Filip Graliński. Sztuczna inteligencja. Klasyfikacja i rekomendacja
|
|
- Zbigniew Lewicki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Filip Graliński Sztuczna inteligencja Klasyfikacja i rekomendacja
2 Wyszukiwanie Odkrywanie wzorców Inteligentne systemy informacyjne Eksploracja Predykcja Opis
3 Wyszukiwanie Odkrywanie wzorców Inteligentne systemy informacyjne Eksploracja Predykcja Klasyfikacja Opis Analiza skupień Regresja
4 Wyszukiwanie Odkrywanie wzorców Inteligentne systemy informacyjne Eksploracja Predykcja Klasyfikacja Opis Analiza skupień bez nadzoru z nadzorem Regresja
5 Wyszukiwanie Odkrywanie wzorców Inteligentne systemy informacyjne Eksploracja Predykcja Opis Klasyfikacja statystyczna regułowa ręczna
6 Spam
7 Spam Oszustwo nigeryjskie Spam Łańcuszki Phishing Reklamy
8 Odkrywanie wzorców Inteligentne systemy informacyjne Eksploracja Predykcja Klasyfikacja Opis k najbliższych sąsiadów statystyczna regułowa ręczna
9 Odkrywanie wzorców Inteligentne systemy informacyjne Eksploracja Predykcja Opis k najbliższych sąsiadów Klasyfikacja statystyczna regułowa ręczna naiwny klasyfikator bayesowski
10 Odkrywanie wzorców Inteligentne systemy informacyjne Eksploracja Predykcja Opis k najbliższych sąsiadów regułowa ręczna Klasyfikacja statystyczna wielomianowy naiwny klasyfikator bayesowski
11 P(c d) P(c) P(t k c) 1 k n d
12 arg max ˆP(c d) = arg max c C c C ˆP(c) ˆP(t k c) 1 k n d
13 arg max ˆP(c d) = arg max c C c C ˆP(c) ˆP(t k c) 1 k n d ˆP(c) = N c N
14 arg max ˆP(c d) = arg max c C c C ˆP(c) ˆP(t k c) 1 k n d ˆP(c) = N c N ˆP(t k c) = T ct + 1 t V (T ct + 1)
15 preview , similar , clients , completely , safer , unsafe , virus , Outlook , MimeOLE , HELO d , skills , FRE FROM , Greetings , drug , Huge , LOTS OF MONEY ,999826
16 Szanowni Państwo, Szanując Państwa prywatność i zarazem przestrzegając obowiązujących przepisów (Ustawa z dnia 18 lipca 2002 roku o świadczeniu usług drogą elektroniczną - Dz. U Nr 144, poz.1204) zwracamy się z prośbą o wyrażenie zgody na przysłanie Państwu naszej oferty dotyczącej przyczłapów do bulgulatorów. Wspomnę jedynie, iż jako nowy producent przyczłapów do bulgulatorów oferujemy atrakcyjne ceny. Jeżeli jesteście Państwo zainteresowani, bardzo proszę odpowiedzieć na tę wiadomość, prześlemy wtedy dokładne informacje dotyczące ww. produktów. Z poważaniem
17 więcej niż słowa CRM114 Tryb Markovian: Szanując Szanując Państwa Szanując [...] prywatność Szanując Państwa prywatność Szanując [...] [...] i Szanując Państwa [...] i Szanując [...] prywatność i Szanując Państwa prywatność i Szanując [...] [...] [...] zarazem Szanując [...] [...] i zarazem Szanując [...] prywatność [...] zarazem Szanując [...] prywatność i zarazem Szanując Państwa [...] [...] zarazem Szanując Państwa [...] i zarazem Szanując Państwa prywatność [...] zarazem Szanując Państwa prywatność i zarazem
18 Filip Graliński Inteligentne systemy informacyjne Rekomendacje
19 założenia n użytkowników (widzów, czytelników, słuchaczy etc.) m obiektów (filmów, książek, piosenek etc.) opinie wyrażone za pomocą liczb
20 założenia n użytkowników (widzów, czytelników, słuchaczy etc.) m obiektów (filmów, książek, piosenek etc.) opinie wyrażone za pomocą liczb niektóre komórki puste!
21 collaborative filtering filtrowanie grupowe
22 Szczęki Liberator Terminator Predator Miś Rocky Asia Basia Czarek Darek Ewa Franek Genia
23 odległość euklidesowa A B C D E F G A B C D E F G
24 podobieństwo d A B C D E F G A B C D E F G
25 współczynnik korelacji Pearsona
26 współczynnik korelacji Pearsona (cd.) r = i x iy i i x i m i y i ( i x 2 i ( i x i ) 2 m )( i y 2 i ( i y i ) 2 m )
27 współczynnik korelacji Pearsona A B C D E F G A B C D E F G
28 propozycje dla Geni osoba r Sz. T-r R-y A B D E F razem suma korelacji prognoza
29 podobieństwo między produktami? Sz. L-r T-r P-r Miś R-y Sz L-r T-r P-r Miś R-y
30 item-based filtering 1. dla każdego produktu wyznaczamy listę najbardziej podobnych produktów 2. dla danego użytkownika przeglądamy jego produkty i tworzymy ważoną listę podobnych produktów
31 ocena Sz. T-r R-y L-r P-r Miś razem znorm
32 przykładowe serwisy
33 Amazon (2003) item-based filtering
34 YouTube item-based filtering jakie filmy użytkownik oglądał? (jak długo?) co oznaczył jako ulubione? co ocenił? co dodał do playlisty? rekomendacje dają 60% kliknięć
35 filmaster.pl kod na licencji Affero GPLv3 treść na licencji Creative Commons Uznanie Autorstwa Python + Django + PostgreSQL + Linux szukanie podobnych filmów ocenianie i rekomendowanie filmów w skali 1-10
36 filmaster.pl - podobne filmy Podobieństwo ważona suma: liczby wspólnych tagów (ważone: log 2 2+N 10+N t ) liczby wspólnych aktorów liczby wspólnych reżyserów podobieństwo ocen użytkowników: średnia między ocenami użytkowników, którzy ocenili daną parę filmów
37 Netflix prize Netflix internetowa wypożyczalnia DVD początek: 2006 r. zbiór danych: 100 mln ocen cel: pobić algorytm Cinematch miara: RMSE pierwiastek błędu średniokwadratowego Cinematch nagroda: $ za > 10%
38 Netflix prize wyniki finał: lipiec 2009 zwycięzca: BellKor s Pragmatic Chaos RMSE: (+10.06%)
39 Netflix prize wyniki finał: lipiec 2009 zwycięzca: BellKor s Pragmatic Chaos RMSE: (+10.06%)... proces Doe vs Netflix
40 Netflix prize jak? model dni tygodnia model czasu model wektorowy tytułów rozkład macierzy item-based filtering (knn)...
41 Netflix prize jak? model dni tygodnia model czasu model wektorowy tytułów rozkład macierzy item-based filtering (knn) miks wszystkiego
42 (Tákács i in. 2007)
43 Pandora Radio spersonalizowane radio Music Genome Project, 400 genów : słowa po portugalsku głos żeński pełen emocji solówka na gitarze basowej brzmi jak walc...
44 rekomendowanie wiadomości GroupLens Daily Learner Findory Google News
45 rekomendowanie wiadomości wyzwanie dynamika
46 rekomendowanie wiadomości wyzwanie dynamika zmiana zainteresowań
47 rekomendowanie wiadomości wyzwanie dynamika zmiana zainteresowań różne zainteresowania
48 rekomendowanie wiadomości wyzwanie dynamika zmiana zainteresowań różne zainteresowania nowość
49 rekomendowanie wiadomości wyzwanie dynamika zmiana zainteresowań różne zainteresowania nowość unikanie końskich okularów
50 rekomendowanie wiadomości wyzwanie dynamika zmiana zainteresowań różne zainteresowania nowość unikanie końskich okularów
51 rekomendowanie wiadomości wyzwanie dynamika model krótkoterminowy zmiana zainteresowań model krótkoterminowy różne zainteresowania nowość unikanie końskich okularów
52 rekomendowanie wiadomości wyzwanie dynamika model krótkoterminowy zmiana zainteresowań model krótkoterminowy różne zainteresowania nowość kara za zbytnie podobieństwo unikanie końskich okularów
53 rekomendowanie wiadomości wyzwanie dynamika model krótkoterminowy zmiana zainteresowań model krótkoterminowy różne zainteresowania model długoterminowy nowość kara za zbytnie podobieństwo unikanie końskich okularów
54 rekomendowanie wiadomości wyzwanie dynamika model krótkoterminowy zmiana zainteresowań model krótkoterminowy różne zainteresowania model długoterminowy nowość kara za zbytnie podobieństwo unikanie końskich okularów wpływ redaktora
55
56
57 bibliografia G. Takács, I. Pilászy, B. Németh, and D. Tikk. On the Gravity Recommendation System. In Proc. of KDD Cup Workshop at SIGKDD 07, 13th ACM Int. Conf. on Knowledge Discovery and Data Mining, pp , San Jose, CA, USA, August 12-15, 2007.
Inteligentne systemy informacyjne
Filip Graliński Inteligentne systemy informacyjne Rekomendacje założenia n użytkowników (widzów, czytelników, słuchaczy etc.) m obiektów (filmów, książek, piosenek etc.) opinie wyrażone za pomocą liczb
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line
Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line Paweł Wyborski - Agenda Kim jesteśmy Czym są personalizowane rekomendacje Jak powstają rekomendacje,
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
WA R S AW D ATA S C I E N C E M E E T U P
WA R S AW D ATA S C I E N C E M E E T U P Mateusz Grzyb konsultant technologiczny Microsoft Polska mateuszgrzyb.pl Plan prezentacji 1. Zbiory rozmyte. 2. Logika rozmyta. 3. Systemy rekomendacyjne. 4.
Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Podstawy statystyki matematycznej w programie R
Podstawy statystyki matematycznej w programie R Piotr Ćwiakowski Wydział Fizyki Uniwersytetu Warszawskiego Zajęcia 1. Wprowadzenie 1 marca 2017 r. Program R Wprowadzenie do R i badań statystycznych podstawowe
DATA BIZNES. Adam Wiatkowski Algorytmy uczenia maszynowego w zastosowaniach maszynowych
DATA SCIENCE @ BIZNES Adam Wiatkowski Algorytmy uczenia maszynowego w zastosowaniach maszynowych AGENDA 1. Wiadomości ogólne problemy uczenia maszynowego 2. Charakterystyka algorytmów 3. Analiza regresji
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji
UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji Filip Wójcik Wydział Zarządzania, Informatyki i Finansów Instytut Informatyki Ekonomicznej
data mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
Adrian Horzyk
Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
netsprint Firma i produkty artur.banach@netsprint.eu 1
netsprint Firma i produkty artur.banach@netsprint.eu 1 Oferta artur.banach@netsprint.eu 2 Sieć kontekstowo-behawioralna Adkontekst największa polska sieć reklamy kontekstowej umożliwiająca emisję reklam
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji
Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące
AUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
System rekomendacji restauracji na urządzenia mobilne PRACA DYPLOMOWA INŻYNIERSKA. Łukasz Pochrzęst. Rok akademicki 2014/2015
Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Informatyki Rok akademicki 2014/2015 PRACA DYPLOMOWA INŻYNIERSKA Łukasz Pochrzęst System rekomendacji restauracji na urządzenia
Technologie Informacyjne
Systemy Uczące się Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 16, 2017 1 Wprowadzenie 2 Uczenie nadzorowane 3 Uczenie bez nadzoru 4 Uczenie ze wzmocnieniem Uczenie się - proces
Konto Google: Gmail, YouTube.
Konto Google: Gmail, YouTube. Samouczek dla Pracowni Orange Samouczek powstał na potrzeby szkolenia Komunikacja i promocja z wykorzystaniem nowych technologii. Platforma internetowa dla Pracowni Orange,
Analiza danych tekstowych i języka naturalnego
Kod szkolenia: Tytuł szkolenia: ANA/TXT Analiza danych tekstowych i języka naturalnego Dni: 3 Opis: Adresaci szkolenia Dane tekstowe stanowią co najmniej 70% wszystkich danych generowanych w systemach
Jak wybrać 45 najlepszych. prezentacji na FORUM?
Anonimizacja danych osobowych użytkowników serwisów Jak wybrać 45 najlepszych internetowych prezentacji na FORUM? Joanna Komuda, Ewa Kurowska-Tober IAB Polska DLA Piper Konkurs Netflix Prize, październik
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Analiza i wizualizacja danych Data analysis and visualization
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Korelacja krzywoliniowa i współzależność cech niemierzalnych
Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej
Statystyczna analiza Danych
Statystyczna analiza Danych Dla bioinformatyków Wykład pierwszy: O testowaniu hipotez Plan na dziś Quiz! Cele wykładu Plan na semestr Kryteria zaliczenia Sprawy organizacyjne Quiz (15 minut) Jakie znasz
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - testy na sztucznych danych
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - testy na sztucznych danych Mateusz Kobos, 25.11.2009 Seminarium Metody Inteligencji Obliczeniowej 1/25 Spis treści Dolne ograniczenie na wsp.
Metody Inżynierii Wiedzy
Metody Inżynierii Wiedzy Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Mateusz Burcon Kraków, czerwiec 2017 Wykorzystane technologie Python 3.4
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław
Techniki uczenia maszynowego nazwa przedmiotu SYLABUS
Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
Systemy rekomendacyjne. Mikolaj Morzy, Politechnika Poznanska
Systemy rekomendacyjne Mikolaj Morzy, Politechnika Poznanska O czym będzie ten wykład? Przeciążenie informacją Systemy rekomendacyjne content-based collaborative filtering trust-based random walk paradigm
Internetowy system e-crm do obsługi biura podróży. Marek Bytnar, Paweł Kraiński
Internetowy system e-crm do obsługi biura podróży Marek Bytnar, Paweł Kraiński Cele pracy utworzenie nowoczesnego systemu CRM dla biura podróży, które oferuje swoje usługi przez Internet zaproponowanie
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba, J. Kaczmar Cel zadania Celem zadania jest implementacja klasyfikatorów
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Przykładowa analiza danych
Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia.
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
PODRĘCZNIK UŻYTKOWNIKA
PODRĘCZNIK UŻYTKOWNIKA aquarius client v. 2.0 platinum Dokument objęty jest licencją: Creative Commons: Uznanie autorstwa-użycie niekomercyjne-na tych samych warunkach wersja 2.5 Polska. http://creativecommons.org/licenses/by-nc-sa/2.5/pl/
Adfocus platforma RTB. Retargeting spersonalizowany.
Adfocus platforma RTB. Retargeting spersonalizowany. 1 Czy retargeting jest mi potrzebny? Jak zaangażować pozostałe 98% aby dokonali zakupu? 2% klientów kupuje podczas pierwszej wizyty w sklepie. 2 Czy
Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining
Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining 0LNRáDM0RU]\ Marek Wojciechowski Instytut Informatyki PP Eksploracja danych 2GNU\ZDQLHZ]RUFyZZGX*\FK
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA REALIZACJA W ROKU AKADEMICKIM 2016/2017
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2014-2018 REALIZACJA W ROKU AKADEMICKIM 2016/2017 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu Metody eksploracji danych Kod przedmiotu/ modułu*
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski
Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,
Załącznik do Zarządzenia Członka Zarządu Domu Maklerskiego nr 52/2014/JI z dnia 24 września 2014 r.
Polityka prywatności Poniższa Polityka Prywatności wyjaśnia w jakim celu i w jaki sposób gromadzimy, przetwarzamy oraz chronimy Twoje dane osobowe. Szanujemy Twoje prawo do prywatności. Chcielibyśmy szczegółowo
Eksploracja danych - wykład II
- wykład 1/29 wykład - wykład Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Październik 2015 - wykład 2/29 W kontekście odkrywania wiedzy wykład - wykład 3/29 CRISP-DM - standaryzacja
Sztuczna inteligencja : Algorytm KNN
Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Handel internetowy w Polsce w dużym skrócie
Handel internetowy w Polsce w dużym skrócie Celem stworzenia dokumentu było, przedstawienie danych o rynku internetowym w Polsce firmom branży odzieżowej. Zagadnienia: Rynek internetowy w Polsce Co robimy,
Prawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
INTERNET - NOWOCZESNY MARKETING
STRONA INTERNETOWA TO JUŻ ZBYT MAŁO! INTERNET ROZWIJA SIĘ Z KAŻDYM DNIEM MÓWIMY JUŻ O: SEM Search Engine Marketing, czyli wszystko co wiąże się z marketingiem internetowym w wyszukiwarkach. SEM jest słowem
WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra
Algorytmy genetyczne w interpolacji wielomianowej
Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego
EKSPLORACJA ZASOBÓW INTERNETU - MIŁOSZ KADZIŃSKI LABORATORIUM VII KLASYFIKACJA I PREDYKCJA PLUS MAHOUT
EKSPLORACJA ZASOBÓW INTERNETU - MIŁOSZ KADZIŃSKI LABORATORIUM VII KLASYFIKACJA I PREDYKCJA PLUS MAHOUT. Plan laboratorium VII Klasyfikacja znalezienie odwzorowania dokumentów w zbiór predefiniowanych klas;
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Wyznaczenie miarodajnych okresów przeprowadzania badań zachowań parkingowych użytkowników Strefy Płatnego Parkowania
Wyznaczenie miarodajnych okresów przeprowadzania badań zachowań parkingowych użytkowników Strefy Płatnego Parkowania Determination of neutral periods for the organisation of drivers parking behaviour surveys
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Statystyczna analiza danych
Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
SYLABUS. Dotyczy cyklu kształcenia Realizacja w roku akademickim 2016/2017. Wydział Matematyczno - Przyrodniczy
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS Dotyczy cyklu kształcenia 2014-2018 Realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Program telewizyjny emisji filmów w 4 stacjach telewizyjnych: Telewizja / stacja Film i godziny jego emisji Czas trwania emisji filmu
Zadanie 1. roblem telewidza W roblemie telewidza mamy program telewizyjny, zawierający listę filmów emitowanych w różnych stacjach telewizyjnych jednego dnia. Telewidz zamierza obejrzeć jak najwięcej filmów
UL. ŻELAZNA 58/62 M WARSZAWA NIP
Polityka prywatności strony internetowej www.km-trans.pl Niniejsza polityka prywatności strony www.km-trans.pl (zwana dalej: Polityką ) ma charakter informacyjny, co oznacza że nie jest ona źródłem obowiązków
Czy współczesny konsument to rzeczywiście nowy konsument? Prezentacja wyników badania.
Czy współczesny konsument to rzeczywiście nowy konsument? Prezentacja wyników badania. Nowy konsument czyli kto? 30 mln Polaków korzysta z Internetu Dane pochodzące z raportu nazwa.pl, wrzesień 2018
XGBOOST JAKO NARZĘDZIE PROGNOZOWANIA SZEREGÓW CZASOWYCH
XGBOOST JAKO NARZĘDZIE PROGNOZOWANIA SZEREGÓW CZASOWYCH Filip Wójcik Objectivity Digital Transformation Specialists Doktorant na Uniwersytecie Ekonomicznym we Wrocławiu filip.wojcik@outlook.com Agenda
Wykład 10 Skalowanie wielowymiarowe
Wykład 10 Skalowanie wielowymiarowe Wrocław, 30.05.2018r Skalowanie wielowymiarowe (Multidimensional Scaling (MDS)) Główne cele MDS: przedstawienie struktury badanych obiektów przez określenie treści wymiarów
Lektura obowiązkowa dla każdego, kto poważnie myśli o wykorzystaniu okazji, jakie niosą ze sobą wielkie zbiory danych.
Wszystko co powinieneś wiedzieć o eksploracji danych i myśleniu w kategoriach analityki danych. Wyciągaj trafne wnioski! Lektura obowiązkowa dla każdego, kto poważnie myśli o wykorzystaniu okazji, jakie
neadoo don't be invisible REKLAMY NA YouTube
REKLAMY NA Youtube trochę statystyk na dobry początek : ma ponad miliard użytkowników to prawie jedna trzecia wszystkich osób korzystających z internetu. Nasi widzowie oglądają codziennie setki milionów
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:
Reklama internetowa dla Deweloperów
Reklama internetowa dla Deweloperów Jak sprzedawać mieszkania przez Internet? Opracowanie: Kwiecień 2017 roku Czy wiesz, że: 53% Klientów szuka informacji o ofertach na stronach internetowych deweloperów.
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów
Poznań, ul. Winna 19 NIP:
Polityka prywatności strony internetowej www.zawory.com.pl i sklep.zawory.com.pl Niniejsza polityka prywatności sklepu www.zawory.com.pl sklep.zawory.com.pl (zwana dalej: Polityką ) ma charakter informacyjny,
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE
D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny
Ty i Google. Niezbędnik dla początkującego
Ty i Google Niezbędnik dla początkującego Podstawowe usługi... Jedno konto, wszystkie usługi Jeśli założysz konto w serwisie google masz wtedy dostęp do wszystkich jego funkcji, również tych zaawansowanych.
STUDIA I MONOGRAFIE NR
STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Odkryj w danych to, co najważniejsze
Odkryj w danych to, co najważniejsze W erze data lake ów posiadanie bazy danych jest absolutnym minimum dla efektywnego prowadzenia biznesu, szczególnie w Sieci. Każda dobrze zarządzana, nowo utworzona