WYZNACZANIE OBCIĄŻEŃ W STAWIE RAMIENNYM Z WYKORZYSTANIEM PRZESTRZENNEGO MATEMATYCZNEGO MODELU KOŃCZYNY GÓRNEJ
|
|
- Wanda Janik
- 8 lat temu
- Przeglądów:
Transkrypt
1 MODELOWANIE INŻYNIERSKIE 2016 nr 60, ISSN X WYZNACZANIE OBCIĄŻEŃ W STAWIE RAMIENNYM Z WYKORZYSTANIEM PRZESTRZENNEGO MATEMATYCZNEGO MODELU KOŃCZYNY GÓRNEJ Piotr Wodarski 1a, Robert Michnik 1b, Jacek Jurkojć 1c, Andrzej Bieniek 1d, Marek Gzik 1e 1 Katedra Biomechatroniki, Politechnika Śląska, Zabrze a piotr.wodarski@polsl.pl, b robert.michnik@polsl.pl, c jacek.jurkojc@polsl.pl, d andrzej.bieniek@polsl.pl, e marek.gzik@polsl.pl, Streszczenie Przestrzenne dynamiczne modele umożliwiające obliczanie obciążeń w układzie mięśniowo-szkieletowym stanowią pomocne narzędzia w procesach wspomagania diagnostyki dysfunkcji mięśniowych. Celem przeprowadzonych badań jest ocena obciążeń występujących w stawie ramiennym z wykorzystaniem przestrzennego modelu kończyny górnej opracowanego na podstawie modelu Free Posture Move w oprogramowaniu Anybody. Ocenę przeprowadzono z udziałem dziesięciu osób zdrowych na podstawie ruchu unoszenia kończyny. Z wykorzystaniem modelu wyznaczono wypadkową reakcję w stawie ramiennym, a następnie porównano ją z wynikami z literatury dla badań modelowych i badań z wykorzystaniem implantu. Słowa kluczowe: kończyna górna, modelowanie, staw ramienny DETERMINATION OF LOADS IN A UPPER LIMB USING A SPATIAL MATHEMATICAL MODEL Summary Static and dynamic models allow calculation of loads in musculoskeletal system and they are tool for doctors in diagnostic processes. The aim of the research is determination of loads in a upper limb using a 3D model based on Free Posture Move in AnyBody software. The calculation was carried out for 10 healthy people during elevation of their upper limbs. The resultant reactions in glenohumeral joints were calculated and then the results were compared to a literature data (from model calculated and measured with implants). Keywords: upper limb, modeling, glenohumeral joint 1. WSTĘP Wynikiem procesu modelowania jest model reprezentujący istotne, ze względu na cel analizy, zachowania i właściwości badanego obiektu [10, 11]. Wierne odzwierciedlenie przez model cech badanego obiektu wymaga często skomplikowanych opisów, wnikliwych analiz, a czasem jest wręcz niemożliwe ze względu na nieznajomość wewnętrznej struktury obiektu. Wprowadza się więc uproszczenia poprzez pominięcie pewnych cech wynikających np. z właściwości materiałowych elementów zastosowanych w modelach. Efektem takich działań jest zwiększenie szybkości obliczeń modelowych przy jednoczesnym zmniejszeniu dokładności. Ograniczenia nakładane na model mogą mieć charakter pominięcia mniej istotnych czynników, nieznacznie wpływających na rezultaty obli- 74
2 Piotr Wodarski, Robert Michnik, Jacek Jurkojć, Andrzej Bieniek, Marek Gzik czeń, uogólnienia czynników losowych, linearyzacji parametrów nieliniowych, a także grupowania części elementów w zbiory o takich samych cechach [2, 3]. Opracowany w ten sposób model stanowi pewne uproszczenie, uogólnienie modelowanego obiektu. W procesie modelowania należy zadbać o to, aby zgodność pomiędzy efektem w formie modelu a układem była tak duża, by wnioski wypływające z badań symulacyjnych można było uznać za prawdziwe dla modelowanego układu, podobnie jak w pracy [6]. Odpowiedzią na tak postawione wymaganie jest przeprowadzenie weryfikacji modelu w celu potwierdzenia wiarygodności uzyskiwanych wyników symulacji. Zweryfikowany model można wykorzystać do symulacji zachowań obiektu rzeczywistego, jakim może być ciało ludzkie. Należy jednak pamiętać, że weryfikacja modeli służących obliczeniom obciążeń w układzie szkieletowomięśniowym jest często trudna do przeprowadzenia zarówno ze względu na ich złożoność, jak i trudność w dostępie do wartości rzeczywistych. Z tego względu stosuje się więc weryfikację poszczególnych fragmentów modeli. Wyznaczanie obciążeń w układzie mięśniowo- -szkieletowym, przez wzgląd na skomplikowane i czasochłonne obliczenia, nie zyskało zastosowania w codziennej praktyce szpitalnej. Na rynku wciąż brakuje systemu, który dokonywałby oceny obciążeń w układzie mięśniowo-szkieletowym w obrębie kończyny górnej, którego wyniki można by było wykorzystać np. do obiektywnej oceny stopnia niepełnosprawności. Opracowanie i weryfikacja kolejnych udoskonaleń modeli to kolejny krok w kierunku dostarczenia lekarzom narzędzi umożliwiających postawienie szybszej i bardziej trafnej diagnozy. 2. CEL BADAŃ Celem przeprowadzonych badań było wyznaczenie obciążeń w stawie ramiennym podczas ruchu zginania i prostowania z wykorzystaniem przestrzennego matematycznego modelu kończyny górnej. 3. BUDOWA PRZESTRZENNEGO DYNAMICZNEGO MODELU KOŃCZYNY GÓRNEJ Zaadaptowany na potrzeby przeprowadzonych badań numerycznych model został opracowany w programie AnyBody Technology. Wykorzystanie modelu umożliwia obliczanie obciążeń w układzie mięśniowo-szkieletowym w obrębie kończyny górnej. Model jest modyfikacją zaimplementowanej w oprogramowaniu struktury Free Posture Move. Wygląd graficznej struktury modelu przedstawia rys. 1. Rys. 1. Wygląd modelu wraz z graficznym umiejscowieniem segmentów Model składa się z następujących segmentów zamodelowanych w formie brył sztywnych reprezentujących każdą kość kończyny górnej osobno: 1. łopatka (ang. scapula) zamodelowana w formie bryły sztywnej, 2. obojczyk (ang. clavicula) zamodelowany w formie bryły sztywnej, 3. kość ramienna (ang. humerus) człon ruchomy, zamodelowany w formie bryły sztywnej, 4. kość promieniowa (ang. ulna) człon ruchomy, zamodelowany w formie bryły sztywnej, 5. kość łokciowa (ang. radius) człon ruchomy, zamodelowany w formie bryły sztywnej, 6. ręka (ang. hand) zamodelowana poprzez kilka brył sztywnych stanowiących jeden człon ruchomy. Segmenty te połączono w następujące pary kinematyczne: A. staw mostkowo-obojczykowy (ang. sternoclavicural joint) - połączenie pomiędzy łopatką i obojczykiem a żebrami, tworzy parę kinematyczną III klasy (o trzech stopniach swobody), umożliwia pronację/supinację, unoszenie/opadanie oraz rotację, B. staw ramienny (ang. glenohumeral joint) połączenie pomiędzy łopatką i obojczykiem a kością ramienną, tworzy parę kinematyczną III klasy (o trzech stopniach swobody) umożliwia odwodzenie/przewodzenie, zginanie/prostowanie i rotację, C. staw łokciowy (ang. elbow joint) połączenie pomiędzy kością ramienną a kośćmi promieniową i łokciową, tworzy parę kinematyczną IV klasy (o dwóch stopniach swobody), umożliwia zginanie/prostowanie i pronację/suplinację, D. staw promieniowo-nadgarstkowy (ang. wrist radiocalpar joint) połączenie przegubowe pomiędzy kośćmi promieniową i łokciową a ręką, para kinematyczna IV klasy (o dwóch stopniach swobody) 75
3 WYZNACZANIE OBCIĄŻEŃ W STAWIE RAMIENNYM Z WYKORZYSTANIEM PRZESTRZENNEGO( ) umożliwia zginanie grzbietowe/zginanie dłoniowe i przywodzenie promieniowe/odwodzenie łokciowe, Zawarte w modelu elementy kończyny górnej tworzą łańcuch biokinematyczny o strukturze podobnej do opracowanego przez Moreckiego [7] schematu strukturalnego kończyny górnej. W modelu uwzględniono 46 najważniejszych mięśni kończyny górnej podzielonych na 144 aktony mięśniowe. W przygotowanym modelu przyjęto następujące uproszczenia: prawa i lewa kończyna są tożsame w budowie i symetryczne przed procesem kalibracji w programie AnyBody, po procesie kalibracji wymiary dostosowują się do parametrów antropometrycznych osób badanych, zmieniają się długości segmentów i położenia stawów w zależności od zmierzonych, z wykorzystaniem kombinezonu do analizy ruchu, u badanej osoby długości segmentów kończyny górnej oraz punktów położenia stawów, połączenia stawowe zamodelowano jako pary kinematyczne z dwoma lub trzema stopniami swobody, ruchy poszczególnych elementów modelu opisane są za pomocą danych kinematycznych, pochodzących z kombinezonu do analizy ruchu MVN Biomech firmy XSENS, równowaga dynamiczna uwzględnia działanie sił grawitacji i bezwładności, sił mięśniowych i sił powstałych na powierzchniach stawowych, pominięto wpływ tkanek miękkich, pominięto tarcie w stawach. Wzajemne położenia przyczepów mięśniowych, ich punktów pośrednich, wartości sił mięśniowych oraz położenie każdego z segmentów tworzących anatomiczny model opracowano na podstawie badań holenderskiej grupy Dutch Shoulder Group, w tym badań MAYO i VU oraz na podstawie dwudziestu pozycji literaturowych zamieszczonych na stronie internetowej producenta oprogramowania AnyBody Technology [12]. Identyfikacja sił generowanych przez mięśnie uwzględnione w modelu odbywa się z wykorzystaniem metody optymalizacji statycznej. Ruch każdego z segmentów ciała uwzględnionego w modelu został opisany za pomocą równań Newtona-Eulera. Wykorzystując zarejestrowane podczas badań doświadczalnych dane kinematyczne, z układu tego wyznaczane są wypadkowe momenty sił zewnętrznych działające na poszczególne stawy. Wartości momentów równoważone są przez sumę momentów sił mięśniowych działających w obrębie poszczególnych stawów. Jednakże ze względu na większą liczbę mięśni uwzględnionych w modelu, w stosunku do liczby możliwych do zapisania równań wynikających z liczby stopni swobody modelu, wyzna- czenie wartości sił mięśniowych nie jest możliwe bez przyjęcia dodatkowych założeń. W prezentowanych badaniach wartości sił mięśniowych wyznaczono, wykorzystując metody optymalizacyjne. Zdecydowano się na przyjęcie hipotetycznego kryterium sterowania pracą mięśni, zakładającego, że układ nerwowy steruje pracą mięśni w taki sposób, aby minimalizować obciążenia przenoszone przez układ szkieletowy. W związku z tym przyjęto funkcję celu (1), w której poszukiwano minimum sumy sześcianów sił mięśniowych. Równocześnie zadanie optymalizacyjne rozwiązywane jest przy warunkach ograniczających (2) zakładających równość momentów sił zewnętrznych i momentów sił mięśniowych. Nałożono również ograniczenia na wartości poszukiwanych sił mięśniowych (3), przyjmując, że mogą one przyjmować wartości z zakresu od zera do wartości maksymalnej. Postać zadania optymalizacyjnego przedstawią zależności poniżej. (1) (2) (3) gdzie: n liczba mięśni uwzględnionych w modelu, k numer kolejnego mięśnia, j numer kolejnego stawu. Opracowany model pozwala na wyznaczenie obciążeń w układzie szkieletowo-mięśniowym w programie Any- Body. W wyniku obliczeń odwrotnego zadania dynamiki z zastosowaniem optymalizacji statycznej w programie AnyBody istnieje m.in. możliwość wyznaczenia następujących danych: wartości sił generowanych przez poszczególne mięśnie w kolejnych chwilach czasowych wykonywanego ruchu, wartości reakcji w stawach, wywołanych działaniem sił mięśniowych, sił zewnętrznych, ciężaru i bezwładności dla poszczególnych połączeń stawowych, w kolejnych chwilach czasowych wykonywanego ruchu, wartości momentów sił mięśniowych względem stawów w kolejnych chwilach czasowych wykonywanego ruchu. W zagadnieniu minimalizowano sumę sześcianów sił mięśniowych. 4. METODYKA BADAŃ Porównanie wyników obliczeń symulacyjnych z wykorzystaniem opracowanego modelu jest możliwe dzięki badaniom Nikooyana [8 i pomiarom wykonanym w instytucie Bergmana [1]. 76
4 Piotr Wodarski, Robert Michnik, Jacek Jurkojć, Andrzej Bieniek, Marek Gzik Rys. 2. Pozycje kończyn górnych w badaniach Nikooyana [8] i uwzględnione w badaniach Bergmana [1] Prezentowane dane literaturowe zostały pozyskane podczas wykonywania sekwencji ruchowych związanych z unoszeniem wyprostowanej kończyny górnej poprzez zgięcie w stawie ramiennym. W badaniach literaturowych sekwencja ta polega na ruchu z pozycji przedstawionej na rys. 2 jako pozycja A do pozycji B. Przeprowadzono badania 10 osób zdrowych (5 mężczyzn i 5 kobiet). Rejestrację wielkości kinematycznych przeprowadzono z wykorzystaniem kombinezonu do analizy ruchu MVNBiomech firmy Xsens. Zmierzone wielkości przetransformowano z zastosowaniem autorskiego oprogramowania MVN2ANY do programu AnyBody. Dla wybranych osób zdrowych wyznaczono, w programie AnyBody, z wykorzystaniem opracowanego modelu, wypadkową reakcję w stawie ramiennym. Badania przeprowadzono dla sekwencji ruchowej obejmującej uniesienie wyprostowanej kończyny poprzez zgięcie w stawie ramiennym od pozycji 0º, stopni stanowiącej swobodnie opuszczoną kończynę, do maksymalnego możliwego uniesienia dla każdej z osób. Wyniki porównano z wynikami pozyskanymi z literatury odnośnie do pomiarów wypadkowej reakcji uzyskanej z wykorzystaniem implantu pomiarowego [1] oraz z wynikami uzyskanymi z badań modelowych, na przykładzie zweryfikowanej wcześniej struktury modelu w badaniach Nikooyana [8]. 5. WYNIKI Na rys. 3 przedstawiono wykres uzyskanych wartości procentowych wypadkowej reakcji w stawie ramiennym, odniesionej do ciężaru ciała osoby badanej, w funkcji kąta zgięcia w stawie ramiennym. Dla czynności ruchowych wykonywanych przez badaną grupę osób zdrowych przedstawiono fragment wyników obliczeń odpowiadający weryfikowanej czynności. Z kolei dla dokładnej analizy uzyskanych wyników w tabeli 1 przedstawiono odczytane z wykresu wartości dla kątów 30º, 60º i 95º. Rys. 3. Obliczone wartości wypadkowej reakcji w stawie ramiennym, odniesionej do ciężaru ciała, podczas wykonywania pierwszej sekwencji ruchowej w porównaniu z wynikami uzyskanymi z pomiarów Bergmana oraz z badań modelowych Nikooyana. Intensywnym czarnym kolorem i grubszą linią zaznaczono wyniki pozyskane z literatury dla kobiet, mniej intensywnym kolorem i grubszą linią dla mężczyzn (linie z zaznaczonymi punktami pomiar z wykorzystaniem implantu, linie bez zaznaczonych punktów obliczenia modelowe). Cienkie linie przerywane wyniki obliczeń modelowych dla kobiet, cienkie linie ciągłe wyniki obliczeń modelowych dla mężczyzn 77
5 WYZNACZANIE OBCIĄŻEŃ W STAWIE RAMIENNYM Z WYKORZYSTANIEM PRZESTRZENNEGO( ) Tabela. 1. Wartości wypadkowych reakcji w stawie ramiennym odniesione do ciężaru ciała badanych osób (k kobiety, m mężczyźni) Wartoci z bada dowiadczalnych Bergmana (implant) Wartoci z bada modelowych Nikooyana Obliczone wyniki [% BW] Kt [ O ] m k m k m 1 m 2 m 3 m 4 m 5 k 1 k 2 k 3 k 4 k ,5 39,6 29,7 35,6 34,0 26,5 29,0 23,0 27,0 32,5 31,2 27,9 28,6 31, ,5 66,4 47,4 55,6 53,0 48,8 40,5 29,5 63,0 39,1 38,9 37,7 40,0 46, ,5 83,1 45,4 59,1 52,8 66,2 52,1 42,0 67,2 39,1 60,2 60,1 42,8 56,1 Rónica pomidzy wartoci obliczon, a wartoci z bada modelowych Nikooyana w odniesieniu do bada modelowych Nikooyana [%] Rónica pomidzy wartoci obliczon, a wartoci z bada dowiadczalnych Bergmana w odniesieniu do bada dowiadczalnych Bergmana [%] Kt [ O ] m m m m m k k k k k Kt [ O ] m m m m m k k k k k DYSKUSJA WYNIKÓW Kształty wykresów, uzyskanych z badań modelowych Nikooyana i pomiarów wykonanych w instytucie Bergmana, wykazują podobny co do kształtu charakter krzywych do około 95 O zgięcia w stawie ramiennym. U kobiet zaobserwowano znacznie większe różnice kształtów i wartości aniżeli u mężczyzn. Różnice kształtu mogą wynikać z różnych szybkości wykonywania ruchu, sposobu jego wykonania oraz z możliwości osiągnięcia zakresów ruchowych dla każdej z badanych osób co zaobserwowano także w badaniach Guzik-Kopyto [5]. Wyniki obliczeń zweryfikowanym modelem Nikooyana są zbliżone do uzyskanych wyników obliczonych z wykorzystaniem opracowanego modelu. Maksymalne różnice wypadkowych reakcji pomiędzy mierzonymi przebiegami a badaniami modelowymi dla mężczyzn są na poziomie 14% dla kąta 30º i 38% dla kąta 65º. Dla kobiet wartości te są nieco większe i wynoszą 20% różnicy dla kąta 30º i 32% dla kąta 65º. Wartości uzyskane podczas pomiarów z wykorzystaniem implantów pomiarowych są większe aniżeli uzyskane podczas obliczeń modelowych Nikooyana oraz wykonanych opracowanym modelem. Maksymalne różnice dla kata 30º wynoszą 30%, a dla kąta 95º wynoszą 53%. Kształt mierzonej z wykorzystaniem implantów krzywej różni się od kształtów uzyskanych z badań modelowych dla większego zgięcia w stawie ramiennym od około 95º, co zaobserwowano również w badaniach Poppen [9]. Przyczyną może być różnica w ułożeniu mięśni, ich skróceniu oraz zachowaniu podczas skurczu wspólnego dla zginaczy i prostowników, co jest często niemodelowane ze względu na skomplikowany opis matematyczny, a co potwierdza w swoich badaniach Favre [4]. Różnice pomiędzy wartościami dla pomiarów z wykorzystaniem implantów, a obliczeń modelowych, mogą również wynikać z tego, że założenie implantu wymaga ingerencji w ciało ludzkie. Podczas zabiegu umieszczenia implantu mogą ulec uszkodzeniu struktury tkanek (w tym np. mięśni), a sam implant nie odzwierciedla dokładnie anatomicznej budowy stawu. 7. WNIOSKI Obliczenia z wykorzystaniem opracowanej przez producenta struktury modelu podczas badań własnych wskazują na zbieżność wyników z wynikami modelowych obliczeń spotykanymi w literaturze. Większość różnic dla wybranych kątów nie przekracza 30%. Różnice mogą wynikać z szybkości wykonywania ruchu oraz indywidualnych cech osób badanych. Wyniki wskazują, że model może zostać użyty do określania przybliżonych obciążeń w układzie szkieletowo-mięśniowym osób z prawidłowo wykształconym układem mięśniowo-szkieletowym. Przeprowadzone badania mogą służyć jako odniesienie w zakresie przybliżonych wartości reakcji w stawie ramiennym oraz w zakresie oceny kształtu uzyskanych trajektorii reakcji dla ruchu unoszenia kończyny. 78
6 Piotr Wodarski, Robert Michnik, Jacek Jurkojć, Andrzej Bieniek, Marek Gzik Literatura 1. Bergmann G. i in.: In vivo gleno-humeral joint loads during forward flexion and abduction. Journal of Biomechanics 2011, 44, p Damsgaard M i in.: Analysis of musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling Practice and Theory 2006, 14, p Dubowsky S. R. i in.: Validation of a musculo-skeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces. Journal of Biomechanics 2008, No. 4, p Favre P., Snedeker J. G., Gerber C.: Numerical modeling of the shoulder for clinical applications. Philosophical Transactions of Royal Society 2009, 367, p Guzik-Kopyto A., Michnik R., Wodarski P., Gzik M., Bieniek A.: Wyznaczanie obciążeń w układzie szkieletowomięśniowym kończyny górnej na podstawie badań kinematyki z wykorzystaniem inercyjnego systemu pomiarowego. Modelowanie Inżynierskie 2014, nr 53 s Michnik R., Nowaowska K., Jurkojć J., Jochymczyk-Woźniak K., Kopyta I., Mandera M.: Wykorzystanie metod modelowania obciążeń układu szkieletowo-mięśniowego u pacjenta z mózgowym porażeniem dziecięcym. Modelowanie Inżynierskie 2015, nr 55, s Morecki A., Ekiel J., Fidelus K.: Bionika ruchu. Warszawa: PWN, Nikooyan A.A. i in.: Validation of the Delft shoulder and elbow model using in-vivo glenohumeral joint contact forces. Journal of Biomechanics 2010, 43, p Poppen, N.K., Walker, P.S.: Forces at the glenohumeral joint in abduction. Clinical Orthopaedis and Related Research 1978, Vol. 135, p Tejszerska D., Świtoński E.: Biomechanika inżynierska: zagadnienia wybrane.gliwice:wyd. Pol. Śl., ISBN , Tejszerska D., Świtoński E., Gzik M.: Biomechanika narządu ruchu człowieka. Katedra Mechaniki Stosowanej, Wydział Mechaniczny Technologiczny, Politechnika Śląska. Współpraca wydawnicza: Radom: Instytut Technologii Eksploatacji PIB, ISBN: Dutch Shoulder Group, Overview of our database on morphological data, VU-study, the Mayo-study and the Leiden study Artykuł dostępny na podstawie licencji Creative Commons Uznanie autorstwa 3.0 Polska. 79
OCENA SPRAWNOŚCI FIZYCZNEJ STUDENTÓW Z WYKORZYSTANIEM MATEMATYCZNEGO MODELU KOŃCZYNY DOLNEJ CZŁOWIEKA
MODELOWANIE INśYNIERSKIE ISSN 1896-771X 36, s. 343-348, Gliwice 2008 OCENA SPRAWNOŚCI FIZYCZNEJ STUDENTÓW Z WYKORZYSTANIEM MATEMATYCZNEGO MODELU KOŃCZYNY DOLNEJ CZŁOWIEKA AGATA GUZIK ROBERT MICHNIK JACEK
MODEL MATEMATYCZNY DO ANALIZY CHODU DZIECKA NIEPEŁNOSPRAWNEGO*'
Aktualne Problemy Biomechaniki, nr 1/2007 15 Agnieszka GŁOWACKA, Koło Naukowe Biomechaniki przy Katedrze Mechaniki Stosowanej, Politechnika Śląska, Gliwice MODEL MATEMATYCZNY DO ANALIZY CHODU DZIECKA NIEPEŁNOSPRAWNEGO*'
ZASTOSOWANIE MODELOWANIA MATEMATYCZNEGO I POMIARÓW EMG DO OCENY CHODU DZIECI Z ZABURZENIAMI NEUROLOGICZNYMI
MODELOWANIE INŻYNIERSKIE nr 47, ISSN 896-77X ZASTOSOWANIE MODELOWANIA MATEMATYCZNEGO I POMIARÓW EMG DO OCENY CHODU DZIECI Z ZABURZENIAMI NEUROLOGICZNYMI Eugeniusz Świtoński a, Robert Michnik b, Agnieszka
BADANIA ANTROPOMETRYCZNE KOŃCZYNY GÓRNEJ ORAZ POMIAR SIŁY ŚCISKU DŁONI I KCIUKA
Aktualne Problemy Biomechaniki, nr 6/2012 93 Maria ŁOPATKA, SKN Biomechatroniki Biokreatywni, Gliwice Agata GUZIK-KOPYTO, Robert MICHNIK, Katedra Biomechatroniki, Politechnika Śląska Wiesław RYCERSKI,
Biomechanika Inżynierska
Biomechanika Inżynierska wykład 4 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska Biomechanika Inżynierska 1 Modele ciała człowieka Modele: 4 6 10 14 Biomechanika Inżynierska 2 Modele
ANALIZA KINEMATYCZNA PALCÓW RĘKI
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika
OCENA SPRAWNOŚCI I CECH MOTORYCZNYCH STUDENTÓW POLITECHNIKI ŚLĄSKIEJ W OPARCIU O POMIARY MAKSYMALNYCH MOMENTÓW SIŁ MIĘŚNIOWYCH KOŃCZYNY DOLNEJ
Aktualne Problemy Biomechaniki, nr 1/2007 183 Ewelina ŚCIBSKA, Robert PYREK, Koło Naukowe Biomechaniki przy Katedrze Mechaniki Stosowanej, Politechniki Śląskiej w Gliwicach Agata GUZIK, Jacek JURKOJĆ,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE.
PARAMETRY KINEMATYCZNE WYBRANYCH WZORCOWYCH SEKWENCJI RUCHOWYCH WYKORZYSTYWANYCH W TERAPII KLINICZNEJ
Aktualne Problemy Biomechaniki, nr 9/2015 51 Joanna HAJOK, Studenckie Koło Naukowe Biomechatroniki BIOKREATYWNI, Wydział Inżynierii Biomedycznej, Politechnika Śląska, Zabrze Jacek JURKOJĆ, Piotr WODARSKI,
OD MODELU ANATOMICZNEGO DO MODELU NUMERYCZNEGO - SYMULACJA RUCHU PALCÓW RĘKI CZŁOWIEKA
Aktualne Problemy Biomechaniki, nr 4/2010 85 Antoni JOHN, Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika Śląska, Gliwice Agnieszka MUSIOLIK, Katedra Wytrzymałości Materiałów
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
ZASTOSOWANIE KOMPUTEROWEGO SYSTEMU POMIAROWEGO PRZY OCENIE CHODU DZIECI
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 37, s. 155-16, Gliwice 29 ZASTOSOWANIE KOMPUTEROWEGO SYSTEMU POMIAROWEGO PRZY OCENIE CHODU DZIECI PAWEŁ JURECZKO*, TOMASZ ŁOSIEŃ**, AGNIESZKA GŁOWACKA-KWIECIEŃ*,
BIOMECHANIKA NARZĄDU RUCHU CZŁOWIEKA
Praca zbiorowa pod redakcją Dagmary Tejszerskiej, Eugeniusza Świtońskiego, Marka Gzika BIOMECHANIKA NARZĄDU RUCHU CZŁOWIEKA BIOMECHANIKA narządu ruchu człowieka Praca zbiorowa pod redakcją: Dagmary Tejszerskiej
Katedra Mechaniki i Mechatroniki Inżynieria mechaniczno-medyczna. Obszary kształcenia
Nazwa przedmiotu Kod przedmiotu Jednostka Kierunek Obszary kształcenia BIOMECHANIKA INŻYNIERSKA I M:03516W0 Katedra Mechaniki i Mechatroniki Inżynieria mechaniczno-medyczna nauki medyczne i nauki o zdrowiu
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła
KINEMATYKA POŁĄCZEŃ STAWOWYCH
KINEMATYKA POŁĄCZEŃ STAWOWYCH RUCHOMOŚĆ STAWÓW Ruchomość określa zakres ruchów w stawach, jedną z funkcjonalnych właściwości połączeń stawowych. WyróŜniamy ruchomość: czynną zakres ruchu jaki uzyskamy
Modelowanie biomechaniczne. Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006
Modelowanie biomechaniczne Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006 Zakres: Definicja modelowania Modele kinematyczne ruch postępowy, obrotowy, przemieszczenie,
Teoria maszyn mechanizmów
Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
WYZNACZANIE OBCIĄŻEŃ W UKŁADZIE SZKIELETOWO-MIĘŚNIOWYM KOŃCZYNY GÓRNEJ NA PODSTAWIE BADAŃ KINEMATYKI Z WYKORZYSTANIEM INERCYJNEGO SYSTEMU POMIAROWEGO
MODELOWANIE INŻYNIERSKIE nr 53, ISSN 1896-771X WYZNACZANIE OBCIĄŻEŃ W UKŁADZIE SZKIELETOWO-MIĘŚNIOWYM KOŃCZYNY GÓRNEJ NA PODSTAWIE BADAŃ KINEMATYKI Z WYKORZYSTANIEM INERCYJNEGO SYSTEMU POMIAROWEGO Agata
OCENA OBCIĄŻEŃ W ODCINKU SZYJNYM KREGOSŁUPA PODCZAS UŻYTKOWANIA GOGLI DO WIRTUALNEJ RZECZYWISTOŚCI
Aktualne Problemy Biomechaniki, nr 13/2017 5 Miłosz CHRZAN 1, Robert MICHNIK 1, Katarzyna NOWAKOWSKA 1 1 Katedra Biomechatroniki, Politechnika Śląska, Zabrze OCENA OBCIĄŻEŃ W ODCINKU SZYJNYM KREGOSŁUPA
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
UWAGI O WYZNACZANIU DANYCH SOMATYCZNYCH CZŁOWIEKA DLA ZADAŃ SYMULACJI DYNAMICZNEJ
Aktualne Problemy Biomechaniki, nr 5/211 Zenon MAZUR, Krzysztof DZIEWIECKI, Wojciech BLAJER, Instytut Mechaniki Stosowanej i Energetyki, Wydział Mechaniczny, Politechnika Radomska UWAGI O WYZNACZANIU DANYCH
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
ANALIZA PEWNYCH CECH DYNAMICZNYCH MODELI KOŚCI RAMIENIA CZŁOWIEKA ANALYSIS OF SOME FEATURES OF DYNAMIC MODELS OF HUMAN BONES OF THE ARM
MARCIN NOWAK, DANIEL ZIEMIAŃSKI ANALIZA PEWNYCH CECH DYNAMICZNYCH MODELI KOŚCI RAMIENIA CZŁOWIEKA ANALYSIS OF SOME FEATURES OF DYNAMIC MODELS OF HUMAN BONES OF THE ARM S t r e s z c z e n i e A b s t r
MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB
Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH
WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE
Dr hab. inż. Andrzej Kawalec, e-mail: ak@prz.edu.pl Dr inż. Marek Magdziak, e-mail: marekm@prz.edu.pl Politechnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Katedra Technik Wytwarzania i Automatyzacji
Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych
kinematyka równoległa, symulacja, model numeryczny, sterowanie mgr inż. Paweł Maślak, dr inż. Piotr Górski, dr inż. Stanisław Iżykowski, dr inż. Krzysztof Chrapek Wyznaczanie sił w przegubach maszyny o
DIGITALIZACJA GEOMETRII WKŁADEK OSTRZOWYCH NA POTRZEBY SYMULACJI MES PROCESU OBRÓBKI SKRAWANIEM
Dr inż. Witold HABRAT, e-mail: witekhab@prz.edu.pl Politechnika Rzeszowska, Wydział Budowy Maszyn i Lotnictwa Dr hab. inż. Piotr NIESŁONY, prof. PO, e-mail: p.nieslony@po.opole.pl Politechnika Opolska,
S YL AB US MODUŁ U ( PRZEDMIOTU) I nforma cje ogólne. Biomechanika z elementami ergonomii. Pierwszy
YL AB U MODUŁ U ( PRZDMIOTU) I nforma cje ogólne Kod modułu Rodzaj modułu Wydział PUM Kierunek studiów pecjalność Poziom studiów Forma studiów Rok studiów Nazwa modułu Biomechanika z elementami ergonomii
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Kierunek studiów: Inżynieria Biomedyczna Forma
ANALIZA STATYSTYCZNA POMIARÓW MORFOLOGICZNYCH CZASZEK U NIEMOWLĄT
Aktualne Problemy Biomechaniki, nr 6/2012 105 Małgorzata OTRĘBSKA 1, Marek GZIK 2, Wojciech WOLAŃSKI 2, Edyta KAWLEWSKA 2, Piotr JANOSKA 3, Marek MANDERA 4 1 Studenckie Koło Naukowe Biomechatroniki Biokreatywni,
Obiektywne metody diagnostyki narządu ruchu w fizjoterapii
Obiektywne metody diagnostyki narządu ruchu w fizjoterapii 1 semestr 14 godzin wykładów i 28 godzin ćwiczeń Studia drugiego stopnia (magisterskie) stacjonarne Fizjoterapia I rok /2 semestr Cele nauczania
ANALIZA BIOMECHANICZNA CHODU DZIECI Z ZASTOSOWANIEM SYSTEMU BTS SMART
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 37, s. 147-154, Gliwice 29 ANALIZA BIOMECHANICZNA CHODU DZIECI Z ZASTOSOWANIEM SYSTEMU BTS SMART KATARZYNA JOCHYMCZYK *, AGNIESZKA GŁOWACKA-KWIECIEŃ *, PAWEŁ JURECZKO
WYKORZYSTANIE METOD MODELOWANIA OBCIĄŻEŃ UKŁADU SZKIELETOWO- MIĘŚNIOWEGO U PACJENTA Z MÓZGOWYM PORAŻENIEM DZIECIĘCYM
MODELOWANIE INŻYNIERSKIE nr 55, ISSN 1896-771X WYKORZYSTANIE METOD MODELOWANIA OBCIĄŻEŃ UKŁADU SZKIELETOWO- MIĘŚNIOWEGO U PACJENTA Z MÓZGOWYM PORAŻENIEM DZIECIĘCYM Robert Michnik 1a, Katarzyna Nowakowska
Biomechanika ruchu - metody pomiarowe Kod przedmiotu
Biomechanika ruchu - metody pomiarowe - opis przedmiotu Informacje ogólne Nazwa przedmiotu Biomechanika ruchu - metody pomiarowe Kod przedmiotu 16.1-WL-WF-BR-MP Wydział Wydział Lekarski i Nauk o Zdrowiu
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Politechnika Łódzka Wydział Mechaniczny Instytut obrabiarek i technologii budowy maszyn. Praca Magisterska
Politechnika Łódzka Wydział Mechaniczny Instytut obrabiarek i technologii budowy maszyn Adam Wijata 193709 Praca Magisterska na kierunku Automatyka i Robotyka Studia stacjonarne TEMAT Modyfikacje charakterystyk
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
INSTRUKCJA DO ĆWICZENIA NR 4
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o dwóch stopniach
INSTRUKCJA DO ĆWICZENIA NR 19
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 19 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA ALIZA PŁASKIEGO DOWOLNEGO UKŁADU SIŁ NA PODSTAWIE OBCIĄŻENIA
MECHANIKA KOŃCZYNY GÓRNEJ OBRĘCZ I STAW ŁOKCIOWY
MECHANIKA KOŃCZYNY GÓRNEJ OBRĘCZ I STAW ŁOKCIOWY POŁĄCZENIA KOŃCZYNY GÓRNEJ OBRĘCZ KOŃCZYNY GÓRNEJ Kończyna górna jest połączona ze szkieletem tułowia za pomocą obręczy. W tym połączeniu znajdują się trzy
Doświadczalne badanie drugiej zasady dynamiki Newtona
Doświadczalne badanie drugiej zasady dynamiki Newtona (na torze powietrznym) Wprowadzenie Badane będzie ciało (nazwane umownie wózkiem) poruszające się na torze powietrznym, który umożliwia prawie całkowite
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 26/17
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229343 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 419886 (22) Data zgłoszenia: 20.12.2016 (51) Int.Cl. A61F 2/38 (2006.01)
SZKIELET KOŃCZYNY GÓRNEJ
Slajd 1 Slajd 2 Slajd 3 SZKIELET KOŃCZYNY GÓRNEJ SZKIELET Szkielet kończyny górnej dzieli się na: 1. Kości obręczy kończyny górnej: - obojczyk, - łopatka 2. Kości części wolnej kończyny górnej: - kość
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Rozdział 7 MODELOWANIE BIOMECHANICZNE
88 Rozdział 7 MODELOWANIE BIOMECHANICZNE Szczególne zainteresowanie biomechaników skupia się na modelowaniu i metodach rehabilitacji ruchu. Za pomocą metod teorii sterowania przeprowadza się analizę aparatu
ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA
Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono
BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH
BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej
ANALIZA DYNAMIKI I KINEMATYKI CHODU PRAWIDŁOWEGO
Aktualne Problemy Biomechaniki, nr 1/2007 191 Aleksandra ŚNIEŻEK, Studenckie Koło Biomechaniki przy Katedrze Mechaniki Stosowanej, Politechnika Śląska, Gliwice Arkadiusz MĘŻYK, Robert MICHNIK, Katedra
Zdzisław Marek Zagrobelny Woźniewski W ro c ła w iu
Zdzisław Zagrobelny Marek Woźniewski Wrocławiu Akademia Wychowania Fizycznego we Wrocławiu Zdzisław Z agrobelny M arek W oźeiewsm BIOMECHANIKA KLINICZNA część ogólna Wrocław 2007 Spis treści Podstawy biomfci
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
Prezentacja specjalności
Specjalność: Katedra Biomateriałów i Inżynierii Wyrobów Medycznych Katedra Biomechatroniki Katedra Biomateriałów i Inżynierii Wyrobów Medycznych Kierownik Katedry: Prof. dr hab. inż. Jan Marciniak Katedra
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Analiza numeryczna ruchu ciała ludzkiego poddanego obciążeniu wybuchem Numerical analysis of the human body under explosion
Analiza numeryczna ruchu ciała ludzkiego poddanego obciążeniu wybuchem Numerical analysis of the human body under explosion Piotr W. SIELICKI, Tomasz GAJEWSKI Instytut Konstrukcji Budowlanych Politechnika
Teoria maszyn i mechanizmów Kod przedmiotu
Teoria maszyn i mechanizmów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria maszyn i mechanizmów Kod przedmiotu 06.1-WM-MiBM-P-54_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa
POŁĄCZENIA KOŃCZYNY GÓRNEJ
Slajd 1 Slajd 2 Slajd 3 POŁĄCZENIA KOŃCZYNY GÓRNEJ POŁĄCZENIE Z TUŁOWIEM Kończyna górna jest połączona z kośćcem tułowia za pomocą obręczy złożonej z obojczyka i łopatki. W tym połączeniu znajdują się
Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów Prof. dr hab. inż. Janusz Frączek Instytut
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:
KINEMETRIA i DYNAMOMETRIA PRZEGLĄD METOD BADAŃ STOSOWANYCH W ANALIZIE MOŻLIWOŚCI FIZYCZNYCH CZŁOWIEKA
KINEMETRIA i DYNAMOMETRIA PRZEGLĄD METOD BADAŃ STOSOWANYCH W ANALIZIE MOŻLIWOŚCI FIZYCZNYCH CZŁOWIEKA RODZAJE BADAŃ STRUKTURY RUCHU Ze względu na kryterium częstotliwości dokonywanych pomiarów wyróżnić
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
Metody identyfikacji ergonomicznych czynników ryzyka. 1. Wprowadzenie 2. Metoda OWAS 3. Listy kontrolne NIOSH
Metody identyfikacji ergonomicznych czynników ryzyka 1. Wprowadzenie 2. Metoda OWAS 3. Listy kontrolne NIOSH Metody identyfikacji ergonomicznych czynników ryzyka Dla identyfikacji ergonomicznych czynników
4.1. Charakterystyka porównawcza obu badanych grup
IV. Wyniki Badana populacja pacjentów (57 osób) składała się z dwóch grup grupy 1 (G1) i grupy 2 (G2). W obu grupach u wszystkich chorych po zabiegu artroskopowej rekonstrukcji więzadła krzyżowego przedniego
PL B1. Mechanizm z dostosowaniem trajektorii w czasie rzeczywistym, zwłaszcza ortezy kolana ludzkiego. POLITECHNIKA WROCŁAWSKA, Wrocław, PL
PL 228031 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 228031 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 419888 (22) Data zgłoszenia: 20.12.2016 (51) Int.Cl.
MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ
ELEKTRYKA 014 Zeszyt 1 (9) Rok LX Krzysztof SZTYMELSKI, Marian PASKO Politechnika Śląska w Gliwicach MATEMATYCZNY MODEL PĘTLI ISTEREZY MAGNETYCZNEJ Streszczenie. W artykule został zaprezentowany matematyczny
Aktualne Problemy Biomechaniki, nr 12/
Aktualne Problemy Biomechaniki, nr 12/217 21 Agata GUZIK-KOPYTO 1, Marta REICH 2, Andrzej BIENIEK 1 1 Katedra Biomechatroniki, Politechnika Śląska, Gliwice 2 Studenckie Koło Naukowe Biomechatroniki BIOKREATYWNI
Wyznaczenie reakcji belki statycznie niewyznaczalnej
Wyznaczenie reakcji belki statycznie niewyznaczalnej Opracował : dr inż. Konrad Konowalski Szczecin 2015 r *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest sprawdzenie doświadczalne
Analiza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
WYBRANE RUCHY W STAWACH KOŃCZYNY GÓRNEJ - ZARYS CZYNNOŚCI MIĘŚNI
WYBRANE RUCHY W STAWACH KOŃCZYNY GÓRNEJ - ZARYS CZYNNOŚCI MIĘŚNI Uwagi: 1. W prezentowanym zestawieniu czynność mięśni opisana jest w ujęciu klasycznym rozpatrywane są jedynie mięśnie bezpośrednio działające
WYBÓR PUNKTÓW POMIAROWYCH
Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika
FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)
2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 16/17
PL 228032 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 228032 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 419889 (22) Data zgłoszenia: 20.12.2016 (51) Int.Cl.
NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego
Politechnika Częstochowska Katedra Inżynierii Energii NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego dr hab. inż. Zbigniew BIS, prof P.Cz. dr inż. Robert ZARZYCKI Wstęp
WPŁYW STABILIZACJI PRZEDNIEJ NA BIOMECHANIKĘ ODCINKA SZYJNEGO KRĘGOSŁUPA CZŁOWIEKA
Aktualne Problemy Biomechaniki, nr 5/2011 Piotr ŚLIMAK, Koło Naukowe Biomechaniki przy Katedrze Mechaniki Stosowanej Politechniki Śląskiej w Gliwicach Wojciech WOLAŃSKI, Katedra Biomechatroniki, Politechnika
ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G
PRACE instytutu LOTNiCTWA 221, s. 115 120, Warszawa 2011 ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G i ROZDZiAŁU 10 ZAŁOżEń16 KONWENCJi icao PIotr
Biomechanika Inżynierska
wykład 2 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska 1 Modele ciała człowieka Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? 2 Modele ciała człowieka
MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ
Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę
PRACA DYPLOMOWA Magisterska
POLITECHNIKA WARSZAWSKA Wydział Samochodów i Maszyn Roboczych PRACA DYPLOMOWA Magisterska Studia stacjonarne dzienne Semiaktywne tłumienie drgań w wymuszonych kinematycznie układach drgających z uwzględnieniem
Modelowanie w projektowaniu maszyn i procesów cz.5
Modelowanie w projektowaniu maszyn i procesów cz.5 Metoda Elementów Skończonych i analizy optymalizacyjne w środowisku CAD Dr hab inż. Piotr Pawełko p. 141 Piotr.Pawełko@zut.edu.pl www.piopawelko.zut.edu.pl
Numeryczna symulacja rozpływu płynu w węźle
231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji TEMAT: Ćwiczenie nr 4 POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć 3 wskazane kąty zadanego przedmiotu
Ć w i c z e n i e K 3
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia
Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie
POMIARY MOMENTÓW SIŁ MIĘŚNIOWYCH W WARUNKACH IZOKINETYCZNYCH U GIMNASTYKÓW SPORTOWYCH
MODELOWANIE INŻYNIERSKIE nr 45, t. 14, rok 212 ISSN 1896-771X POMIARY MOMENTÓW SIŁ MIĘŚNIOWYCH W WARUNKACH IZOKINETYCZNYCH U GIMNASTYKÓW SPORTOWYCH Jacek Jurkojć 1a, Robert Michnik 1b, Harald Skubacz 2c,
BIOMECHANICZNE PARAMETRY CHODU CZŁOWIEKA PO REKONSTRUKCJI WIĘZADŁA KRZYŻOWEGO PRZEDNIEGO. Sławomir Winiarski
Akademia Wychowania Fizycznego we Wrocławiu Wydział Wychowania Fizycznego BIOMECHANICZNE PARAMETRY CHODU CZŁOWIEKA PO REKONSTRUKCJI WIĘZADŁA KRZYŻOWEGO PRZEDNIEGO Sławomir Winiarski promotor dr hab. Alicja
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
2. MODELOWANIE SŁUPÓW
MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 233-238, Gliwice 2006 ROZWIĄZANIE KONSTRUKCYJNE ALUMINIOWYCH SŁUPÓW DO ZAWIESZENIA SYGNALIZACJI ŚWIATEŁ DROGOWYCH JAROSŁAW KACZMARCZYK Katedra Mechaniki Stosowanej,
WYZNACZANIE SIŁ MIĘŚNIOWYCH PODCZAS CHODU DZIECI ZDROWYCH
Aktualne Problemy Biomechaniki, nr 6/2012 31 Agnieszka GŁOWACKA, Eugeniusz ŚWITOŃSKI, Katedra Mechaniki Teoretycznej i Stosowanej, Politechnika Śląska. Robert MICHNIK, Katedra Biomechatroniki, Politechnika
POMIAR POTENCJAŁÓW CZYNNOŚCIOWYCH MIĘŚNI U DZIECI METODĄ EMG
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 38, s. 237-242, Gliwice 2009 POMIAR POTENCJAŁÓW CZYNNOŚCIOWYCH MIĘŚNI U DZIECI METODĄ EMG EUGENIUSZ ŚWITOŃSKI*, AGNIESZKA GŁOWACKA-KWIECIEŃ*, KATARZYNA JOCHYMCZYK*,
Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie
Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D-3 Temat: Obliczenie częstotliwości własnej drgań swobodnych wrzecion obrabiarek Konsultacje: prof. dr hab. inż. F. Oryński
Analiza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Aktualne Problemy Biomechaniki, nr 8/2014 163
Aktualne Problemy Biomechaniki, nr 8/2014 163 Piotr WODARSKI, Marek Andrzej BIENIEK Zabrze Zabrze Katedra Streszczenie: Wykorzystanie nowoczesnych systemów Technologii Wirtualnej kaski 3D, w wybranych
WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO
ZESZYTY NAUKOWE POLITECHNIKA ŚLĄSKA 2012 Seria: TRANSPORT z. 77 Nr kol.1878 Łukasz KONIECZNY WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO Streszczenie.
RECENZJA. rozprawy doktorskiej mgr inż. Magdaleny Żuk p.t. Spersonalizowane badanie i modelowanie chodu człowieka
prof. dr hab. inż. Mieczysław Szata, prof. nadzw. PWr Wrocław, 2016-09-03 Politechnika Wrocławska Wydział Mechaniczny Katedra Mechaniki i Inżynierii Materiałowej Dyscyplina: mechanika Specjalność: wytrzymałość
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego