Materiałoznawstwo optyczne -wytwarzanie, właściwości, badania materiałów, z których wykonane są elementy optyczne.
|
|
- Jacek Majewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Materiałoznawstwo optyczne -wytwarzanie, właściwości, badania materiałów, z których wykonane są elementy optyczne. Podział spektralny materiałów optycznych: zakres promieniowania świetlnego: od ultrafioletu =0.0 m do dalekiej podczerwieni =00 m przez obszar widzialny = m podobnie mat. opt. ultrafiolet powietrzny (promieniowanie nie jest wyraźnie absorbowane przez atmosferę), ultrafiolet daleki (próżniowy), sięgający do zakresu promieniowania rentgenowskiego (elementy ukł. rentgenowskich mogą byd wykonywane z mat. opt. i za pomocą technologii optycznych), podczerwieo : bliska = m, średnia =3 5 m, daleka =7.5 4 m
2 Podział strukturalny szkła ( mat. amorficzny), dewitryfikatory kryształy polimery wielkocząsteczkowe ciekłe kryształy inne
3 szkła tlenkowe: na bazie SiO, tlenkach ołowiu, baru boru, sodu i potasu. Wyjątkowe szkło: szkło kwarcowe (czyste SiO ) (nie mylid z kwarcem - kryształem): dobre właściwości mechaniczne, chemiczne, względnie mały wsp. rozszerzalności termicznej i szeroki zakres przepuszczania od ultrafioletu do progu II okna atmosferycznego. szkła filtrowe szkła laserowe szkła odporne na promieniowanie jonizujące (tzw. szkła serii 00) fotochromowe inne szkła chalkogenkowe: na bazie (S, Se, Te)- materiał szkłotwórczy w obecności modyfikatorów (Se,Si,As,Sb,P) średnia i daleka podczerwieo najczęściej stosowane As S 3 i kompozycje Ge-As-Se szkła fluorowcowe (halidy): głównie BeF i inne z F; BeF - ważny materiał laserowy o małym wsp. zał. Wada- toksycznośd berylu, mała odpornośd na wodę i skłonnośd do krystalizacji. Zastosowanie również w światłowodach na podczerwieo (0.00 db/m dla =3.4 m) Podstawowe materiały optyczne SZKŁO struktura bezpostaciowa amorficzna, nie wykazująca prawidłowości rozmieszczenia elementów strukturalnych w obszarach większych niż nm najczęściej stosowane w tradycyjnym obszarze promieniowania i bliskiej podczerwieni
4 KRYSZTAŁY najdawniej stosowany mat. opt. mono- lub polikryształy o znacznych niekiedy rozmiarach zastosowania: mat. dwójłomne mat. elektrooptyczne mat. magnetooptyczne mat. akustooptyczne polaryzatory płytki fazowe modulatory deflektory
5 CIEKŁE KRYSZTAŁY ciała, w których występuje uporządkowanie molekuł w stanie ciekłym, w mezofazie między fazą stałą ciała krystalicznego a fazą cieczy izotropowej trzy podstawowe struktury: nematyczna smektyczna cholesteryczna dwójłomnośd, aktywnośd optyczna kilka razy większa niż w kryształach, dichroizm kołowy przepuszczalnośd, rozproszenie i odbicie światła zależne od stanu fazowego i struktury sterowanie własnościami: termiczne elektryczne magnetyczne mechaniczne chemiczne zastosowanie: głównie w systemach obrazowania optycznego (tzw. displeje)
6 DEWITRYFIKATORY szkło z częściową krystalizacją (faza amorficzna z drobnymi 50nm kryształami), mały wsp. rozszerzalności termicznej (efekt kompensacji) dla temperatur pokojowych można dostad =0 większa odpornośd na zmiany temperatury większa wytrzymałośd mechaniczna wady - zmniejszona przepuszczalnośd zwłaszcza w obszarze krótkofalowym zastosowanie: w dużych układach zwierciadlanych
7 CERAMIKA OPTYCZNA materiały polikrystaliczne formowane przez prasowanie i spiekanie substancji sproszkowanej mikroniejednorodności związane z drobnoziarnistością powodują przesunięcie krawędzi absorpcji w stronę fal dłuższych, wywołane rozproszeniami zastosowanie głównie w podczerwieni jednorodnośd mechaniczna, termiczna i optyczna lepsza, ale mniejsza odpornośd chemiczna możliwośd formowania gotowych elementów otycznych pierwsze katalogowe materiały: IRTRAN -6
8 TWORZYWA SZTUCZNE polimery nazywane też szkłami organicznymi parametry optyczne porównywalne z typowymi mat. opt. reprezentanci: polimetakrylan metylu polistyren żywica poliwęglanowa łatwa formowalnośd gotowych wyrobów zastosowanie w seryjnej produkcji elementów średniej klasy oraz elementów o skomplikowanych kształtach (np.asfery, szkła okularowe)
9 INNE światłowody i kable światłowodowe materiały do wytwarzania elementów dyfrakcyjnych materiały do wykonywania cienkich warstw, filtrów interferencyjnych i przeciwodbiciowych polaroidy kleje materiały oftalmiczne
10 WŁAŚCIWOŚCI MATERIAŁÓW OPTYCZNYCH Właściwości optyczne: wsp. załamania dyspersja dwójłomnośd naturalna dynamiczne zmiany wsp. zał. wywołane czynnikami mechanicznymi, termicznymi, wpływem pól elektrycznych i magnetycznych, akustycznych wsp. odbicia wsp. transmisji absorpcja charakterystyki spektralne luminescencja i efekty radiacyjne efekt fotochromowy
11 Właściwości mechaniczne: twardośd moduł sprężystości kruchośd Właściwości termiczne: wsp. rozszerzalności liniowej odpornośd na niskie i wysokie temperatury przewodnośd cieplna temperatura mięknienia i przemiany temperatura topnienia Właściwości elektryczne: przenikalnośd elektryczna przewodnośd odpornośd na przebicie Właściwości chemiczne: odpornośd na działanie roztworów kwaśnych, zasadowych odpornośd na działanie atmosfery, wody (np. rozpuszczalnośd w wodzie) toksycznośd
12 KRYTERIA WYBORU MATERIA ÓW PRZY KONSTRUKCJI UK ADÓW OPTYCZNYCH Trzy grupy właściwości: optyczne pozaoptyczne (montaż, justowanie, użytkowanie,itp.) ekonomiczno-handlowe (dostępnośd, wymiary handlowe, cena, termin dostawy) Kryteria optyczne: charakterystyki spektralne (przepuszczania i odbicia) położenie krawędzi absorpcji minimalna wartośd wsp. transmisji dopuszczalna modyfikacja charakterystyki spektralnej za pomocą czynników zewnętrznych dla materiałów przeznaczonych poza obszar widzialny: dobrze by było, aby charakteryzował się przepuszczalnością w obszarze widzialnym, ze względu na możliwośd justowania i montażu za pomocą uniwersalnych urządzeo pomiarowo-kontrolnych ewentualnoœæ korekty właściwości transmisyjnych za pomocą powłok cienkowarstwowych charakterystyki dyspersyjne wsp. zał. w obszarze roboczym dopuszczalna zmiana wsp. zał. pod wpływem czynników zewnętrznych, a także w czasie procesu technologicznego wykonywania elementu optycznego
13 Kryteria pozaoptyczne: twardośd, ścieralnośd sztywnośd, lekkośd kruchośd właściwości termiczne właściwości obróbcze materiału właściwości materiału przy współpracy z materiałami powłok cienkowarstwowych łatwośd łączenia elementów optycznych ze sobą i w oprawach
14 Współczynnik załamania - właściwośd materiału optycznego wynikająca z jego składu chemicznego, gęstości, budowy strukturalnej, określonych stanów elektronowych opisywanych polaryzowalnością; ujawnia się pod wpływem pola elektromagnetycznego przenikającego przez ośrodek optyczny - zależy od długości fali światła i w zakresie przepuszczalności maleje ze wzrostem długości fali; zakres ten ograniczony jest obszarami częstotliwości światła, dla których absorpcja gwałtownie rośnie w związku z rezonansowymi częstotliwościami własnymi przejśd elektronowych (po krótkiej stronie) lub drgao sieci krystalicznej (po stronie długofalowej Definicja n=c/v n =n /n
15 Związek współczynnika załamania z własnościami materii Model Lorentza: Elektrony walencyjne a światło (fala EM) Fala EM polaryzacja ośrodka (efekt zmiany położenia elektronu względem jądra atomu; elektron wraz z jądrem tworzy oscylujący dipol, który drga wokół położenia równowagi) Częstotliwość drgań dipola i fali EM jest taka sama, ale występuje między nimi opóźnienie fazowe Opóźnienie to powoduje spowolnienie rozprzestrzeniania się fali EM Polaryzacja indukowana P=ε 0 (ε-)e Trzy typy polaryzowalności dipolowa jonowa elektronowa
16 wielkość charakterystyczna dla każdego dipola współczynnik polaryzowalności α: P=αE znajomość α i poszczególnych zbiorów N i atomów tworzących modelowy ośrodek optyczny pozwala obliczyć przenikalność dielektryczną ε wzór Clausiusa-Mosottiego 3 wzór Lorentza-Lorenza 0 i N i i n Y Y Y N A 3V m
17 Dyspersja współczynnika załamania Model Lorentza-Lorenza częstotliwość światła ν a częstotliwość ν 0 drgań własnych elektronów wzór Sellmeyera dla N oscylatorów w jednostce objętości drgających z jedną częstotliwością (tylko dla ośrodków przezroczystych, dielektrycznych, nieabsorpcyjnych) i i i i i i N m e N n n C n
18 równanie Cauchy ego B C n A Wzory dyspersyjne 4 równanie Sellemyera A n i i i równanie Herzbergera n A BL CL wzór katalogowy firmy Schott D E 4 ; L 0.08 n A A3 A4 A5 A0 A 4 6 8
19 Współczynnik dyspersji przyjęto, że będzie wyznaczany dla określonych długości fal długości fal emitowanych przez źródła promieniowania dające widmo dyskretne (pary metali, gazy, itp.) indeksy: oznaczenia literowe linii widmowych Fraunhofera charakterystycznych pierwiastków podstawowa linia: żółta linia d sodu, potem żółta linia d helu wartości graniczne: jako skrajne linie linie F i C obecnie: linia podstawowa linia e linie graniczne linie F i C (wynika to z lepszej zgodności z krzywą czułości widmowej ludzkiego oka) Współczynnik dyspersji n Dla obszaru widzialnego - liczba Abbego nd n d e n n n F C Bardzo przydatne przy konstrukcji układów optycznych n n 3 F ' e n C ' D D 0
20 Przepuszczalność światła: - wsp. ekstynkcji, ( t kz ) prościej: E E0e kz e i natężenie światła wsp. pochłaniania zatem pochłanianie nie zależy od intensywności światła, co jest słuszne dla szerokiego zakresu spektralnego i relatywnie małych gestości energii absorbancja A: wsp. przepuszczania - stosunek natężenia światła po przejściu przez ośrodek do natężenia światła padającego (straty we wnętrzu materiału oraz oraz fresnelowskie odbicia na granicach ośrodka) i - współczynnik przepuszczania wewnętrznego przykład - płytka o grubości z :
21 gęstośd optyczna D log 0 tłumiennośd A [db/km] katalogowe szkła : dB/km, szkło kwarcowe do światłowodów - mniej niż db/km. 0.dB/km oznacza osłabienie sygnału wejściowego o połowę na długości 5km mechanizmy strat: w obszarze krótkofalowym: elektronowe przejścia międzypasmowe w obszarze przepuszczania: absorpcja wynikająca z przejśd elektronowych nie w pełni obsadzonych powłok wewnętrznych w atomach, absorpcja na jonach OH - związana z rezonansowymi częstotliwościami drgao cząsteczek wody, rozproszenie Rayleigha na fluktuacjach gęstości i składu chemicznego ośrodka w przypadku gdy zaburzenie ma wymiar mniejszy niż, rozproszenie Mie na większych cząstkach w obszarze długofalowym: absorpcja wywołana oddziaływaniem promieniowania z termicznie wzbudzonymi oscylacyjnymi modami sieci strukturalnej, prowadząca do powstania fononów
22 Nieoptyczne własności mat. opt. właściwości mechaniczne twardośd : skala Mohsa: odpornośd na zarysowanie porównywana z odpowiednią odpornością jednego z 0 minerałów ułożonych w porządku wzrastającej twardości od (talk) do 0 (diament) skala Knoopa : stosunek siły do powierzchni odcisku diamentowej piramidki w kształcie ostrosłupa o podstawie rombu, podawana w kg/mm, przykład zapisu - twardośd 50 przy użytej sile pomiarowej 0.98N i czasie trwania próby 0s: 50 HK 0./0; HK mniejsze niż 00 - b. miękkie, trudne do polerowania, większe niż 750- zdecydowanie twarde metoda Martensa: siła potrzebna do uzyskania rysy o szerokości 0 m wykonywanej diamentowym stożkiem o określonych rozmiarach; symbol H r porównawcze metody: stosunek objętości zeszlifowanego szkła odniesienia do objętości szkła badanego
23 sprężystośd: dla materiałów izotropowych - moduł Younga E - moduł sprężystości Kirchoffa G - współczynnik Poisona : gdzie: - naprężenie wzdłużne, w - odkształcenie wzdłużne, - odkształcenie poprzeczne E w szkłach optycznych 40-40GPa dla materiałów anizotropowych: tensory kruchośd, łupliwośd: zdolnośd kryształów do pękania pod wpływem uderzenia lub nacisku na wzdłuż płaszczyzn łupliwości, w mineralogii: łupliwośd doskonała (NaCl), dokładna, wyraźna (kwarc), jednopłaszczyznowa (mika), wielopłaszczyznowa (np. kostkowa NaCl); równolegle do płaszczyzn łupliwości leży kierunek najmniejszej twardości; miara - naprężenie potrzebne do powiększenia pęknięcia w odniesieniu do MgF - Al O 3 (3) diament (), Si (0.95), Ge 0.66) CaF (0.5)
24 właściwości termiczne rozszerzalnośd cieplna istotne znaczenie przy konstrukcji układów pracujących w zmiennych warunkach atmosferycznych przewodnośd cieplna: - jednostka: W/m K szkło o wyższej przewodności - bardziej wytrzymałe na nagłe zmiany temperatury, mała przewodnośd cieplna- zdolnośd do hartowania szkła (naprężenia termiczne) znaczenie w procesie produkcji szkła odpornośd termiczna: największa różnica temperatur, jaką może wytrzymad przedmiot bez pękania
Materiałoznawstwo optyczne
Materiałoznawstwo optyczne Dr inż. Agnieszka Jóźwik Kontakt: agnieszka.jozwik@pwr.edu.pl Materiały: www.if.pwr.wroc.pl/~kurzynowski Zakładka: Dydaktyka/Materiałoznawstwo optyczne Materiałoznawstwo optyczne
Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?
Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja
Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych
Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie
Materiałoznawstwo optyczne CERAMIKA OPTYCZNA
Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
PDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Polaryzatory/analizatory
Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Continental Trade Sp. z o.o
Szkło kwarcowe Rodzaje i zastosowania Wstęp: Topiona krzemionka (ang. Fused Silica) jest szklaną, izotropową, formą kwarcu. Jest twarda i ma bardzo mały współczynnik rozszerzalności cieplnej. Typowe odmiany
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Grafen materiał XXI wieku!?
Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?
Spektroskopia molekularna. Spektroskopia w podczerwieni
Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Spis treści. Szkło kwarcowe - dane techniczne 3. Rury kwarcowe 5. Pręty kwarcowe 7. Szkło borokrzemowe - dane techniczne 8. Rury borokrzemowe 10
Spis treści Szkło kwarcowe - dane techniczne Rury kwarcowe 5 Pręty kwarcowe 7 Szkło borokrzemowe - dane techniczne 8 Rury borokrzemowe 0 Kapilary borokrzemowe 5 Pręty borokrzemowe 6 Rury kolorowe borokrzemowe
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Dźwięk. Cechy dźwięku, natura światła
Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000
Fala EM w izotropowym ośrodku absorbującym
Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie
Właściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu
Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis
Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność
Widmo promieniowania
Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,
Dobór materiałów konstrukcyjnych cz.13
Dobór materiałów konstrukcyjnych cz.13 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne ROZSZERZALNOŚĆ CIEPLNA LINIOWA Ashby
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa
Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja
Zespolona funkcja dielektryczna metalu
Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez
STRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof
PIEZOELEKTRYKI I PIROELEKTRYKI Krajewski Krzysztof Zjawisko piezoelektryczne Zjawisko zachodzące w niektórych materiałach krystalicznych, polegające na powstawaniu ładunku elektrycznego na powierzchniach
Fizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
IV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Materiały Reaktorowe. Właściwości mechaniczne
Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność Holografia FALE ELEKTROMAGNETYCZNE Fale elektromagnetyczne
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG
Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane
FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika
Falowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Optotelekomunikacja. dr inż. Piotr Stępczak 1
Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ
Kondensatory. Konstrukcja i właściwości
Kondensatory Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Podstawowe techniczne parametry
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Pomiar tłumienności światłowodów włóknistych
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:
SZKŁO LABORATORYJNE. SZKŁO LABORATORYJNE (wg składu chemicznego): Szkło sodowo - wapniowe (laboratoryjne zwykłe)
SZKŁO LABORATORYJNE SZKŁO LABORATORYJNE (wg składu chemicznego): Szkło sodowo - wapniowe (laboratoryjne zwykłe) To połączenie tlenków: 13 20% tlenków alkalicznych, 6 12% tlenków grupy RO, 0,5 6% Al 2O
ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza
ĆWICZENIE 72A ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE 1. Wykaz przyrządów Spektroskop Lampy spektralne Spektrofotometr SPEKOL Filtry optyczne Suwmiarka Instrukcja wykonawcza 2. Cel ćwiczenia
Ciekłe kryształy. - definicja - klasyfikacja - własności - zastosowania
Ciekłe kryształy - definicja - klasyfikacja - własności - zastosowania Nota biograficzna: Odkrywcą był austriacki botanik F. Reinitzer (1888), który został zaskoczony nienormalnym, dwustopniowym sposobem
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
Elementy optyki relatywistycznej
Elementy optyki relatywistycznej O czym będzie wykład? Pojęcie relatywistyczny kojarzy się z bardzo dużymi prędkościami, bliskimi prędkości światła. Tylko, ze światło porusza się zawsze z prędkością światła.
ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
Struktura materiałów. Zakres tematyczny. Politechnika Rzeszowska - Materiały lotnicze - I LD / dr inż. Maciej Motyka.
STRUKTURA, KLASYFIKACJA I OGÓLNA CHARAKTERYSTYKA MATERIAŁÓW INŻYNIERSKICH Zakres tematyczny y 1 Struktura materiałów MATERIAŁAMI (inżynierskimi) nazywa się skondensowane (stałe) substancje, których właściwości
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego
40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI
ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś
Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.
Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest
Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych
Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki Uniwersytetu Warszawakiego przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego
MATERIAŁY SUPERTWARDE
MATERIAŁY SUPERTWARDE Twarde i supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych zastosowaniach jak szlifowanie i polerowanie, cięcie, prasowanie, synteza i badania
Pole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
Zagadnienia do ćwiczeń laboratoryjnych z fizyki
Zagadnienia do ćwiczeń laboratoryjnych z fizyki M.1 1. Gęstość, ciężar właściwy, masa właściwa - definicja, jednostka 2. Różnica pomiędzy masą a ciężarem, ciężarem a siłą grawitacji 3. Ogólna zależność
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
Metody badania kosmosu
Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck
Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
Wykład 24. Oddziaływanie promieniowania elektromagnetycznego z materią. Polaryzacja światła.
1 Wykład 4 Oddziaływanie promieniowania elektromagnetycznego z materią. Polaryzacja światła. 4.1 Dyspersja światła. Dyspersją światła nazywamy zależność współczynnika załamania światła n substancji od
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej
i elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu
Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące
Włókna z cieczowym rdzeniem oraz włókna plastykowe. Liquid-Core and Polymer Optical Fibers
Włókna z cieczowym rdzeniem oraz włókna plastykowe Liquid-Core and Polymer Optical Fibers Prowadzenie światła w falowodach cieczowych Zastosowanie falowodów cieczowych Włókna polimerowe Efekt propagacji
Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla
Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których
Technologia światłowodów włóknistych Kable światłowodowe
Technologia światłowodów włóknistych Kable światłowodowe Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
Pole elektryczne w ośrodku materialnym
Pole elektryczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Stała dielektryczna Stała
Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
Metody Optyczne w Technice. Wykład 8 Polarymetria
Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna