RPiSM zajęcia 6 i 7 Zadanie 1 Zadanie 2 moc testu Test jednego parametru Zadanie 3 Zadanie 4 Zadanie 5
|
|
- Juliusz Białek
- 8 lat temu
- Przeglądów:
Transkrypt
1 RPiSM zajęcia 6 i 7 Zadanie 1 Błędem pierwszego rodzaju nazywamy sytuację, w której test statystyczny odrzuca hipotezę zerową pomimo jej prawdziwości. Prawdopodobieństwo popełnienia tego błędu jesteśmy w stanie narzucić przed przeprowadzeniem testu określa go poziom istotności (α). Wygenerować 1000 prób o liczebności 15 z rozkładu N(10,5). Dla każdej z próby przeprowadzić test jednej średniej (H0: m=10, H1 m 10). W ilu przypadkach H0 będzie odrzucona, jeśli poziom istotności ustalimy na 5% (1% lub 10%)? Zadanie 2 Błędem drugiego rodzaju nazywamy sytuację, w której test statystyczny nie odrzuca hipotezy zerowej, która w rzeczywistości jest fałszywa. O jakości rozważanego testu mówi moc testu, która właśnie informuje nas o tym, jak często jest popełniany błąd drugiego rodzaju. Na przykładzie trzech testów normalności: test chikwadrat, test KołomogorowaSmirnowa i test ShapiroWilka, wymyśleć prostą procedurę intuicyjnie odpowiadającą na pytanie o moc w/w testów. Test jednego parametru Zadanie 3 W pewnej firmie zastanawiano się, czy przeciętny PH przejeżdża rocznie więcej niż km. W celu zweryfikowania tej hipotezy zebrano dane dotyczące 8 samochodów służbowych (założono, że rozkład jest normalny) i uzyskano: , , , , , , i Czy przypuszczenia analityka okazały się słuszne? Zadanie 4 Dwóch informatyków w firmie X zastanawia się, czy jest prawdą przeczytana przez nich informacja, że przynajmniej 40% wezwań do naprawienia sprzętu IT w ich firmie jest wynikiem niedouczenia personelu. Analizując notatki z ostatnich 3 miesięcy zauważyli, że w tym czasie zgłoszenia 84, z których 40 było bezpodstawnych. Czy przeczytana przez nich informacja jest zgodna z sytuacją w ich firmie? Zadanie 5 W trakcie przygotowania się do egzaminu z rachunku prawdopodobieństwa, student dotarł do obiegowych opinii, że przeciętny wynik z egzaminu jest na poziomie 50%. Nie dowierzając tym informacjom zebrał dane od przypadkowo spotkanych 32 kolegów z wyższych lat. Okazało się, że w tej próbie średnia wynosiła 43%, a odchylenie standardowe (z próby) wynosiło 25%. Czy w świetle tego badania pogłoski można uznać za wiarygodne.
2 Zadanie 6 Pracujący w kawiarni student IiE przeczytał, że ekspres do kawy parzy kawę o objętości opisanej rozkładem (200ml, 5ml). Nie dowierzając tym danym przeprowadził eksperyment i zmierzył objętość 11 nalewanych kaw. Uzyskał następujące pomiary: 182, 190, 203, 180, 187, 205, 196, 183, 195, 200, 194. Czy jego badanie potwierdziło dane z instrukcji obsługi? Zadanie 7 Pewna maszyna pakuje sól do torebek. W celu zbadania prawidłowości tego procesu zważono 38 torebek z cukrem. W wyniku tych ważeń uzyskano następujące wyniki: śr. waga torebki = 0.89 kg, a odch. st. = Na poziomie istotności 0.01 zweryfikować hipotezę, że maszyna sypie przeciętnie 1 kg soli. Jaką hipotezę alternatywną należy przyjąć? Dlaczego? Zadanie 8 Wiadomo, że cena litra benzyny E95 na stacjach benzynowych w Krakowie rozkład normalny o odchyleniu standardowym 8 gr. Pewien student jadący na zajęcia statystyki zauważył, że ceny benzyny w mijanych przez niego stacjach były następujące: 4.68, 4.72, 4.80, 4,79, 4.71 i zastanawiał się, czy jest prawdą, że przeciętna cena litra benzyny w Krakowie wynosi 4.70 zł (taką informację usłyszał w lokalnym radio). Odpowiedzieć na powyższe pytanie przy założeniu, że α = 1%. Zadanie 9 Producent pewnego smartfonu twierdzi, że czas pracy telefonu (podczas rozmowy 3G) na jednym ładowaniu baterii wynosi co najmniej 30h. Przebadano losową próbę 100 smarftonów i uzyskano średni czas pracy 28h i 20 minut przy odchyleniu standardowym 7h i 25 minut. Na poziomie istotności α = 1% sprawdzić, czy producent mówi prawdę. Test dwóch parametrów Zadanie 10 Dwie partie polityczne postanowiły sprawdzić, jak Polacy oceniają prace rządu dot. zwalczania smogu. Poniżej uzyskane wyniki: Partia rządowa: 73 (dobrze) 112 (źle) Partia opozycyjna: 49 (dobrze) 128 (źle) Czy na poziomie istotności 5% można powiedzieć, że oba badania przyniosły takie same rezultaty? Zadanie 11 Dwóch czołowych skoczków narciarskich spierało się, który z nich jest lepszy. Zdecydowali się poddać próbie polegającej na oddaniu po 5 skoków. Uzyskano wyniki: Skoczek A: 132m, 141m, 136.5m, 142m, 138m Skoczek B: 128m, 137m, 140m, 132m, 131m.
3 Jakie musimy nałożyć założenia do zweryfikowania postawionej przez skoczków hipotezy? Jakie będą wyniki, jeśli założymy poziom istotności 1%? Zadanie 12 Dwóch konstruktorów chciało sprawdzić dokładność stworzonych przez siebie maszyn do napełniania tuszem drukarek. Postanowili sprawdzić to na próbie po 7 pojemników. Uzyskali następujące informacje Maszyna A: 48 ml, 49 ml, 46 ml, 49 ml, 51 ml, 50 ml, 48 ml Maszyna B: 51 ml, 46 ml, 47 ml, 50 ml, 53 ml, 51 ml, 54 ml Przyjmując poziom istotności 10% zweryfikować hipotezę o równości wariancji? Co będą oznaczały wyniki? Zadanie 13 Istnieje powszechna opinia mówiąca o tym, że panowie lepiej od kobiet zdają egzamin z RPiSM. W związku tym prowadzący przedmiot zebrał średnie wyniki egzaminu z ostatnich 6 lat: kobiety: 3.2, 2.7, 3.3, 3.6, 3.4, 3.2 mężczyźni: 3.4, 2.9, 3.5, 3.1, 3.6, 3.5 Zweryfikować postawioną hipotezę przy założeniu, że α = 5%. Zadanie 14 Wysunięto hipotezę mówiącą o tym, że studenci AGH palą papierosy częściej niż studenci UJ. Do jej zweryfikowania przebadano grupę studentów obu uczelni i uzyskano następujące wyniki: AGH: palący: 34 osoby, niepalący: 49 osób UJ: palący: 17 osób, niepalący: 35 osób Jakie będą wyniki, jeśli przyjmiemy α = 10%? Zadanie 15 Student pewnego inżynierskiego kierunku na AGH uzyskał następujące średnie ocen kolokwiów z matematyki i statystyki:, Przy obliczaniu średnich uwzględniono wszystkie stopnie uzyskane przez niego w trakcie ostatniego roku akademickiego. Liczby tych stopni były następujące: Czy na poziomie istotności 5% można powiedzieć, że wartości średnie ocen uzyskanych z obu przedmiotów są jednakowe? Proszę założyć, że obie rozważane populacje mają rozkład normalny, a ich teoretyczne odchylenia standardowe są równe. test zgodności chikwadrat Pearsona Zadanie 16 W literaturze przedmiotu mówi się o tym, że liczba strzelonych bramek w meczu jest dobrze opisana rozkładem Poissona. Poniżej przedstawiono dane dotyczące liczby strzelonych bramek przez cztery
4 wybrane drużyny z ligi angielskiej w ciągu ostatnich 10 sezonów. Czy na poziomie istotności 5% można powiedzieć, że te dane są dobrze opisane rozkładem Poissona? drużyna/bramki Everton Hull Man City Southampton Zadanie 17 Wykładowca AGH postanowił sprawdzić, czy wyniki egzaminu ze statystyki mają rozkład normalny. W tym celu stworzył poniższą tabelę i zebrał wyniki studentów z ostatniego roku. Do jakich doszedł wniosków? Zadanie 18 drużyna/bramki 0.0% 12.5% 12.5% 25% 25.0% 37.5% 37.5% 50% 50.0% 62.5% 62.5% 75.0% 75.0% 87.5% 87.5% 100% Everton Prowadzący ćwiczenia zarzeka się, że w ich trakcie wybiera do odpowiedzi losowo. Niedowierzający student postanowił notować, kogo ów prowadzący pyta. W tym celu każdemu uczestnikowi kursu przyporządkował numery od 1 do 10 i uzyskał wyniki przedstawione w tabeli: Osoba N Czy, przyjmując poziom istotności α = 1%, student miał słuszne przypuszczenia? Zadanie 19 Pewna maszyna losująca podobna do ruletki ma dokładnie cztery równe pola: dwa czerwone, jedno białe i jedno czarne. Uruchomiono ją 100 razy i zaobserowowano, że 60 razy wypadło pole czerwone, 29 razy pole białe i tylko 11 razy pole czarne. Zweryfikuj hipotezę, że owa maszyna jest uczciwa. Przyjąć założenie, że poziom istotności wynosi 0.1. Zadanie 20 W badaniach warunków życia mieszkańców pewnego miasta zebrano m. in. informacje o wysokości dochodów przypadających na 1 członka gospodarstwa domowego. Dla losowej próby 200 gospodarstw uzyskano następujące wyniki badań: DOCHÓD NA 1 OS. GOSPODARSTWA
5 Zadanie 21 Test niezależności chikwadrat Przeprowadzono badanie, na ile wyniki na studiach (z matematyki) zależą od rodzaju ukończonej szkoły średniej. Czy na poziomie istotności 5% można powiedzieć, że ukończona szkoła średnia determinuje postępy na studiach? Zadanie 22 LO (mat) LO Technikum Inne Wysokie Przeciętne niskie Pewien wykładowca WZ AGH chciał sprawdzić, czy istnieje zależność między kierunkiem, na którym prowadzi zajęcia i terminem, w którym jego studenci zdają egzamin. Przeprowadził on krótką analizę wyników z ubiegłych kilku lat i uzyskał następujące informacje: 1 termin 2 termin 3 termin Brak IiE ZiIP Czy na poziomie istotności α = 1% jest on w stanie stwierdzić, że wyniki na obu kierunkach istotnie się różnią? Zadanie 23 W tabeli zawarto wyniki badań koloru oczu oraz koloru włosów wśród mężczyzn. Zbadać, czy dla poziomu istotności rozważane cechy można uznać za niezależne? Blondyn Szatyn Brunet Rudy Niebieskie Zielone Piwne Szare Zadanie 24 W badaniach efektywności szkolenia zawodowego pracowników bezpośrednio produkcyjnych w pewnym przedsiębiorstwie dla losowo wybranej próby 60 pracowników dokonano pomiaru ich wydajności pracy (w szt./zmianę) przed i po przejściu szkolenia. Uzyskano następujące dane: WYDAJNOŚĆ PRACY LICZBA PRACOWNIKÓW W SZT./ZMIANĘ przed szkoleniem po szkoleniu Zweryfikować hipotezę, iż szkolenie zawodowe istotnie ma wpływ wydajność pracy pracowników. (To zadanie można rozwiązać także a nawet rozsądniej jest to zrobić w ten sposób za pomocą testu dwóch średnich. W jaki sposób?)
6 Zadanie 25 Analiza wariancji W pewnej szkole podstawowej przeprowadzono badanie dotyczące wyników testu kompetencji po SP. Uzyskano następujące wyniki: kl. 6a: 32, 37, 26, 28, 17, 23, 18, 33, 26, 15 kl. 6b: 22, 29, 36, 18, 31, 33, 19, 20, 26, 34 kl. 6c: 35, 38, 24, 22, 19, 26, 15, 35, 24, 29 Czy na poziomie istotności α = 5% można powiedzieć o tym, że klasy osiągnęły taki sam przeciętny wynik? Zadanie 26 Pan Robert zastanawiał się, gdzie aplikować o pracę w poszukiwaniu wysokich zarobków. W tym celu przeprowadził rozeznanie, które przyniosło następujące wyniki: Firma A: 5400, 3800, 4250, 3900, Firma B: 3950, 4300, 6000, 4500, Firma C: 3650, 4300, 4700, 4000, Czy na założonym przez niego 5% poziomie istotności można twierdzić, że jest firma, która płaci najlepiej? Zadanie 27 Czterej statystyce i grzybiarze zarazem sprzeczali się, który najskuteczniej szuka grzybów. Do wiarygodnej odpowiedzi na postawione przez pytanie, postanowili wykorzystać ANOVĘ (przy 1% poziomie istotności). W kolejnych trzech tygodniach 10 razy wybrali się na grzybobranie i zebrali następującą liczbę prawdziwków: Co się okazało? A B C D
7 Zadanie 28 W Instytucie Ziemniaka przeprowadzono badanie plonów ziemniaka w zależności od odmian rośliny i rodzaju stosowanego nawozu. Uzyskane plony zamieszczono w tabeli: Odmiana Nawóz 1 Nawóz 2 Nawóz 3 Nawóz 4 A B C Przeprowadzić (dwukrotnie) ANOVĘ, by zbadać oddzielny wpływ odmiany ziemniaka i rodzaju stosowanego nawozu na uzyskane plony. Przyjąć α = 5%. (dla zainteresowanych: Jakie byłyby wyniki, gdyby tę analizę przeprowadzić w postaci dwuczynnikowej ANOVY? Co oznacza pojęcie efektu interakcji? Zadanie 29 Zadania inne (Własności rozkładów) Zmienna losowa X przyjmuje tylko trzy wartości: 0, 1 i 2. Wiadomo, że oraz. Na podstawie tych informacji należy wyznaczyć rozkład zmiennej X. Zadanie 30 (Test serii) W badaniach wyników studiowania osiąganych przez studentów pewnej uczelni z ich populacji wylosowano próbę 25 studentów, dla której ustalono następujące średnie z całego toku studiów: 3,11; 4,05; 3,75; 3,33; 4,25; 3,15; 3,96; 4,02; 2,99; 3,28; 3,65; 4,12; 3,48; 3,73; 3,26; 2,87; 4,54; 3,24; 4,15; 3,66; 3,74; 4,28; 3,90; 3,45; 4,67. Na poziomie istotności 0,10 zweryfikować hipotezę, że dobór próby był losowy. Zadanie 31 (Test zgodności Kołmogorowa) Jak sprawdzić, czy prawdziwe jest założenie o normalności rozkładu w zadaniu 20. Zadanie 32 (Test jednej średniej) Zebrano informacje dla grupy kierowców, którzy w okresie ostatnich 8 lat na terenie miasta K spowodowali wypadek drogowy znajdując się pod wpływem alkoholu. Uzyskano następujące zestawienie: POZIOM ALKOHOLU ( ) KIEROWCY 0,40 1,0 15 1,0 1, ,6 2, ,2 2,8 85 Zakładając, że badana populacja ma charakter rozkładu normalnego przy poziomie istotności 0,05 zweryfikować hipotezę, że średnie stężenie alkoholu we krwi w całej populacji nietrzeźwych kierowców, którzy spowodowali wypadek drogowy, jest większe od 2,3 promila.
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
WERYFIKACJA HIPOTEZ STATYSTYCZNYCH
WERYFIKACJA HIPOTEZ STATYSTYCZNYCH I. TESTY PARAMETRYCZNE II. III. WERYFIKACJA HIPOTEZ O WARTOŚCIACH ŚREDNICH DWÓCH POPULACJI TESTY ZGODNOŚCI Rozwiązania zadań wykonywanych w Statistice przedstaw w pliku
Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech
TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
ESTYMACJA. Przedział ufności dla średniej
ESTYMACJA Przedział ufności dla średniej W grupie 900 losowo wybranych pracowników przedsiębiorstwa średnia liczba dni nieobecności w pracy wynosiła 30, a odchylenie standardowe 3 dni. a) Przyjmując współczynnik
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Test lewostronny dla hipotezy zerowej:
Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej
1 Statystyka opisowa Statystyka opisowa zajmuje się porządkowaniem danych i wstępnym ich opracowaniem. Szereg statystyczny - to zbiór wyników obserwacji jednostek według pewnej cechy 1. szereg wyliczający
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Hipotezy statystyczne
Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej
Hipotezy statystyczne
Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
Statystyka matematyczna
Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy
Estymatory i testy statystyczne - zadania na kolokwium
Estymatory i testy statystyczne - zadania na kolokwium Zad. 1. Cecha X populacji ma rozkład N(µ, σ), gdzie µ jest znane, a σ nieznane. Niech X 1,...,X n będzie n-elementową próbą prostą pobraną z tej populacji.
Teoria Estymacji. Do Powyżej
Teoria Estymacji Zad.1. W pewnym przedsiębiorstwie wylosowano niezależnie próbę 25 pracowników. Staż pracy (w latach) tych pracowników w 1996 roku był następujący: 37; 34; 0*; 5; 17; 17; 0*; 2; 24; 33;
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -
Zadania ze statystyki cz.8. Zadanie 1.
Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,
Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.
Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Przypuśdmy, że mamy do czynienia z następującą sytuacją: nieznany jest rozkład F rządzący pewnym zjawiskiem losowym. Dysponujemy konkretną próbą losową ( x1, x2,..., xn
Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6
Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą
Testowanie hipotez statystycznych. Wprowadzenie
Wrocław University of Technology Testowanie hipotez statystycznych. Wprowadzenie Jakub Tomczak Politechnika Wrocławska jakub.tomczak@pwr.edu.pl 10.04.2014 Pojęcia wstępne Populacja (statystyczna) zbiór,
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją
Rozkłady statystyk z próby. Statystyka
Rozkłady statystyk z próby tatystyka Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających ten
Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego
Przedziały ufności Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego czyli P( μ [a,b] ) = 1 α P( μ < a ) = α/2 P( μ > b ) =
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.
Porównanie dwóch rozkładów normalnych
Porównanie dwóch rozkładów normalnych Założenia: 1. X 1 N(µ 1, σ 2 1), X 2 N(µ 2, σ 2 2) 2. X 1, X 2 są niezależne Ocena µ 1 µ 2 oraz σ 2 1/σ 2 2. Próby: X 11,..., X 1n1 ; X 21,..., X 2n2 X 1, varx 1,
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Zadanie Punkty Ocena
Statystyka matematyczna Test przykładowy na zaliczenie laboratorium / ćwiczeń PROSZĘ NIE ODWRACAĆ KARTKI PRZED ROZPOCZĘCIEM TESTU! Wskazówki: 1. Wybierz zadania, za które w sumie możesz otrzymać 30 punktów
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
WNIOSKOWANIE STATYSTYCZNE
STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących
Jak sprawdzić normalność rozkładu w teście dla prób zależnych?
Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu
12/30/2018. Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie. Estymacja Testowanie hipotez
Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie Wyznaczanie przedziału 95%CI oznaczającego, że dla 95% prób losowych następujące nierówności są prawdziwe: X t s 0.025 n < μ < X + t s
Estymacja przedziałowa
Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Metody analizy danych ćwiczenia Estymacja przedziałowa Program ćwiczeń obejmuje następująca zadania: 1. Dom handlowy prowadzący
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, 18.03.2016r Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby Model 1 Testowanie hipotez dla
Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości
Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości Informatyka 007 009 aktualizacja dla 00 JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu. Przypomnienie testu dla
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY Próba losowa prosta To taki dobór elementów z populacji, że każdy element miał takie samo prawdopodobieństwo znalezienia się w próbie Niezależne
VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15
VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 5 Analiza współzależności ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 W analizie współzależności a) badamy
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
a. opisać badaną cechę; cechą X jest pomiar średnicy kulki
Maszyna ustawiona jest tak, by produkowała kulki łożyskowe o średnicy 1 cm. Pomiar dziesięciu wylosowanych z produkcji kulek dał x = 1.1 oraz s 2 = 0.009. Czy można uznać, że maszyna nie rozregulowała
KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański
KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół
Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji
gkrol@mail.wz.uw.edu.pl #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji 1 Ryzyko błędu - powtórzenie Statystyka niczego nie dowodzi, czyni tylko wszystko mniej lub bardziej prawdopodobnym
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy
Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.
Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów
Statystyka. Zadanie 1.
Statystyka Zadanie 1. W przedsiębiorstwie Statexport pracuje 100 pracowników fizycznych i 25 umysłowych. Typowy wiek pracownika fizycznego kształtuje się w przedziale od 30 do 40 lat. Średnia wieku pracowników
Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)?
Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Gdy: badana cecha jest mierzalna (ewentualnie policzalna); dysponujemy dwoma próbami; chcemy porównać, czy wariancje w tych próbach
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Oszacowanie i rozkład t
Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
Testowanie hipotez statystycznych
Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez
STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I.
STATYSTYKA zadania do ćwiczeń Weryfikacja hipotez część I Zad 1 W pewnej firmie postanowiono zbadać staż pracy pracowników W tym celu wylosowano prostą próbę losową z populacji pracowników i otrzymano,
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
ESTYMACJA PARAMETRYCZNA I WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH
ESTYMACJA PARAMETRYCZNA I WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH ZESTAW ZADAŃ ZALECANYCH DO PRZEROBIENIA PRZED PRZYSTĄPIENIEM DO EGZAMINU ZE STATYSTYKI 1 Oznaczenia: E estymacja, W weryfikacja, µ, σ, p, n
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Matematyka i statystyka matematyczna dla rolników w SGGW
Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14
Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
L.Kowalski zadania ze statystyki matematycznej-zestaw 2 ZADANIA - ZESTAW 2
L.Kowalski zadania ze statystyki matematycznej-zestaw ZADANIA - ZESTAW Zadanie.1 Badano maksymalną prędkość pewnego typ samochodów osobowych (cecha X poplacji. W 5 pomiarach tej prędkości otrzymano x 195,8