Inteligentne systemy informacyjne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Inteligentne systemy informacyjne"

Transkrypt

1 Filip Graliński Inteligentne systemy informacyjne Rekomendacje

2 założenia n użytkowników (widzów, czytelników, słuchaczy etc.) m obiektów (filmów, książek, piosenek etc.) opinie wyrażone za pomocą liczb

3 założenia n użytkowników (widzów, czytelników, słuchaczy etc.) m obiektów (filmów, książek, piosenek etc.) opinie wyrażone za pomocą liczb niektóre komórki puste!

4 collaborative filtering filtrowanie grupowe

5 Szczęki Liberator Terminator Predator Miś Rocky Asia Basia Czarek Darek Ewa Franek Genia

6 odległość euklidesowa A B C D E F G A B C D E F G

7 podobieństwo d A B C D E F G A B C D E F G

8 współczynnik korelacji Pearsona

9 współczynnik korelacji Pearsona (cd.) r = i x iy i i x i m i y i ( i x 2 i ( i x i ) 2 m )( i y 2 i ( i y i ) 2 m )

10 współczynnik korelacji Pearsona A B C D E F G A B C D E F G

11 propozycje dla Geni osoba r Sz. T-r R-y A B D E F razem suma korelacji prognoza

12 podobieństwo między produktami? Sz. L-r T-r P-r Miś R-y Sz L-r T-r P-r Miś R-y

13 item-based filtering 1. dla każdego produktu wyznaczamy listę najbardziej podobnych produktów 2. dla danego użytkownika przeglądamy jego produkty i tworzymy ważoną listę podobnych produktów

14 ocena Sz. T-r R-y L-r P-r Miś razem znorm

15 przykładowe serwisy

16 Amazon (2003) item-based filtering

17 YouTube item-based filtering jakie filmy użytkownik oglądał? (jak długo?) co oznaczył jako ulubione? co ocenił? co dodał do playlisty? rekomendacje dają 60% kliknięć

18 filmaster.pl kod na licencji Affero GPLv3 treść na licencji Creative Commons Uznanie Autorstwa Python + Django + PostgreSQL + Linux szukanie podobnych filmów ocenianie i rekomendowanie filmów w skali 1-10

19 filmaster.pl - podobne filmy Podobieństwo ważona suma: liczby wspólnych tagów (ważone: log 2 2+N 10+N t ) liczby wspólnych aktorów liczby wspólnych reżyserów podobieństwo ocen użytkowników: średnia między ocenami użytkowników, którzy ocenili daną parę filmów

20 filmaster.pl rekomendowanie R = R 1,1 R 1,m R u,1 R u,m R i,j {1, 2,..., 10, NULL}

21 filmaster.pl rekomendowanie R R = U 1,1 U 1,f U u,1 U u,f M 1,1 M 1,m.. M f,1 M f,m U i,k waga cechy k dla użytkownika i M k,j na ile cecha k występuje w filmie j

22 filmaster.pl rekomendowanie (cd.) jak wyliczyć macierze U i M?

23 filmaster.pl rekomendowanie (cd.) jak wyliczyć macierze U i M? prosta metoda ucząca, pojedynczy krok: ɛ = λ(r u,m R u,m) U u,f = U u,f + ɛm f,m M f,m = M f,m + ɛu u,f

24 Netflix prize Netflix internetowa wypożyczalnia DVD początek: 2006 r. zbiór danych: 100 mln ocen cel: pobić algorytm Cinematch miara: RMSE pierwiastek błędu średniokwadratowego Cinematch nagroda: $ za > 10%

25 Netflix prize wyniki finał: lipiec 2009 zwycięzca: BellKor s Pragmatic Chaos RMSE: (+10.06%)

26 Netflix prize wyniki finał: lipiec 2009 zwycięzca: BellKor s Pragmatic Chaos RMSE: (+10.06%)... proces Doe vs Netflix

27 Netflix prize jak? model dni tygodnia model czasu model wektorowy tytułów rozkład macierzy item-based filtering (knn)...

28 Netflix prize jak? model dni tygodnia model czasu model wektorowy tytułów rozkład macierzy item-based filtering (knn) miks wszystkiego

29 (Tákács i in. 2007)

30 Pandora Radio spersonalizowane radio Music Genome Project, 400 genów : słowa po portugalsku głos żeński pełen emocji solówka na gitarze basowej brzmi jak walc...

31 rekomendowanie wiadomości GroupLens Daily Learner Findory Google News

32 rekomendowanie wiadomości wyzwanie dynamika

33 rekomendowanie wiadomości wyzwanie dynamika zmiana zainteresowań

34 rekomendowanie wiadomości wyzwanie dynamika zmiana zainteresowań różne zainteresowania

35 rekomendowanie wiadomości wyzwanie dynamika zmiana zainteresowań różne zainteresowania nowość

36 rekomendowanie wiadomości wyzwanie dynamika zmiana zainteresowań różne zainteresowania nowość unikanie końskich okularów

37 rekomendowanie wiadomości wyzwanie dynamika zmiana zainteresowań różne zainteresowania nowość unikanie końskich okularów

38 rekomendowanie wiadomości wyzwanie dynamika model krótkoterminowy zmiana zainteresowań model krótkoterminowy różne zainteresowania nowość unikanie końskich okularów

39 rekomendowanie wiadomości wyzwanie dynamika model krótkoterminowy zmiana zainteresowań model krótkoterminowy różne zainteresowania nowość kara za zbytnie podobieństwo unikanie końskich okularów

40 rekomendowanie wiadomości wyzwanie dynamika model krótkoterminowy zmiana zainteresowań model krótkoterminowy różne zainteresowania model długoterminowy nowość kara za zbytnie podobieństwo unikanie końskich okularów

41 rekomendowanie wiadomości wyzwanie dynamika model krótkoterminowy zmiana zainteresowań model krótkoterminowy różne zainteresowania model długoterminowy nowość kara za zbytnie podobieństwo unikanie końskich okularów wpływ redaktora

42

43

44 bibliografia G. Takács, I. Pilászy, B. Németh, and D. Tikk. On the Gravity Recommendation System. In Proc. of KDD Cup Workshop at SIGKDD 07, 13th ACM Int. Conf. on Knowledge Discovery and Data Mining, pp , San Jose, CA, USA, August 12-15, 2007.

Filip Graliński. Sztuczna inteligencja. Klasyfikacja i rekomendacja

Filip Graliński. Sztuczna inteligencja. Klasyfikacja i rekomendacja Filip Graliński Sztuczna inteligencja Klasyfikacja i rekomendacja Wyszukiwanie Odkrywanie wzorców Inteligentne systemy informacyjne Eksploracja Predykcja Opis Wyszukiwanie Odkrywanie wzorców Inteligentne

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering

Bardziej szczegółowo

WA R S AW D ATA S C I E N C E M E E T U P

WA R S AW D ATA S C I E N C E M E E T U P WA R S AW D ATA S C I E N C E M E E T U P Mateusz Grzyb konsultant technologiczny Microsoft Polska mateuszgrzyb.pl Plan prezentacji 1. Zbiory rozmyte. 2. Logika rozmyta. 3. Systemy rekomendacyjne. 4.

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35 Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Hybrydowa metoda rekomendacji dokumentów w środowisku hipertekstowym

Hybrydowa metoda rekomendacji dokumentów w środowisku hipertekstowym Hybrydowa metoda rekomendacji dokumentów w środowisku hipertekstowym Paweł Szołtysek 09 listopada 2009 1/46 metod metod 2/46 metod 199 stron, 2 cytowania własne 7rozdziałów Promotor: NT Nguyen 3/46 metod

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Podstawy statystyki matematycznej w programie R

Podstawy statystyki matematycznej w programie R Podstawy statystyki matematycznej w programie R Piotr Ćwiakowski Wydział Fizyki Uniwersytetu Warszawskiego Zajęcia 1. Wprowadzenie 1 marca 2017 r. Program R Wprowadzenie do R i badań statystycznych podstawowe

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Korelacja krzywoliniowa i współzależność cech niemierzalnych Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line

Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line Paweł Wyborski - Agenda Kim jesteśmy Czym są personalizowane rekomendacje Jak powstają rekomendacje,

Bardziej szczegółowo

Adrian Horzyk

Adrian Horzyk Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

SILNIK REKOMENDACJI CZĘŚĆ 1 WPROWADZENIE

SILNIK REKOMENDACJI CZĘŚĆ 1 WPROWADZENIE $ SILNIK REKOMENDACJI CZĘŚĆ 1 WPROWADZENIE SILNIK REKOMENDACJI CZĘŚĆ 1 WPROWADZENIE Jak funkcjonuje silnik rekomendacji? Czy wszystkie silniki rekomendacji działają tak samo? Jakie cechy powinien posiadać

Bardziej szczegółowo

Jak wybrać 45 najlepszych. prezentacji na FORUM?

Jak wybrać 45 najlepszych. prezentacji na FORUM? Anonimizacja danych osobowych użytkowników serwisów Jak wybrać 45 najlepszych internetowych prezentacji na FORUM? Joanna Komuda, Ewa Kurowska-Tober IAB Polska DLA Piper Konkurs Netflix Prize, październik

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Zabawa i nauka w mediach Zadanie 1

Zabawa i nauka w mediach Zadanie 1 Zabawa i nauka w mediach Zadanie 1 Pomysł na lekcję Jakie są podstawowe funkcje komunikatów medialnych? Oczywiście informacyjna i rozrywkowa. Uczniowie dowiedzą się o nich więcej, korzystając z przykładu

Bardziej szczegółowo

Wyznaczenie miarodajnych okresów przeprowadzania badań zachowań parkingowych użytkowników Strefy Płatnego Parkowania

Wyznaczenie miarodajnych okresów przeprowadzania badań zachowań parkingowych użytkowników Strefy Płatnego Parkowania Wyznaczenie miarodajnych okresów przeprowadzania badań zachowań parkingowych użytkowników Strefy Płatnego Parkowania Determination of neutral periods for the organisation of drivers parking behaviour surveys

Bardziej szczegółowo

UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji

UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji Filip Wójcik Wydział Zarządzania, Informatyki i Finansów Instytut Informatyki Ekonomicznej

Bardziej szczegółowo

Miary w szeregach. 1 Miary klasyczne. 1.1 Średnia Średnia arytmetyczna

Miary w szeregach. 1 Miary klasyczne. 1.1 Średnia Średnia arytmetyczna Miary w szeregach 1 Miary klasyczne 1.1 Średnia 1.1.1 Średnia arytmetyczna Zad. 1 średnia dla szeregu rozdzielczego punktowego W tabeli zestawiono wyniki badań czasu wykonania 15 detali. Jest to szereg

Bardziej szczegółowo

netsprint Firma i produkty artur.banach@netsprint.eu 1

netsprint Firma i produkty artur.banach@netsprint.eu 1 netsprint Firma i produkty artur.banach@netsprint.eu 1 Oferta artur.banach@netsprint.eu 2 Sieć kontekstowo-behawioralna Adkontekst największa polska sieć reklamy kontekstowej umożliwiająca emisję reklam

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Program telewizyjny emisji filmów w 4 stacjach telewizyjnych: Telewizja / stacja Film i godziny jego emisji Czas trwania emisji filmu

Program telewizyjny emisji filmów w 4 stacjach telewizyjnych: Telewizja / stacja Film i godziny jego emisji Czas trwania emisji filmu Zadanie 1. roblem telewidza W roblemie telewidza mamy program telewizyjny, zawierający listę filmów emitowanych w różnych stacjach telewizyjnych jednego dnia. Telewidz zamierza obejrzeć jak najwięcej filmów

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Wykład 10 Skalowanie wielowymiarowe

Wykład 10 Skalowanie wielowymiarowe Wykład 10 Skalowanie wielowymiarowe Wrocław, 30.05.2018r Skalowanie wielowymiarowe (Multidimensional Scaling (MDS)) Główne cele MDS: przedstawienie struktury badanych obiektów przez określenie treści wymiarów

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 13 MAJA 2019 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI 13 MAJA 2019 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś

Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś Materiały reklamowe ZAWAM-Marek Zawadzki Wybór wielokryterialny jako jadna z metod

Bardziej szczegółowo

Plan wynikowy klasa 3. Zakres podstawowy

Plan wynikowy klasa 3. Zakres podstawowy Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA

Bardziej szczegółowo

Analiza kanoniczna w pigułce

Analiza kanoniczna w pigułce Analiza kanoniczna w pigułce Przemysław Biecek Seminarium Statystyka w medycynie Propozycje tematów prac dyplomowych 1/14 Plan 1 Słów kilka o podobnych metodach (PCA, regresja) 2 Motywacja, czyli jakiego

Bardziej szczegółowo

Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:

Bardziej szczegółowo

Konto Google: Gmail, YouTube.

Konto Google: Gmail, YouTube. Konto Google: Gmail, YouTube. Samouczek dla Pracowni Orange Samouczek powstał na potrzeby szkolenia Komunikacja i promocja z wykorzystaniem nowych technologii. Platforma internetowa dla Pracowni Orange,

Bardziej szczegółowo

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 2014

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 2014 MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 SUMA PUNKTÓW Max

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej. Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Sztuczna inteligencja : Algorytm KNN

Sztuczna inteligencja : Algorytm KNN Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr

Bardziej szczegółowo

Systemy rekomendacyjne. Mikolaj Morzy, Politechnika Poznanska

Systemy rekomendacyjne. Mikolaj Morzy, Politechnika Poznanska Systemy rekomendacyjne Mikolaj Morzy, Politechnika Poznanska O czym będzie ten wykład? Przeciążenie informacją Systemy rekomendacyjne content-based collaborative filtering trust-based random walk paradigm

Bardziej szczegółowo

Co to jest komunikat? Zadanie 1

Co to jest komunikat? Zadanie 1 Co to jest komunikat? Zadanie 1 Pomysł na lekcję Dzieci będą miały okazję wspólnie zdefiniować słowo komunikat, wcielić się w role nadawców i odbiorców; odkryć, w których mediach nadawane są komunikaty,

Bardziej szczegółowo

Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble

Bardziej szczegółowo

Adfocus platforma RTB. Retargeting spersonalizowany.

Adfocus platforma RTB. Retargeting spersonalizowany. Adfocus platforma RTB. Retargeting spersonalizowany. 1 Czy retargeting jest mi potrzebny? Jak zaangażować pozostałe 98% aby dokonali zakupu? 2% klientów kupuje podczas pierwszej wizyty w sklepie. 2 Czy

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania

Bardziej szczegółowo

Ł Ł ć ć ż ż ż ź ź Ć ń ł ź ż ś ł ź ń ś ż ś ś ś ś ż ź ż ż ź ł ż ż ż ś ś ś ś ż ś ś ź Ś ś ż ś ś ł ż ś ś ł ź ź Ź ś ź ł ż ż ń ł ść ł ś ść ś ż ć ś ż ś ś ź ń ć ź ść ź ż ż ść ć ść ść Ź Ź ł ś ń ł ś ś ł ł ś ś ś ś

Bardziej szczegółowo

Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Ćwiczenia nr 4. TEMATYKA: Rzutowanie TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MIN 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I DATA: 19

Bardziej szczegółowo

Monitorowanie i Diagnostyka w Systemach Sterowania

Monitorowanie i Diagnostyka w Systemach Sterowania Monitorowanie i Diagnostyka w Systemach Sterowania Katedra Inżynierii Systemów Sterowania Dr inż. Michał Grochowski Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności:

Bardziej szczegółowo

PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE

PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Techniki grupowania danych w środowisku Matlab

Techniki grupowania danych w środowisku Matlab Techniki grupowania danych w środowisku Matlab 1. Normalizacja danych. Jedne z metod normalizacji: = = ma ( y =, rσ ( = ( ma ( = min = (1 + e, min ( = σ wartość średnia, r współczynnik, σ odchylenie standardowe

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która

Bardziej szczegółowo

DATA BIZNES. Adam Wiatkowski Algorytmy uczenia maszynowego w zastosowaniach maszynowych

DATA BIZNES. Adam Wiatkowski Algorytmy uczenia maszynowego w zastosowaniach maszynowych DATA SCIENCE @ BIZNES Adam Wiatkowski Algorytmy uczenia maszynowego w zastosowaniach maszynowych AGENDA 1. Wiadomości ogólne problemy uczenia maszynowego 2. Charakterystyka algorytmów 3. Analiza regresji

Bardziej szczegółowo

System rekomendacji restauracji na urządzenia mobilne PRACA DYPLOMOWA INŻYNIERSKA. Łukasz Pochrzęst. Rok akademicki 2014/2015

System rekomendacji restauracji na urządzenia mobilne PRACA DYPLOMOWA INŻYNIERSKA. Łukasz Pochrzęst. Rok akademicki 2014/2015 Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Informatyki Rok akademicki 2014/2015 PRACA DYPLOMOWA INŻYNIERSKA Łukasz Pochrzęst System rekomendacji restauracji na urządzenia

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

Wyszukiwanie informacji w internecie. Nguyen Hung Son

Wyszukiwanie informacji w internecie. Nguyen Hung Son Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy

Bardziej szczegółowo

Podane ceny są cenami netto za 1000 odsłon (CPM), nie zawierają podatku VAT. 100 zł 150 zł 180 zł 250 zł. Zakres Dopłata (*,**) Opis Push 50%

Podane ceny są cenami netto za 1000 odsłon (CPM), nie zawierają podatku VAT. 100 zł 150 zł 180 zł 250 zł. Zakres Dopłata (*,**) Opis Push 50% [mojeauto.pl cennik] Podane ceny są cenami netto za 1000 odsłon (CPM), nie zawierają podatku VAT Billboard, Rectangle, Skyscraper Double Billboard, Halfpage Triple Billboard, Wideboard, Flyfooter, Banderola

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska

Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska Michał Kozielski Łukasz Warchał Instytut Informatyki, Politechnika Śląska Algorytm DBSCAN Algorytm OPTICS Analiza gęstego sąsiedztwa w grafie Wstępne eksperymenty Podsumowanie Algorytm DBSCAN Analiza gęstości

Bardziej szczegółowo

Statystyka. Wykład 7. Magdalena Alama-Bućko. 3 kwietnia Magdalena Alama-Bućko Statystyka 3 kwietnia / 36

Statystyka. Wykład 7. Magdalena Alama-Bućko. 3 kwietnia Magdalena Alama-Bućko Statystyka 3 kwietnia / 36 Statystyka Wykład 7 Magdalena Alama-Bućko 3 kwietnia 2017 Magdalena Alama-Bućko Statystyka 3 kwietnia 2017 1 / 36 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

SPOTKANIE 11: Reinforcement learning

SPOTKANIE 11: Reinforcement learning Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Miary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018

Miary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018 STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 MIARY ZMIENNOŚCI (inaczej: rozproszenia, rozrzutu, zróżnicowania, dyspersji) informuja o zróżnicowaniu jednostek zbiorowości

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO Wykład 9 Analiza skupień wielowymiarowa klasyfikacja obiektów Metoda, a właściwie to zbiór metod pozwalających na grupowanie obiektów pod względem wielu cech jednocześnie.

Bardziej szczegółowo

Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber

Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber Drzewa decyzyjne Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Drzewa decyzyjne Anna Sztyber / Drzewa decyzyjne w podstawowej wersji algorytm klasyfikacji

Bardziej szczegółowo

Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech. Piotr Porwik Uniwersytet Śląski w Katowicach

Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech. Piotr Porwik Uniwersytet Śląski w Katowicach Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech Piotr Porwik Uniwersytet Śląski w Katowicach ?? It is obvious that more does not mean better, especially in the case of classifiers!! *) *)

Bardziej szczegółowo

Jak statystyka może pomóc w odczytaniu wyników sprawdzianu

Jak statystyka może pomóc w odczytaniu wyników sprawdzianu 16 Jak statystyka może pomóc w odczytaniu wyników sprawdzianu Wyniki pierwszego ważnego egzaminu sprawdzianu w klasie szóstej szkoły podstawowej mogą w niebagatelny sposób wpływać na losy pojedynczych

Bardziej szczegółowo

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

46 Olimpiada Biologiczna

46 Olimpiada Biologiczna 46 Olimpiada Biologiczna Pracownia statystyczno-filogenetyczna Łukasz Banasiak i Jakub Baczyński 22 kwietnia 2017 r. Zasady oceniania rozwiązań zadań Zadanie 1 1.1 Kodowanie cech (5 pkt) 0,5 pkt za poprawne

Bardziej szczegółowo

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Bardziej szczegółowo

Audyt SEO. sklep-budowalny.pl. +531 525 600 biuro@semtec.pl www.semtec.pl. Biuro obsługi: al. Grunwaldzka 2/5 80-236 Gdańsk

Audyt SEO. sklep-budowalny.pl. +531 525 600 biuro@semtec.pl www.semtec.pl. Biuro obsługi: al. Grunwaldzka 2/5 80-236 Gdańsk Audyt SEO sklep-budowalny.pl Spis treści 1 WSTĘP... 3 2 ZALECENIA OGÓLNE... 5 2.1 OPTYMALIZACJA NAGŁÓWKÓW NA WSZYSTKICH PODSTRONACH... 5 2.2 KONFIGURACJA PARAMETRÓW W GOOGLE WEBMASTER TOOLS... 6 2.3 USUNIĘCIE

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

BANK NAJLEPSZY DLA ROLNIKA

BANK NAJLEPSZY DLA ROLNIKA 2017 BANK NAJLEPSZY DLA ROLNIKA 2017 Martin & Jacob przygotował ranking Bank Najlepszy dla Rolnika. Wstęp Ranking Bank Najlepszy dla Rolnika jest pierwszym tego typu rankingiem w Polsce. Zrealizowała go

Bardziej szczegółowo

Systemy rekomendacyjne

Systemy rekomendacyjne Systemy rekomendacyjne Mikołaj Morzy Agnieszka Ławrynowicz Instytut Informatyki Poznań, rok akademicki 2010/2011 (c) Mikołaj Morzy, Agnieszka Ławrynowicz, Instytut Informatyki Politechniki Poznańskiej

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

Kwantyzacja wektorowa. Kodowanie różnicowe.

Kwantyzacja wektorowa. Kodowanie różnicowe. Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki

Bardziej szczegółowo