Klasyczny model rzetelności H. Gulliksen (1950) X = T +E
|
|
- Lidia Karczewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Klasyczny model rzetelności H. Gulliksen (1950) gdzie: X = wynik obserwowany T = wynik prawdziwy E = błąd pomiaru X = T +E Założenia: (1) M E = 0 (założenie o nieobciążoności narzędzia pomiarowego) () r ET = 0 (założenie o niezależności) (3) r E1E = 0
2 Wskaźnikiem rzetelności testu jest wielkość współczynnika korelacji pomiędzy wynikiem obserwowanym a wynikiem prawdziwym (ρ XT )
3 Korzystając z klasycznego modelu wyniku testowego można udowodnić, że r XT XX '
4 Wyprowadzenie Ponieważ wskaźnikiem rzetelności testu jest wielkość korelacji pomiędzy wynikiem obserwowanym a wynikiem prawdziwym, czyli D XT, to można wskaźnik rzetelności wyrazić w postaci współczynnika korelacji Współczynnik korelacji między dwiema zmiennymi jest definiowany jako: r XY CovXY = ( SD )( SD ) X Y czyli: ρ XT σ XT = σ σ X T Przyjmując klasyczny model teorii testów, tj. X = T + E ρ XT σ σ σ σ σ = = = = σ σ σ σ σ σ σ ( T+ E) T T + TE T T X T X T X T X Przekształcając współczynnik korelacji na współczynnik determinacji otrzymamy: ρ XT σ = σ T X
5 Wyprowadzenie - cd Korzystając następnie z założeń dotyczących równoległości testów, czyli Testy równoległe to testy mierzące tę samą właściwość psychologiczną i spełniające następujące założenia: X A = XB SDA = SD r = r AZ BZ B możemy zapisać: r AB σ σ + + σ + σ + σ + σ = = = σ σ σ σ σ σ XAXB ( T EA)( T EB) T TEA TEB EAEB XA XB XA XB XA XB Ponieważ zgodnie z założeniami klasycznej teorii testów: σ = 0iσ = 0iσ = 0 TEA TEB EAEB a z definicji testów równoległych wynika, że X A = X B, dlatego: σ σ = σ σ = σ XA XB X X X W zawiązku z tym: r AB σ = = ρ σ T X XT Współczynnikiem rzetelności testu jest współczynnik korelacji między wynikami otrzymanymi w dwóch testach równoległych
6 Metody oparte na porównaniu dwukrotnego badania tym samym testem (metoda testretest) między badaniem pierwszym (test) a badaniem drugim (retest) mija jakiś czas - estymacja stabilności bezwzględnej badanie drugie (retest) następuje zaraz po zakończeniu badania pierwszego (test) - estymacja wiarygodności testu
7 Metody oparte na porównaniu form alternatywnych (równoległych) testu między badaniem pierwszą wersją testu a badaniem drugą wersją testu mija jakiś czas - estymacja stabilności względnej badanie drugą formą testu następuje zaraz po zakończeniu badania pierwszą formą testu - estymacja równoważności międzytestowej
8 Testy równoległe to testy mierzące tę samą właściwość psychologiczną i dokładnie w ten sam sposób, tzn: X A = X B SD A = SD B r AZ = r BZ
9 Metody oparte na porównywaniu połówek tego samego testu (analiza równoważności międzypołówkowej - metoda split-half) szacowanie rzetelności całego testu na podstawie rzetelności połówki wzór Spearmana Browna r tt r = 1 + r pp pp gdzie: r pp to rzetelność połowy testu r tt to rzetelność całego testu
10 Metody oparte na analizie właściwości statystycznych pozycji testowych (analiza zgodności wewnętrznej) Wzór alpha Cronbacha gdzie: k = liczba pozycji S i S = i k α = 1 i= 1 k 1 = wariancja i-tej pozycji testowej wariancja wyników testowych k S S t i
11 Metody szacowania rzetelności testu Wymagana liczba badań Jedno Dwa Wymagana liczba wersji testu Jedna Połówkowa (split-half) Kudera Richardsona α Cronbacha Powtarzanie testu (testretest) Dwie Wersje alternatywne (badanie jedno po drugim) Wersje alternatywne (badania w pewnym odstępie czasu) Jedna osoba - wielu oceniających Zgodność ocen sędziów
12 Źródła wariancji błędu w zależności od metody szacowania współczynnika rzetelności Metoda szacowania współczynnika rzetelności Powtarzanie testu (badania w pewnym odstępie czasu) Powtarzanie testu (badanie jedno po drugim) Wersje alternatywne (badanie jedno po drugim) Wersje alternatywne (badania w pewnym odstępie czasu) Połówkowa Kudera Richardsona i α Cronbacha Zgodność ocen sędziów Wariancja błędu Zmienność w czasie Czynniki losowe Dobór treści Zmienność w czasie i dobór treści Dobór treści Heterogeniczność Różnice między sędziami
13 Rzetelność Inwentarza osobowości NEO-FFI Costy i McCrae współczynnik alfa Cronbacha Neurotyczność Ekstrawersja Otw. na dośw. Ugodowość Sumienność ,80 0,80 0,69 0,66 0, ,8 0,77 0,71 0,61 0, ,84 0,74 0,64 0,7 0, ,76 0,71 0,58 0,60 0, ,73 0,77 0,47 0,60 0,76 Dane te prowadzą do wniosku, że teza o uniwersalności demograficznej Wielkiej Piątki ma pełne uzasadnienie jedynie w przypadku płci, a w odniesieniu do wieku raczej u osób młodych. U osób starszych bowiem homogeniczność zachowań konstytuujących podstawowe cechy osobowości jest znacznie mniejsza.
14 Rzetelność Inwentarza osobowości NEO-FFI Costy i McCrae współczynnik alfa Cronbacha Otrzymane wyniki ograniczają możliwość stosowania polskiej adaptacji NEO-FFI do indywidualnej diagnozy osobowości raczej osób młodych. W grupach starszych należy się liczyć ze znacznym pogorszeniem rzetelności i związanym z tym bardzo dużym błędem pomiaru
Psychometria PLAN NAJBLIŻSZYCH WYKŁADÓW. Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. TEN SLAJD JUŻ ZNAMY
definicja rzetelności błąd pomiaru: systematyczny i losowy Psychometria Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. rozkład X + błąd losowy rozkład X rozkład X + błąd systematyczny
Rzetelność ma dwa aspekty: konsystencja (precyzja pomiaru) stabilność pomiaru (powtarzalność wyników)
6. RZETELNOŚĆ TESTU Metody szacowania rzetelności Rodzaje testu a wybór metody szacowania rzetelności Czynniki wpływające na rzetelność pomiaru Kryteria akceptacji rzetelności pomiaru Praktyczne wykorzystanie
Kognitywistyka II r. Teoria rzetelności wyników testu. Teorie inteligencji i sposoby jej pomiaru (4) Rzetelność czyli dokładność pomiaru
Kognitywistyka II Teoie inteligencji i sposoby jej pomiau (4) Teoia zetelności wyników testu Rzetelność czyli dokładność pomiau W języku potocznym temin zetelność oznacza niezawodność (dokładność). W psychometii
5. WNIOSKOWANIE PSYCHOMETRYCZNE
5. WNIOSKOWANIE PSYCHOMETRYCZNE Model klasyczny Gulliksena Wynik otrzymany i prawdziwy Błąd pomiaru Rzetelność pomiaru testem Standardowy błąd pomiaru Błąd estymacji wyniku prawdziwego Teoria Odpowiadania
Zajęcia 1. Rzetelność
Wzory Psychometria Zajęcia 1. Rzetelność 1950 Guliksen, za Spearmanem (1910) przyjmuje, że: t = T + e t wynik otrzymany T wynik prawdziwy pozycja danej osoby na kontinuum cechy (zdolności); przysługuje
ćwiczenia 30 zaliczenie z oceną
Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Krzysztof Fronczyk Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Stacjonarne
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 014/015 WydziałPsychologii i Nauk Humanistycznych Kierunek studiów:
testowanie? 5.1. Metody szacowania rzetelności pomiaru testem 1
5. Jakich informacji o teście dostarcza testowanie? Konrad Jankowski, Marcin Zajenkowski Wydział Psychologii Uniwersytet Warszawski 84 5.1. Metody szacowania rzetelności pomiaru testem 1 Z zaprezentowanej
Trafność czyli określanie obszaru zastosowania testu
Trafność czyli określanie obszaru zastosowania testu Trafność jest to dokładność z jaką test mierzy to, co ma mierzyć Trafność jest to stopień, w jakim test jest w stanie osiągnąć stawiane mu cele Trafność
Psychometria. klasyczna teoria rzetelności testu. trafność. Co wyniki testu mówią nam o samym teście? B. Trafność pomiaru testem.
Psychometria Co wyniki testu mówią nam o samym teście? B. Trafność pomiaru testem. klasyczna teoria rzetelności testu W6 dr Łukasz Michalczyk Trafność czy udało się zmierzyć to, co zamierzaliśmy zmierzyć
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Pomiar gotowości szkolnej uczniów za pomocą skali quasi-obserwacyjnej
Centralna Komisja Egzaminacyjna Pomiar gotowości szkolnej uczniów za pomocą skali quasi-obserwacyjnej Aleksandra Jasioska Zespół badawczy EWD, Centralna Komisja Egzaminacyjna Instytut Badao Edukacyjnych
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji
Metodologia badań psychologicznych. Wykład 12. Korelacje
Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów
Analiza korelacji
Analiza korelacji Zakres szkolenia Wstęp Podstawowe pojęcia korelacji Współczynnik korelacji liniowej Pearsona Współczynnik korelacji rang Spearmana Test istotności Zadania 2 Wstęp Do czego służy korelacja:
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
EFEKTYWNOŚĆ STOSOWANIA TESTÓW W BIZNESIE. dr Victor Wekselberg Dyrektor Działu Doradztwa Organizacyjnego w Instytucie Rozwoju Biznesu
EFEKTYWNOŚĆ STOSOWANIA TESTÓW W BIZNESIE dr Victor Wekselberg Dyrektor Działu Doradztwa Organizacyjnego w Instytucie Rozwoju Biznesu ZAWARTOŚĆ PREZENTACJI 1. Kilka wyników z badania ankietowego Instytutu
3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM
3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM Oczekiwana stopa zwrotu portfela dwóch akcji: E(r p ) = w 1 E(R 1 ) + w
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
15. PODSUMOWANIE ZAJĘĆ
15. PODSUMOWANIE ZAJĘĆ Efekty kształcenia: wiedza, umiejętności, kompetencje społeczne Przedmiotowe efekty kształcenia Pytania i zagadnienia egzaminacyjne EFEKTY KSZTAŁCENIA WIEDZA Wykazuje się gruntowną
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15
X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika
Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku
Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie
Psychometria. zgadywanie. Co testy mówią nam o właściwościach osób badanych? Jak temu zaradzić? Co testy mówią nam o właściwościach osób badanych?
Psychometria W9 dr Łukasz Michalczyk - poprzez instrukcję testową - zachęcanie do zgadywania (by wyrównać tendencje do zgadywania) - zastosowanie statystycznej poprawki na zgadywanie Definicja: zgadywanie
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
(narzędzie do pomiaru cech zachowania oprac. dr hab. Zbigniew Spendel)
TEST PSYCHOLOGICZNY/ PEDAGOGICZNY (narzędzie do pomiaru cech zachowania oprac. dr hab. Zbigniew Spendel) 1. Jest narzędziem diagnostycznym posługiwanie się nim musi być uzasadnione celem postępowania diagnostycznego
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Metodologia badań psychologicznych
Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Psychologia jako nauka empiryczna Wprowadzenie pojęć Wykład 5 Cele badań naukowych 1. Opis- (funkcja deskryptywna) procedura definiowania
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Stosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Liczba zadań a rzetelność testu na przykładzie testów biegłości językowej z języka angielskiego
Ewaluacja biegłości językowej Od pomiaru do sztuki pomiaru Liczba zadań a rzetelność testu na przykładzie testów biegłości językowej z języka angielskiego Tomasz Żółtak Instytut Badań Edukacyjnych oraz
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Regresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Psychometria. Psychometria. Co wyniki testu mówią nam o samym teście? Co wyniki testu mówią nam o samym teście?
Psychometria Co wyniki mówią nam o samym teście? C. Właściwości sychometryczne ozycji testowych. W7 dr Łukasz Michalczyk związkie ozycji testowych z testem ojmowanym jako całość Test jako narzędzie obejmuje
Zmienne zależne i niezależne
Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
WNIOSKOWANIE STATYSTYCZNE
STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
1. TESTY PSYCHOLOGICZNE
1. TESTY PSYCHOLOGICZNE 1. pojęcie testu psychologicznego 2. zastosowanie 3. podstawowe wymogi (standaryzacja, obiektywność, rzetelność, trafność, normalizacja) 4. cecha psychologiczna w ujęciu psychologicznym
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008
Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar
Metoda najmniejszych kwadratów
Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Prawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
Eksploracja Danych. Testowanie Hipotez. (c) Marcin Sydow
Testowanie Hipotez Wprowadzenie Testy statystyczne: pocz. XVII wieku (prace J.Arbuthnotta, liczba urodzeń noworodków obu płci w Londynie) Testowanie hipotez: Karl Pearson (pocz. XX w., testowanie zgodności,
Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22
Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach
Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla
Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Rodzaje testów. Testy. istnieje odpowiedź prawidłowa. autoekspresja brak odpowiedzi prawidłowej ZGADYWANIE TRAFNOŚĆ SAMOOPISU
Rodzaje testów Testy wiedza umiejętności zdolności właściwości poznawcze właściwości afektywne uczucia postawy osobowość emocje wierzenia istnieje odpowiedź prawidłowa autoekspresja brak odpowiedzi prawidłowej
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1
Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Hipotezy statystyczne
Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:
Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane
Cechy osobowości a style radzenia sobie ze stresem w okresie wczesnej starości. Ks. dr Paweł Brudek Instytut Psychologii KUL Jana Pawła II
Cechy osobowości a style radzenia sobie ze stresem w okresie wczesnej starości Ks. dr Paweł Brudek Instytut Psychologii KUL Jana Pawła II Starość wyzwaniem współczesności Demograficzne starzenie się społeczeństw
Prawdopodobieństwo i statystyka r.
Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
Psychometria. Testy Psychologiczne. Test Psychologiczny. Test Psychologiczny. Test Psychologiczny (wg APA) Test Psychologiczny. Test Psychologiczny
Psychometria Testy Psychologiczne W 2 Nie wiemy czy mierzone cechy, stany czy postawy istnieją w rzeczywistości, bo nie mamy do nich bezpośredniego dostępu. Dlatego nazywane są też zmiennymi lub konstruktami,
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...
Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie
Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane