Kompensator PID. 1 sω z 1 ω. G cm. aby nie zmienić częstotliwości odcięcia f L. =G c0. s =G cm. G c. f c. /10=500 Hz aby nie zmniejszyć zapasu fazy

Podobne dokumenty
Analiza ustalonego punktu pracy dla układu zamkniętego

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Sterowane źródło mocy

Cyfrowe sterowanie przekształtników impulsowych lato 2012/13

Część 1. Transmitancje i stabilność

Sterowanie przekształtników elektronicznych zima 2011/12

Część 4. Zagadnienia szczególne

ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania

( 1+ s 1)( 1+ s 2)( 1+ s 3)

Część 4. Zagadnienia szczególne. b. Sterowanie prądowe i tryb graniczny prądu dławika

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ

Automatyka i robotyka

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Technika regulacji automatycznej

Dobór współczynnika modulacji częstotliwości

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Stabilność. Krzysztof Patan

Liniowe układy scalone w technice cyfrowej

Automatyka i robotyka

Wzmacniacze operacyjne

Nanoeletronika. Temat projektu: Wysokoomowa i o małej pojemności sonda o dużym paśmie przenoszenia (DC-200MHz lub 1MHz-200MHz). ang.

WSTĘP DO ELEKTRONIKI

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2

Ujemne sprzężenie zwrotne, WO przypomnienie

Filtry aktywne filtr środkowoprzepustowy

5 Filtry drugiego rzędu

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

Wzmacniacze operacyjne

Wzmacniacz operacyjny

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym

Technika regulacji automatycznej

Badanie stabilności liniowych układów sterowania

Ćwiczenie nr 6 Charakterystyki częstotliwościowe

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Wzmacniacze operacyjne

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

Automatyka i robotyka

Ćwiczenie - 7. Filtry

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

Instrukcja nr 6. Wzmacniacz operacyjny i jego aplikacje. AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6.

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

POLITECHNIKA BIAŁOSTOCKA

P-2. Generator przebiegu liniowego i prostokątnego

Transmitancja widmowa bieguna

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ

Układy akwizycji danych. Komparatory napięcia Przykłady układów

Modelowanie i badania wybranych impulsowych przetwornic napięcia stałego, pracujących w trybie nieciągłego przewodzenia (DCM)

Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE

Filtry aktywne filtr górnoprzepustowy

Sposoby modelowania układów dynamicznych. Pytania

Impulsowe przekształtniki napięcia stałego. Włodzimierz Janke Katedra Elektroniki, Zespół Energoelektroniki

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Przerywacz napięcia stałego

ZASADA DZIAŁANIA miernika V-640

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Demonstracja: konwerter prąd napięcie

Korekcja układów regulacji

Kondensator wygładzający w zasilaczu sieciowym

Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych

Liniowe układy scalone

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW

A-2. Filtry bierne. wersja

A-3. Wzmacniacze operacyjne w układach liniowych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Przetwarzanie energii elektrycznej w fotowoltaice. Ćwiczenie 12 Metody sterowania falowników

POLSKIEJ AKADEMII NAUK Gdańsk ul. J. Fiszera 14 Tel. (centr.): Fax:

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Projekt z Układów Elektronicznych 1

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

Wzmacniacz operacyjny zastosowania liniowe. Wrocław 2009

Część 5. Mieszane analogowo-cyfrowe układy sterowania

Układ regulacji automatycznej (URA) kryteria stabilności

Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny

WZMACNIACZE OPERACYJNE

Temat: Wzmacniacze operacyjne wprowadzenie

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

Rys. 1. Wzmacniacz odwracający

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego

Przetwornica SEPIC. Single-Ended Primary Inductance Converter z przełączanym jednym końcem cewki pierwotnej Zalety. Wady

Transmitancje układów ciągłych

Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Automatyka i sterowania

Podzespoły i układy scalone mocy część II

Rys. 1. Przebieg napięcia u D na diodzie D

1 Układy wzmacniaczy operacyjnych

WZMACNIACZ OPERACYJNY

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:

Podstawy Elektroniki dla Informatyki. Pętla fazowa

Politechnika Białostocka

Podstawowe zastosowania wzmacniaczy operacyjnych

Temat: Wzmacniacze selektywne

Transkrypt:

Kompensator PID G c s =G cm sω z ω L s s ω p G cm =G c0 aby nie zmienić częstotliwości odcięcia f L f c /0=500 Hz aby nie zmniejszyć zapasu fazy Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 3

Wyrażenie /(+T) z kompensatorem PID Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 4

Transmitancja względem wejścia mocy układu otwartego i zamkniętego z kompensatorem PID Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 5

Charakterystyki częstotliwościowe w pakiecie Scilab Deklaracja, że zmienna s ma być symbolem w wielomianach Wzmocnienie w db i faza w dla konkretnej częstotliwości Definicja układu liniowego opisanego funkcją zmiennej s (transmitancją) 0 dla składowej stałej 'c' = układ czasu ciągłego (continous time) Wykres Bodego zakres Hz MHz clf czyści okno Tylko charakterystyka amplitudowa Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 6

Zapas fazy Liczbowo zapas fazy w stopniach i częstotliwość odcięcia Graficznie wykres Bodego z zapasem fazy i amplitudy Większość potrzebnych funkcji znajduje się w pakiecie cacsd Ich definicje można znaleźć w plikach *.sci w podkatalogu modules\cacsd\macros Zmodyfikowana funkcja show_margins, gdyż oryginalna kreśli zawsze w zakresie [ 0,00; 000] Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 7

Charakterystyki częstotliwościowe w układzie otwartym Transmitancja kompensatora G c (jω) Transmitancja pętli otwartej T(jω) Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 8

Charakterystyki częstotliwościowe w układzie zamkniętym T(jω) G vg 0 (DC) 00 Hz khz OL 5,42 db 0,536=G g0 =D 5,34 db 0,54 +4, db 5,08=G g0 Q CL 5,9 db 0,6=D/(+T u0 ) 5,9 db 0,6 2,8 db 0,228 CL PD 24,9 db 0,0567=D/(+T u0 G c0 ) 24,9 db 0,0567 25,2 db 0,055 CL PID db 0=D/(+ ) 38,2 db 0,023 26, db 0,0496 /(+T) G vg (jω) Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 9

Układy automatyki opisane transmitancjami w pakiecie MicroSim Transmitancja względem sterowania G vd dla układu otwartego wartość w ustalonym punkcie pracy (D = 0,536) wynik symulacji ustalonego punktu pracy (Bias Point) amplituda składowej przemiennej ( V spowoduje, że napięcie wyjściowe będzie co do wartości równe transmitancji) źródło typu VAC (nie VSIN) transmitancja G vd (element LAPLACE) osobno licznik i mianownik dowolny opornik Transmitancja pętli otwartej T u Pętlę można przerwać w dowolnym punkcie; najlepiej w takim, w którym znamy składową stałą sygnału stałe wzmocnienie (element GAIN) Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 20

Analiza ustalonego punktu pracy dla układu zamkniętego Należy tu traktować jako odchyłkę od ustalonego punktu pracy napięcie odniesienia V ref napięcie uchybu V e = V ref HV napięcie sterujące (wzmocniony uchyb) V c = G c (0) V e napięcie wyjściowe przeskalowane H V współczynnik wypełnienia zgodnie z charakterystyką modulatora D = f(v c ) napięcie wyjściowe V Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 2

Analiza ustalonego punktu pracy przy odchyłce napięcia wejściowego zmniejszenie V g o 5 V wzgl. ustalonego punktu pracy (28 V), tj. do 23 V nie są to rzeczywiste napięcia występujące gdziekolwiek w układzie wzrost uchybu (sprzężenie zwrotne jest ujemne) zmiana napięcia sterującego zmiana współczynnika wypełnienia utrzymanie napięcia wyjściowego prawie bez zmiany Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 22

zapas fazy φ m = 80 75,2 5 Charakterystyka częstotliwościowa (analiza częstotliwościowa AC Sweep) częstotliwość odcięcia f c,8 khz kursor A faza amplituda w db kursor A2 Gdyby napięcie wejściowe nie było jednostkowe, należałoby podzielić przezeń napięcie wyjściowe, aby uzyskać transmitancję wykreślić V(Gvd)/V(Vd:+) Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 23

Model układu zamkniętego na blokach transmitancyjnych Definicja transmitancji zakłada, że zmienia się tylko jeden sygnał. Dlatego tylko jeden sygnał może mieć niezerową składową przemienną; w przeciwnym razie wyniki symulacji nie będą odzwierciedlać rzeczywistości. element DIFF element SUM Ograniczenie wzmocnienia dla składowej stałej (f < 0,0 Hz) pomaga uniknąć problemów ze zbieżnością symulacji Amplituda składowej przemiennej Vg wynosi V, więc napięcie wyjściowe Vout jest równe transmitancji G vg układu zamkniętego Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 24

Transmitancja wyjście do wejścia mocy G vg 00 Hz khz G vg (jω) OL 5,33 db +4, db CL 5,8 db 2,8 db CL PD 25, db 25,4 db CL PID 38,3 db 26,3 db OL CL CL PD CL PID Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 25

Analiza ustalonego punktu pracy przy odchyłce prądu wyjściowego W układzie transmitancyjnym wszystkie sygnały mają postać napięć automatyka nie rozróżnia wielkości fizycznych, a w każdym punkcie układu występuje tylko jedna z nich zmniejszenie I load o 2,5 A wzgl. ustalonego punktu pracy (5 A) Ponieważ model jest bezstratny, zmiana wartości ustalonej obciążenia nie powoduje obniżenia napięcia na wyjściu tą drogą nie można zbadać zachowania układu w stanach ustalonych Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 26

Impedancja wyjściowa f 0 Z out ( ) db 0 ustalone napięcie wyjściowe V niezależne od ustalonego prądu obciążenia I load wyprowadzony model opisuje układ bezstratny, nie rzeczywisty źródło Viload ACMAG= Z out (układ otwarty) /(+T) Z out (układ zamknięty) Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 27

Wpływ rezystancji kondensatora wyjściowego Rzeczywisty kondensator stanowi szeregowy obwód RC I(s) V(s) V = I R sc =I sc R R + sc I(s) R s V(s) V = I ( R ) s + sc R =I R( R s + sc ) R +R s + sc R( R s + sc ) =R sc (+s R s C )=R sc ( + s ω esr) Rezystancja szeregowa wprowadza do transmitancji zero o pulsacji ω esr = R s C (LHP) Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 28

Wpływ rezystancji kondensatora wyjściowego (cd.) Dokładnie przykładowo dla przetwornicy odwracającej G vd (s)=g d0 s ω z + s Q 0 ω 0 + s2 ω 0 2 G vd (s)=g d0 ( sω z)( s + ω esr) + s Q ω 0 + s2 ω 0 2 Ponieważ typowo R s ~ mω, zaś R ~ Ω, więc ω 0 ω 0, Q Q np. dla R s = 0 mω, V = 0 V, I load = A R = 0 Ω, C = 00 µf, L e = 00 µh ω esr = τ C ω 0 = ω 0 +R s /R τ C =R s C τ L = L e R otrzymujemy ω 0 = 0,999 ω 0, Q = 0,909 Q wpływ na ω 0 i Q zwykle zaniedbuje się Q =Q +R s /R +τ C /τ L L e = L D 2 Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 29

Zero kondensatora wyjściowego Dla elektrolitycznych częstotliwość zera zwykle rzędu f s a nawet f c np. R s = 50 mω, C = 500 µf f esr = 6,4 khz Charakterystyka zera w lewej półpłaszczyźnie zwiększenie fazy korzystne dla stabilności +20 db/dec powyżej f z zmniejszenie tłumienia pętli dla w.cz. zwiększa wrażliwość na zaburzenia w.cz. może także zwiększyć f c uaktywnia pasożytnicze bieguny i zera w.cz. Niemożliwe dokładne wyznaczenie częstotliwości zera f esr brak dokładnej charakteryzacji rezystancji szeregowej duży rozrzut zmiana rezystancji i pojemności w funkcji temperatury i w czasie ESR często rzędu rezystancji ścieżek drukowanych znacząca modyfikacja Z powyższych względów zera tego nie używa się do zwiększenia φ m konieczna kompensacja (neutralizacja) Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 30

Zero kondensatora wyjściowego (cd.) Przykład (przerysowany) przetwornica odwracająca C = 500 µf, Rs = 00 mf, L = 0 µh, D = 0,5 f 0 = 750 Hz ( 747), f esr = 383 Hz Kompensacja przez wprowadzenie drugiego (oprócz PD) bieguna f ph = f esr do transmitancji kompensatora G vd (jω) Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 3

Zwyczajowe podejście projektowe W miarę możliwości kondensator wyjściowy dobiera się tak, by f esr f c W pierwszym przebiegu wykreśla się i analizuje charakterystyki częstotliwościowe bez uwzględnienia wpływu ESR pozwala to dokładnie zaprojektować i zweryfikować kompensator w zakresie parametrów charakterystyk nie ulegających wątpliwości Automatycznie umieszcza się dodatkowy biegun kompensatora w najmniejszej przewidywanej częstotliwości zera kondensatora wyjściowego W drugiej kolejności można zbadać, czy obecność ESR nie modyfikuje znacząco oczekiwanych charakterystyk W przypadku wykrycia problemów (po konstrukcji prototypu) należy dokonać dogłębnej analizy wpływu ESR z uwzględnieniem rozrzutu i zmian pojemności i ESR wówczas kondensator dobiera się (wartość, seria, technologia) w oparciu o wyniki analizy częstotliwościowej Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 32

Analogowa jednostopniowa realizacja kompensatora Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 33

Dwie postaci transmitancji kompensatora PID G c (s)= ω p0 s ( s + z)( ω + s ω z2) ( + s ω p)( + s ω p2) G c (s)=g cm ( +ω L )( s + s z) ω ( s + ph)( ω + s p) ω ω z2 ω z ; ω p2 ω p (PD) ω p ω ph (ESR) ω p0 s ( + s ω z) =G cm( + ω L s ) ω z =ω L ; ω p0 =G cm ω L (PI) ω p0 biegun w zerze (pole at zero) nachylenie 20 db/dec od ω = 0 do wartość ω p0 częstotliwość, w której wzmocnienie wynosi (0 db) rola analogiczna do G cm, tj. uzyskanie pożądanej częstotliwości odcięcia Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 34

Dobór częstotliwości charakterystycznych f c przetwornica + PD + PI poniżej: pasmo, w którym działa sprzężenie zwrotne (zmniejsza wrażliwość na zaburzenia na wejściach) powyżej: pasmo, w którym tłumione są zaburzenia w pętli (pochodzące od f s, wynikające z przełączania kluczy, szumy) f c 0 f s (patrz też f p2 ) miejsce dla zera PI f L f z2, f p2 PD zapas fazy stabilność, odpowiedź czasowa (przeregulowanie, czas ustalania) f p2 (f s / 2) / 3 możliwość reakcji ścisły związek z f c poprzez charakterystykę kompensatora PD dla R R 3, C C 3 f p0 = 2πR C C 3 2πR C f p = 2πR 3 C 2 f p2 = C 2πR C 3 2πR 2 C 3 2 C C 3 f z = 2πR 2 C f z2 = 2πR R 3 C 2 2πR C 2 Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 35

Dobór częstotliwości charakterystycznych (cd.) f p przetwornica f p = f esr(min) kompensacja zera ESR tłumienie zaburzeń wysokich częstotliwości w pętli f p0, f z (G cm, f L ) PI wzmocnienie pętli dla składowej stałej i niskich częstotliwości wrażliwość na zaburzenia niskiej częstotliwości oraz zmiany składowej stałej na wejściach częstotliwość odcięcia patrz f c f z f c / 0 nie zmniejszyć zapasu fazy dla R R 3, C C 3 f p0 = 2πR C C 3 2πR C f p = 2πR 3 C 2 f p2 = C 2πR C 3 2πR 2 C 3 2 C C 3 f z = 2πR 2 C f z2 = 2πR R 3 C 2 2πR C 2 Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 20/2 36