymistyczną wrażliwość tego algorytmu. Przypomnijmy, że Jest to zatem kres górny zbioru liczb, które powstają jako różnice ilości operacji dominujących. Zatem od liczby największej z możliwych należy odjąć najmniejszą z możliwych, żeby otrzymać taki kres górny. Ponieważ najmniejszą ilością porównań dla dowolnego n jest jedno porównanie, a największa ilość wyrażą się obliczoną właśnie Tmax(n)=2*(log2n), to = =2*(log2n)-1 Pesymistyczna wrażliwość złożoności czasowej jest zatem duża i możemy się spodziewać dużej zmienności złożoności obliczeniowej.
Policzmy teraz typową wartość złożoności obliczeniowej, czyli dla losowo wybranych n liczb. Przypomnijmy:
Policzmy teraz typową wartość złożoności obliczeniowej, czyli dla losowo wybranych n liczb. Przypomnijmy: Określmy kolejno elementy tej definicji: n={zdw ZDWn} zbiór zdarzeń elementarnych, Xn zmienna losowa, której wartością jest l(zdw)- liczba operacji dominujących na n, pnk rozkład zmiennej losowej Xn, czyli prawdopodobieństwo, że dla danych wejściowych rozmiaru n algorytm wykona k operacji dominujących, tzn. pnk=p{zdw n: l(zdw)=k}, przy k całkowitym, k [1, 2*(log2n) ].
Ponieważ nasze prawdopodobieństwo pnk nie zależy od k, więc pnk=1/(2*log2n) dla każdego całkowitego k [1, 2*(log2n)]. Stąd k 2*log2 n (k * p nk k 1 ) k 2*log2 n (k * (1 /( 2 * log k 1 2 n))) (1 / 2 * log 2 n) * 2n (1 /( 2 * log 2 n)) * 1 2*log * (2 * log 2 n) 2 1 2*log2 n * (1 2 * log 2 n) * log 2 n 12 log 2 n k 2*log2 n k k 1
Ponieważ nasze prawdopodobieństwo pnk nie zależy od k, więc pnk=1/(2*log2n) dla każdego całkowitego k [1, 2*(log2n)]. Stąd k 2*log2 n (k * p nk k 1 ) k 2*log2 n (k * (1 /( 2 * log k 1 2 n))) (1 / 2 * log 2 n) * k 2*log2 n 2n (1 /( 2 * log 2 n)) * 1 2*log * (2 * log 2 n) 2 1 2*log2 n * (1 2 * log 2 n) * log 2 n 12 log 2 n Zauważmy, że Tśr(n) jest o ½ większe od połowy Tmax(n). k k 1
Obliczmy na koniec miarę wrażliwości oczekiwanej algorytmu.
Obliczmy na koniec miarę wrażliwości oczekiwanej algorytmu. ( n) (k T k 0 śr 2 (n)) pnk W naszym przypadku sumujemy po całkowitych k [1, 2*(log2n)]. Stąd otrzymujemy wyniki:
( n) 2*log2 n 2 ( k T ( n )) pnk śr k 1... 1 12 (4(log 2 n) 2 1) 2*log2 n 2 ( k ( 1 / 2 log n )) 2 k 1 Szczegółowe rachunki na tablicy 1 2*log2 n
( n) 2*log2 n 2 ( k T ( n )) pnk śr k 1... 1 12 (4(log 2 n) 2 1) 2*log2 n 2 ( k ( 1 / 2 log n )) 2 k 1 Szczegółowe rachunki na tablicy Otrzymane wyniki są może mało czytelne, ale można je przybliżać, wykorzystując oszacowania asymptotyczne. Takie oszacowania zostaną podane później 1 2*log2 n
Służą do wyznaczenia liczby operacji dominujących