SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA
|
|
- Tadeusz Morawski
- 8 lat temu
- Przeglądów:
Transkrypt
1 SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ Czas pracy: 80 minut GRUDZIEŃ 2013
2 PO CO NAM GĘSIA SKÓRKA? Kacper się rozchorował czuł się źle i miał gorączkę. Leżał skulony pod kocem i drżał z zimna. W pewnym momencie zauważył na ręce drobne grudki gęsią skórkę. Mimo złego samopoczucia obejrzał ją dokładnie i zapytał: Tato, a do czego nam potrzebna ta gęsia skórka? Do niczego. Gęsia skórka pojawia się na skutek kurczenia się mięśni, które znajdują się u podstawy mieszków włosowych 1. Prowadzi to do wyprostowania się włosa. U zwierząt, które mają gęste futro, sierść jeży się i dzięki temu między włosy dostaje się więcej powietrza. Tworzy ono warstwę izolującą przed zimnem. Gęsia skórka pomaga więc utrzymać ciepło, gdy na dworze panuje chłód. Ma też znaczenie obronne. Najeżona sierść sprawia wrażenie, jakby zwierzę było większe. Dzięki temu drapieżnik może się wystraszyć i zrezygnować z ataku na taką dużą ofiarę, a konkurent z rywalizacji o pokarm. Tyle że ludziom do niczego to nie jest potrzebne. Włosy na ciele mamy zbyt cienkie i zbyt krótkie, by ich postawienie ochroniło nas przed zimnem lub wystraszyło przeciwnika. Gęsia skórka jest więc spadkiem po przodkach sprzed milionów lat. Przydawała im się tak samo jak dzisiejszym małpom, sarnom czy rysiom. Gdy jednak nasi przodkowie zamienili futro na krótkie włosy, stała się ona zbędna, chociaż nieszkodliwa. W procesie ewolucji 2 nie utraciliśmy tej zdolności i gęsia skórka pozostała jako jedna z licznych pamiątek naszej przeszłości. Niektórzy naukowcy twierdzą, że ludziom czasem gęsia skórka też się może przydawać. Jej pojawienie się w chwilach lęku, gniewu czy radości informuje inne osoby o naszych emocjach. Ba! Podobno potrafi je nawet wzmacniać. No, ale przed zimnem nie chroni. Jeżeli mamy dreszcze, tak jak chory Kacper, lepiej przykryć się kocem. Na podstawie: Wojciech Mikołuszko, Tato, a dlaczego? 50 prostych odpowiedzi na piekielnie trudne pytania, Warszawa Mieszek włosowy (torebka włosowa) zagłębienie w skórze, z którego wyrasta włos. 2 Ewolucja proces zmian w budowie, funkcjonowaniu i zachowaniu organizmów, zachodzący w ciągu wielu pokoleń. Zadanie 1. (0 1) Wybierz określenie dla tego tekstu i uzasadnij swój wybór. Zaznacz literę A albo B oraz numer 1 albo 2. Tekst ma charakter wyjaśnia pochodzenie i określa funkcje gęsiej A. literacki, 1. skórki. ponieważ B. informacyjny, 2. przedstawia rozbudowaną akcję. Strona 2 z 18
3 Zadanie 2. (0 1) Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Tematem tekstu jest choroba Kacpra. P F Tekst kończy się wskazówką, jak postąpić w przypadku pojawienia się gęsiej skórki w czasie choroby. P F Zadanie 3. (0 1) Oceń, które z poniższych zdań jest fałszywe. Zaznacz F przy zdaniu fałszywym. 1. Gęsia skórka u człowieka może być reakcją na wychłodzenie. F Występowanie gęsiej skórki u zwierząt związane jest jedynie z regulacją temperatury ciała. Gęsia skórka u ludzi pierwotnych pełniła taką samą funkcję jak u zwierząt. F F Zadanie 4. (0 1) Dokończ zdanie wybierz odpowiedź A albo B oraz 1 albo 2. Pierwszy wyraz zdania Jej pojawienie się w chwilach lęku, gniewu czy radości informuje inne osoby o naszych emocjach jest w tekście A. przyimkiem użytym w celu 1. wyrażenia gęsia skórka. B. zaimkiem zastąpienia 2. wyrazu ewolucja. Zadanie 5. (0 1) Uzupełnij zdanie. Wybierz odpowiedzi spośród podanych. Czasownik mamy w zdaniu Włosy na ciele mamy zbyt cienkie i zbyt krótkie występuje w formie A/B i odnosi się do C/D. A. osobowej C. Kacpra i jego taty B. nieosobowej D. ogółu ludzi Strona 3 z 18
4 Rysunki do zadania 6. Rysunek 1. Rysunek 2. Na podstawie: Wojciech Mikołuszko, Tato, a dlaczego? 50 prostych odpowiedzi na piekielnie trudne pytania, Warszawa Zadanie 6. (0 1) Dokończ zdanie. Wybierz odpowiedź A albo B i jej uzasadnienie spośród 1 2. Powstawanie gęsiej skórki zostało przedstawione na A. rysunku 1., ponieważ 1. nie uległ skurczeniu. ukazany na nim B. rysunku 2., mięsień 2. spowodował uniesienie włosa. Strona 4 z 18
5 Czesław Miłosz DROGA Tam, gdzie zielona ściele się dolina I droga, trawą zarosła na poły 1, Przez gaj dębowy, co kwitnąć zaczyna, Dzieci wracają do domu ze szkoły. W piórniku, który na wskos 2 się otwiera, Chrobocą kredki wśród okruchów bułki I grosz miedziany, który każde zbiera Na powitanie wiosennej kukułki. Berecik siostry i czapeczka brata Migają między puszystą krzewiną. Sójka skrzekocząc po gałęziach lata I długie chmury nad drzewami płyną. Już dach czerwony widać za zakrętem. Przed domem ojciec, wsparty na motyce 3, Schyla się, trąca listki rozwinięte I z grządki całą widzi okolicę. Czesław Miłosz, Droga, [w:] tenże, Świat: poema naiwne, Kraków Na poły do połowy, niecałkowicie. 2 Na wskos na ukos. 3 Motyka narzędzie ręczne służące np. do spulchniania gleby. Zadanie 7. (0 1) Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Wiersz jest poetyckim opisem codziennej sytuacji. P F Świat opisany w wierszu widziany jest oczami ojca. P F Zadanie 8. (0 1) W którym z poniższych cytatów można dostrzec charakterystyczną dla baśni cechę wyrażaną często słowami Za siedmioma górami, za siedmioma lasami? Wybierz odpowiedź spośród podanych. A. Tam, gdzie zielona ściele się dolina. B. I długie chmury nad drzewami płyną. C. Już dach czerwony widać za zakrętem. D. I z grządki całą widzi okolicę. Strona 5 z 18
6 Zadanie 9. (0 1) Dokończ poniższe zdanie wybierz odpowiedź spośród podanych. W wierszu Droga do ukazania wiosennej przyrody wykorzystane zostały przede wszystkim A. wyrazy dźwiękonaśladowcze. B. porównania. C. przenośnie. D. epitety. Zadanie 10. (0 1) Które rymujące się wyrazy są czasownikami? Wybierz odpowiedź spośród podanych. A. dolina zaczyna B. na poły szkoły C. otwiera zbiera D. bułki kukułki Zadanie 11. (0 2) Jaką rolę, Twoim zdaniem, odgrywa postać ojca w wierszu? Swoją odpowiedź poprzyj odpowiednim cytatem z utworu. Zadanie 12. (0 7) W formie kartki z pamiętnika napisz o swoim marzeniu, które się spełniło. Twoja praca powinna zająć co najmniej połowę wyznaczonego miejsca. Strona 6 z 18
7 Strona 7 z 18
8 Zadanie 13. (0 1) Podaj poprawne wartości poniższych wyrażeń arytmetycznych. Wybierz odpowiedzi spośród A i B oraz spośród C i D = A. 12 B = C. 14 D. 20 Zadanie 14. (0 1) Dokończ poniższe zdanie wybierz odpowiedź spośród podanych. Jeżeli liczbę 7 3 zwiększymy o 7 5, to otrzymamy A B C. 1 D Strona 8 z 18
9 Zadanie 15. (0 1) Dokończ poniższe zdanie wybierz odpowiedź spośród podanych. Wartość wyrażenia 0, 4 2 jest równa A. 1,6 B. 0,16 C. 0,8 D. 0,08 Zadanie 16. (0 1) Oto fragment notatki prasowej. Zima nie chce nas opuścić Wczoraj, 15 marca, o godz. 7:00 za oknem naszej redakcji termometr wskazał temperaturę 7ºC. Wprawdzie w południe zanotowaliśmy 3ºC, a więc powyżej zera, jednak o 19:00 temperatura była niższa od tej o siódmej rano o 2 stopnie Celsjusza, czyli znów wrócił mróz. Zima nie chce odejść! Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. 15 marca różnica między temperaturą w południe a temperaturą o siódmej rano była równa 10ºC. P F 15 marca o godzinie 19:00 zanotowano temperaturę 5ºC. P F Strona 9 z 18
10 Zadanie 17. (0 1) Na rysunku przedstawiono trzy odcinki i podano ich długości. 4 cm 6 cm 11 cm Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Z podanych odcinków można zbudować trójkąt. P F Można zbudować trójkąt z odcinka o długości 15 cm i każdej pary odcinków z rysunku. P F Zadanie 18. (0 1) Oto informacja zamieszczona na pewnej stronie internetowej w niedzielę 8 grudnia. Dziś, 8 grudnia, w Warszawie słońce wzeszło punktualnie o 7:30. Teraz już codziennie, przez wiele kolejnych dni, będzie nas witać później. Dopiero w piątek za 6 tygodni i 5 dni słońce znów pojawi się na warszawskim niebie punktualnie o 7:30. Którego dnia słońce wzejdzie w Warszawie ponownie o godzinie 7:30? Wybierz odpowiedź spośród podanych. A. 19 stycznia B. 20 stycznia C. 24 stycznia D. 25 stycznia Strona 10 z 18
11 Zadanie 19. (0 1) Diagram przedstawia wyniki głosowania na kandydatów do szkolnego samorządu. Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Rafał uzyskał 2 razy mniej głosów niż Maria. P F Dziewczęta uzyskały łącznie o 2 głosy mniej niż chłopcy. P F Strona 11 z 18
12 Zadanie 20. (0 1) Przy ulicy Miłej znajdują się szkoła i sala gimnastyczna. Oba budynki zajmują prostokątne powierzchnie gruntu. Ich położenie i wymiary przedstawiono na rysunku. Pomiędzy ulicą a budynkami szkolnymi jest trójkątny plac należący do szkoły. Ile m 2 powierzchni ma plac szkolny? Wybierz odpowiedź spośród podanych. A. 720 m 2 B m 2 C m 2 D m 2 Strona 12 z 18
13 Zadanie 21. (0 2) Sześcian o objętości 48 cm 3 podzielono na 4 jednakowe prostopadłościany, jak na rysunku. Odpowiedz na pytania. Wybierz odpowiedzi spośród podanych Jaka jest objętość bryły zbudowanej z trzech takich prostopadłościanów? A. 12 cm 3 B. 24 cm 3 C. 27 cm 3 D. 36 cm Której z poniższych brył nie można zbudować z czterech takich prostopadłościanów? A. B. C. D. Strona 13 z 18
14 Zadanie 22. (0 1) Na mapie województwa mazowieckiego zaznaczono trasę łączącą dwa najmniejsze miasta w tym regionie: Wyśmierzyce i Mordy. W rzeczywistości droga z Wyśmierzyc do Mordów ma 170 km długości. Na mapie w skali 1: odcinek łączący te miasta ma długość 6,5 cm. Dokończ poniższe zdanie wybierz odpowiedź spośród podanych. Trasa, którą pokonuje się, jadąc samochodem z Wyśmierzyc do Mordów, jest dłuższa od rzeczywistej odległości w linii prostej między tymi miastami A. o 4 kilometry. B. o 13 kilometrów. C. o 40 kilometrów. D. o 130 kilometrów. Strona 14 z 18
15 Zadanie 23. (0 2) W tabeli zamieszczono informacje o trzech miastach Polski mających najmniejszą liczbę mieszkańców. Miasto Województwo Liczba mieszkańców miasta (grudzień 2012 r.) Powierzchnia miasta Rok uzyskania praw miejskich Wyśmierzyce mazowieckie km Działoszyce świętokrzyskie km Suraż podlaskie km Źródło: Gęstość zaludnienia miasta oblicza się, dzieląc liczbę mieszkańców tego miasta przez jego powierzchnię. Wykorzystaj podane informacje i odpowiedz na pytania. Która z podanych miejscowości jest najstarszym miastem? Odpowiedź:. Które z miast podanych w tabeli ma najmniejszą gęstość zaludnienia? Odpowiedź:. Strona 15 z 18
16 Zadanie 24. (0 3) Roland odkładał przez pół roku, od stycznia do czerwca, po 20 zł miesięcznie. Chciał kupić deskorolkę, która kosztowała w sklepie sportowym 156 zł. Kierownictwo sklepu ogłosiło ostatnich 7 dni czerwca tygodniem promocyjnym w tym czasie ceny wszystkich artykułów obniżono o 25%. Czy Roland będzie mógł kupić wymarzoną deskorolkę w tygodniu promocyjnym? Odpowiedź uzasadnij. Zapisz wszystkie obliczenia lub uzasadnienie. Odpowiedź: Strona 16 z 18
17 Zadanie 25. (0 4) W wyścigu kolarskim startuje 138 zawodników. Ostatni etap to indywidualna jazda na czas. Zawodnicy będą wyruszać z linii startu pojedynczo, w kolejności odwrotnej do zajmowanych dotychczas miejsc pierwszy startuje zawodnik zajmujący ostatnie miejsce, ostatni startuje lider. Starty zaplanowano co minutę. Jednak nie dotyczy to 16 najlepszych zawodników, ponieważ każdy z nich wyruszy na trasę w dwie minuty po odjeździe zawodnika startującego przed nim. O której godzinie wyruszy na trasę lider? Zapisz wszystkie obliczenia. Odpowiedź: Strona 17 z 18
18 Brudnopis Strona 18 z 18
19 Dr hab. Krzysztof BIEDRZYCKI (UJ, IBE) KOMENTARZ DO ZADAŃ Z JĘZYKA POLSKIEGO w Informatorze o sprawdzianie od roku szkolnego 2014/2015 Zaprezentowane w Informatorze zadania sprawdzają umiejętności, których opanowanie przez ucznia szkoły podstawowej pozwala mu na spełnienie wymagań wskazanych w podstawie programowej kształcenia ogólnego w zakresie języka polskiego z 2008 roku. Przy każdym zaprezentowanym zadaniu podana jest informacja, do którego wymagania ono się odnosi. Ponieważ są to zadania przykładowe, nie obejmują one wszystkich wymagań szczegółowych, pokazują jednak, w jaki sposób poszczególne umiejętności będą sprawdzane. Zadania te jednak obejmują wszystkie trzy wymagania ogólne wskazane w podstawie programowej: odbiór wypowiedzi i wykorzystanie zawartych w nich informacji, analiza i interpretacja tekstów kultury, tworzenie wypowiedzi. One ściśle są z sobą powiązane, a nawet niekiedy na siebie zachodzą, dlatego tak w praktyce dydaktycznej, jak podczas egzaminu nie sposób ich w pełni rozdzielić. Celem nauczania w szkole podstawowej jest opanowanie przez ucznia wszystkich przypisanych do pierwszego i drugiego etapu edukacji umiejętności z zakresu języka polskiego, powiązanie ich i sprawne posługiwanie się nimi. Zadania egzaminacyjne stanowią narzędzie sprawdzania umiejętności. Każde z nich wymaga przeprowadzenia konkretnych operacji intelektualnych, które podczas egzaminu są w specyficzny sposób generowane, jednak ich istota polega na tym, że powinny być sprawnie wykonywane w praktyce przez każdego użytkownika języka i uczestnika życia kulturalnego. Podajmy przykłady. Wiązka zadań związanych z wierszem Leopolda Staffa Kwiecień ma na celu sprawdzenie podstawowych umiejętności analitycznych i interpretacyjnych tekstu poetyckiego. Zadanie pierwsze odnosi się do wrażeń czytelniczych (wymaganie ogólne II. Analiza i interpretacja tekstów kultury, wymaganie szczegółowe 1.1. Uczeń nazywa swoje reakcje czytelnicze). Zdający ma określić nastrój wiersza. To pierwszy, wstępny etap kontaktu z tekstem. W tym momencie dokonują się dwa procesy jeden emocjonalny, intuicyjny, drugi intelektualny. Nastrój się odczuwa i jest to kwestia przeżycia subiektywnego. Podczas lekcji nauczyciel powinien uczniom pozwolić na emocjonalny odbiór utworu. Ważny w kształceniu jest jednak również drugi proces, intelektualny:
20 uświadomienia sobie tego, które elementy w tekście sprawiają, że czytelnik (uczeń) odczuwa właśnie taki nastrój, i umiejętne zwerbalizowanie wniosku. Zadanie, któremu się przyglądamy, ma charakter zamknięty: zdający ma dokonać wyboru pomiędzy dwiema możliwościami określenia nastroju, a następnie pomiędzy dwiema możliwości uzasadnienia tego określenia. Podczas sprawdzianu proces intelektualny, który ma doprowadzić do udzielenia prawidłowej odpowiedzi, przeprowadzony będzie przez zdającego samodzielnie. W czasie lekcji, podczas której zostanie wykorzystane to przykładowe zadanie, nauczyciel powinien wesprzeć ucznia i tak pokierować jego pracą, żeby uświadomić mu, na czym polega zadanie, jakie powinien wykonać. Możliwy jest taki scenariusz: 1. Nauczyciel nie ujawnia treści zadania, tylko prosi uczniów o samodzielne określenie nastroju wiersza i podanie uzasadnienia. 2. Nauczyciel prezentuje zadanie. Uczniowie weryfikują swoje uprzednie stanowiska. Teraz mają do wyboru tylko dwie możliwości określenia nastroju. Następnie znajdują uzasadnienie zawarte w drugiej kolumnie. Jedni uczniowie podadzą właściwe rozwiązanie, inni błędne. Nauczyciel powinien z nimi wszystkimi przeanalizować drogi myślenia, które przebyli. Najlepiej, jeśli uczniowie we wspólnej pracy dostrzegą błędy w rozumowaniu prowadzącym do niewłaściwej odpowiedzi. Jeśli jednak będą mieli z tym trudności, nauczyciel sam wskaże, na czym polegała przyczyna ich niepowodzenia. W wiązce zadań związanych z fragmentem powieści L.M. Montgomery Ania z Zielonego Wzgórza sprawdzana jest umiejętność radzenia sobie z lekturą tekstu narracyjnego. Trzeba podkreślić, że nie jest wymagana znajomość tego utworu w całości, polecenia dotyczą sprawności rozumienia jakiegokolwiek utworu epickiego. Zwróćmy uwagę na zadanie 6. Odnosi się ono do zapisu z podstawy programowej: wymaganie ogólne II. Analiza i interpretacja tekstów kultury, wymaganie szczegółowe Uczeń charakteryzuje i ocenia bohaterów. Zdający na podstawie przytoczonego zdania, a także przeczytanego fragmentu (ewentualnie całości utworu) ma wskazać istotną cechę charakteru bohaterki. Otrzymuje do wyboru cztery możliwości, powinien zakreślić odpowiedź prawidłową. Dystraktory odnoszą się do odczuć związanych z przeżywaniem sukcesu, tyle że chodzi w nich o poczucie dumy, zadowolenia lub nawet pychy ze względu na własne osiągnięcia, odpowiedź prawidłowa tym się różni, że wskazuje na istotną cechę charakteru Ani, czyli umiejętność cieszenia się z cudzego sukcesu. Uczeń przede wszystkim musi dostrzec tę cechę, a więc powinien dokonać szybkiej, skrótowej charakterystyki bohaterki. Jego proces myślowy może przebiegać w dwojaki sposób. Szybsza droga, dla ucznia potrafiącego
21 wydobyć z tekstu jego istotną treść, polegałaby na powiązaniu właściwej odpowiedzi z cechą dostrzeżoną w utworze (lub nawet jednym przytoczonym zdaniu). Istnieje jednak droga dłuższa polegająca na weryfikacji i eliminacji odpowiedzi nieprawidłowych. Podczas lekcji, w trakcie której wykorzysta to zadanie, nauczyciel powinien z uczniami zatrzymać się przy uzasadnieniu każdej wybranej odpowiedzi i wspólnie z nimi przejść drogę myślenia, która doprowadzi do rozpoznania powodzenia bądź błędu, a także do wskazania przyczyny właściwego lub niewłaściwego rozumowania. Te przykłady pokazują, w jaki sposób należy przygotowywać do sprawdzianu. Zadania egzaminacyjne, w tym zadania zamknięte, mają służyć dydaktyce, dlatego powinny być z uczniami dokładnie analizowane, zwłaszcza dużo uwagi trzeba poświęcić rekonstrukcji przeprowadzanego procesu myślowego. Zdecydowanie nie wystarczy wskazanie odpowiedzi prawidłowych. Trzeba pokazać, na czym polega dochodzenie do nich, a także na czym polegają pułapki powodujące niepowodzenie. W sprawdzianie obecne są też zadania otwarte. Polegają one na uzasadnieniu formułowanych sądów lub na wykorzystaniu umiejętności posługiwania się gatunkami wypowiedzi pisemnej wskazanymi w podstawie programowej. W Informatorze przedstawione są kryteria oceny. Ocenie podlegają tak treść, jak spełnienie wymogów formalnych przypisanych do poszczególnych gatunków. Najwyżej punktowane są te wypracowania, w których spełnione są wszystkie wymagania stawiane przed wypowiedzią w danym gatunku (a więc w pełni została opanowana umiejętność stworzenia tekstu w tym gatunku). Punktacja się zmniejsza w zależności od stopnia niedoskonałości tekstu opisane są minima niezbędne do spełnienia stawianych wymogów. Przedstawione w Informatorze przykładowe zadania powinny być wykorzystane w praktyce dydaktycznej jako pomoc i narzędzie do przygotowania ucznia do sprawdzianu. Trzeba jednak jeszcze raz podkreślić: powodzenie zdającego zagwarantować może tylko rzetelna realizacja zapisów z podstawy programowej.
Mieszek włosowy (torebka włosowa) zagłębienie w skórze, z którego wyrasta włos. 2
2014/2015 80 2013 PO CO NAM GĘSIA SKÓRKA? Kacper się rozchorował czuł się źle i miał gorączkę. Leżał skulony pod kocem i drżał z zimna. W pewnym momencie zauważył na ręce drobne grudki gęsią skórkę. Mimo
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 PRZYKŁADOWY ZESTAW ZADAŃ
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 PRZYKŁADOWY ZESTAW ZADAŃ Zadanie 13. (0 1) Podaj poprawne wartości poniższych wyrażeń arytmetycznych. Wybierz odpowiedzi spośród A i B oraz spośród C i D. 10 + 1
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ Czas pracy: 80 minut GRUDZIEŃ 2013 PO CO NAM GĘSIA SKÓRKA? Kacper się rozchorował czuł się źle i miał
Sprawdzian od roku szkolnego 2014 / 2015
Sprawdzian od roku szkolnego 2014 / 2015 Część 1. Język polski i matematyka Przykładowy zestaw zadań (S4) Czas pracy: 80 minut (Czas pracy będzie wydłużony zgodnie z opublikowanym w 2014 r. Komunikatem
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ DLA UCZNIÓW Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA Czas pracy: 80 minut Czas pracy będzie wydłużony zgodnie
Czas pracy: 80 minut (Czas pracy będzie wydłużony zgodnie z opublikowanym w 2014 r. Komunikatem Dyrektora CKE.)
Sprawdzian od roku szkolnego 2014 / 2015 Część 1. Język polski i matematyka Przykładowy zestaw zadań (S5) Czas pracy: 80 minut (Czas pracy będzie wydłużony zgodnie z opublikowanym w 2014 r. Komunikatem
Mieszek włosowy (torebka włosowa) - zagłębienie w skórze, z którego wyrasta włos.
Sprawdzian od roku szkolnego 204/205 Część. Język polski i matematyka Przykładowy zestaw zadań Czas pracy: 80 minut (Czas pracy będzie wydłużony zgodnie z opublikowanym w 204 r. Komunikatem Dyrektora CKE.)
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 1. Czas pracy: 80 minut P A? kocem i drobne grudki 1 z rywalizacji o pokarm. odkach sprzed milionów lat. nasi przodkowie z nieszkodliwa. W procesie ewolucji 2 tej
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ DLA UCZNIÓW SŁABOSŁYSZĄCYCH I NIESŁYSZĄCYCH (S7) Czas pracy: 80 minut Czas pracy będzie wydłużony zgodnie
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ Czas pracy: 80 minut GRUDZIEŃ 2013 PO CO NAM GĘSIA SKÓRKA? Kacper się rozchorował czuł się źle i miał
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ Czas pracy: 80 minut GRUDZIEŃ 2013 PO CO NAM GĘSIA SKÓRKA? Kacper się rozchorował czuł się źle i miał
Temat: Czytanie poezji na lekcjach języka polskiego w klasach młodszych Czesław Miłosz Droga
Temat: Czytanie poezji na lekcjach języka polskiego w klasach młodszych Czesław Miłosz Droga Cele: 1. Doskonalenie sprawności językowych 2. Poszerzanie zakresu słownikowego ucznia 3. Poznawanie znaczeń
SPRAWDZIAN WIELOPRZEDMIOTOWY
KOD UCZNIA WPISUJE UCZEŃ DATA URODZENIA UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY dzień miesiąc rok dysleksja Instrukcja dla ucznia SPRAWDZIAN WIELOPRZEDMIOTOWY W PIĄTEJ KLASIE SZKOŁY PODSTAWOWEJ Z życia szkoły
Przewodnik po typach zadań
8 Przewodnik po typach zadań Jedna ze zmian wprowadzonych do sprawdzianu w szóstej klasie szkoły podstawowej dotyczy typów zadań, które mogą się znaleźć w arkuszu egzaminacyjnym. Do tej pory na sprawdzianie
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_7) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA (S1, S2, S4, S5, S6)
SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA (S1, S2, S4, S5, S6) GRUDZIEŃ 2013 Zadanie 1. zawartych w nich informacji. Uczeń [ ] zdobywa
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
TEST KOMPETENCJI KATOLICKIEJ SZKOŁY PODSTAWOWEJ część matematyczna
UZUPEŁNIA UCZEŃ Imię i nazwisko: TEST KOMPETENCJI KATOLICKIEJ SZKOŁY PODSTAWOWEJ część matematyczna Maksymalna ilość punktów: 24 Instrukcja dla ucznia 1. Sprawdź, czy na kolejno ponumerowanych 6 stronach
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem
Układ graficzny CKE 2011 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
Co nowego na sprawdzianie po szkole podstawowej w 2015 roku
Co nowego na sprawdzianie po szkole podstawowej w 2015 roku fot. Shutterstock / Olesya Feketa 1 Od nowej podstawy programowej do nowej formuły sprawdzianu Rozpoczynający się rok szkolny będzie dla II etapu
Połoenie szkoły 1 : 25 000
Połoenie szkoły Dobra 1 : 25 000 1. Z przystanku autobusowego przy ulicy Długiej do szkoły trzeba i w kierunku: A. północnym, B. południowym, C. wschodnim, D. zachodnim. 2. Rzeczywista odległo midzy szkoł
liczba celnych rzutów Zadanie 14. (0 1) Ilu chłopców wykonało co najmniej 3 celne rzuty? Wybierz właściwą odpowiedź spośród podanych.
Informacje do zadań. i 5. Podczas szkolnych zawodów sportowych zorganizowano turniej rzutów do kosza. Każdy uczestnik wykonał sześć rzutów. Na diagramie przedstawiono informacje o liczbie celnych rzutów.
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO PRZYRODNICZA MATEMATYKA TEST 2 Klucz odpowiedzi i wykaz umiejętności do pobrania
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
EGZAMIN ÓSMOKLASISTY Z MATEMATYKI
Konferencja dla nauczycieli matematyki szkół podstawowych i gimnazjów EGZAMIN ÓSMOKLASISTY Z MATEMATYKI Ewa Ludwikowska Bydgoszcz, 09.01.2018 PROGRAM KONFERENCJI Egzamin ósmoklasisty-założenia, przykładowe
Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka
Wypełnia uczeń PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10 stron.
Klasa 3. Odczytywanie wykresów.
Klasa 3 Odczytywanie wykresów 1 Wykres obok przedstawia zmiany temperatury podczas pewnego zimowego dnia w Giżycku Jaką temperaturę powietrza pokazywał tego dnia termometr o godzinie 18 00? A 0 C B 1 C
Sprawdzian kompetencji trzecioklasisty
Imię i nazwisko... Klasa III....Numer w dzienniku... (wypełnia nauczyciel) Sprawdzian kompetencji trzecioklasisty Zestaw matematyczny Grupa B Instrukcja dla ucznia 1. Upewnij się, czy sprawdzian ma 8 kolejnych
PESEL. Czas pracy: do 135 minut 4. Rozwiązania zadań od 21. do 23. formułujesz samodzielnie.
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
Przygotowanie uczniów do egzaminu ósmoklasisty z matematyki. mgr Joanna Palińska
Przygotowanie uczniów do egzaminu ósmoklasisty z matematyki. Joanna Palińska Przykładowe arkusze egzaminacyjne Przykładowy arkusz dostępny na stronie www.cke.gov.pl Zestaw zadań egzaminacyjnych z matematyki
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_1) Czas pracy: 100 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_5) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
O wiośnie. (można przedłużyć nie więcej niż o 30 minut)
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA DATA URODZENIA UCZNIA miejsce na naklejkę z kodem dzień miesiąc rok SPRAWDZIAN W SZÓSTEJ KLASIE SZKOŁY PODSTAWOWEJ O wiośnie KWIECIEŃ 2007 Informacje dla ucznia
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_Q) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) W
W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012
Jerzy Matwijko Okręgowa Komisja Egzaminacyjna w Krakowie W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012 W Pracowni
Zadania w których wskaźnik łatwości był niż 0.5. Zadanie 15. (0 1) wskaźnik łatwości 0.37 dla szkoły
Pierwszego kwietnia 2015 roku szóstoklasiści przystąpili do sprawdzianu opracowanego zgodnie z zapowiedzią CKE według nowej formuły. Sprawdzian miał, tak jak dotychczas, formę pisemną. Składał się z dwóch
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_4) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:
WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1. 2.).
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
Osiągnięcia opisane w podstawie programowej obowiązujące do sprawdzianu klas VI:
Hanna MAREK Samorządowy Ośrodek Doradztwa Metodycznego i Doskonalenia Nauczycieli w Łomży Materiał uzupełniający dotyczący monitorowania osiągnięć uczniów Przykład sprawdzianu łącznie z obudową dla nauczyciela
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 10 stycznia 2013 r. 120 minut Informacje dla
Analiza sprawdzianu 2010 klas szóstych szkoły podstawowej
Zespół Szkolno - Przedszkolny w Rudzicy im. Jana Pawła II Analiza sprawdzianu 2010 klas szóstych szkoły podstawowej Skład zespołu opracowującego raport: mgr Magdalena Balcy mgr Barbara Gawlik mgr Ilona
Sprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych.
Sprawdzian Zadanie. (0 ). Podaj poprawne wartości poniższych wyrażeń arytmetycznych. Wybierz liczbę spośród oznaczonych literami A i B oraz liczbę spośród oznaczonych literami C i D. 27 7 2 A / B A. 3
Cel: Opiszę sytuację i obrazy poetyckie przedstawione w wierszu Jerzego Harasimowicza pt. Sad, styczeń
Przedmiot: język polski, klasa VI Temat: Zimowe krajobrazy Nauczyciel: Lidia Bęben, SP 27 w Toruniu Czas trwania: 45 minut Cel: Opiszę sytuację i obrazy poetyckie przedstawione w wierszu Jerzego Harasimowicza
Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez pisemnej zgody wydawcy zabronione.
WPISUJE UCZEŃ KOD UCZNIA PESEL OGÓLNOPOLSKI PRÓBNY EGZAMIN ÓSMOKLASISTY Z OPERONEM MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 11 stron (zadania 1. 21.). Ewentualny brak
RAPORT Z ANALIZY WYNIKÓW SPRAWDZIANU W KLASIE SZÓSTEJ PRZEPROWADZONEGO W DNIU
RAPORT Z ANALIZY WYNIKÓW SPRAWDZIANU W KLASIE SZÓSTEJ PRZEPROWADZONEGO W DNIU 01. 0. 01 r. Opracowanie: Anna Goss Małgorzata Połomska Świecie- 01r. 1 Sprawdzian w klasie szóstej został przeprowadzony w
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_C) Czas pracy: 100 minut Czas pracy może być przedłużony zgodnie z przyznanym dostosowaniem. GRUDZIEŃ 2017
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 23 lutego 2013 r. zawody III stopnia (wojewódzkie)
Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 23 lutego 2013 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test
ANALIZA WYNIKÓW SPRAWDZIANU KLAS VI w kwietniu 2010 r.
ANALIZA WYNIKÓW SPRAWDZIANU KLAS VI w kwietniu 2010 r. klasa SPRAWDZIAN KL. VI - KWIECIEŃ 2010 - Łatwości obszarów standardów standard: czytanie pisanie rozumowanie korzystanie z informacji wykorzystanie
Egzamin ósmoklasisty Matematyka
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DATA: 16 kwietnia 2019 r. GODZINA
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI Przedmiotowe ocenianie z matematyki jest zgodne z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015r. w sprawach oceniania, klasyfikowania, promowania
Sprawdzian kompetencji trzecioklasisty
Imię i nazwisko... Klasa III....Numer w dzienniku... (wypełnia nauczyciel) Sprawdzian kompetencji trzecioklasisty Zestaw matematyczny Grupa A Instrukcja dla ucznia 1. Upewnij się, czy sprawdzian ma 8 kolejnych
SPRAWDZIAN 2013. Klucz punktowania zadań. (zestawy zadań dla uczniów bez dysfunkcji)
SPRWDZIN 2013 Klucz punktowania zadań (zestawy zadań dla uczniów bez dysfunkcji) KWIEIEŃ 2013 Obszar standardów egzaminacyjnych Sprawdzana umiejętność (z numerem standardu) Uczeń: Uczeń: Sprawdzana czynność
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
Egzamin ósmoklasisty od roku szkolnego 2018 / Matematyka. Przykładowy arkusz egzaminacyjny (EO_6) Czas pracy: do 150 minut
Egzamin ósmoklasisty od roku szkolnego 2018 / 2019 Matematyka Przykładowy arkusz egzaminacyjny (EO_6) Czas pracy: do 150 minut Zadanie 1. (0-1) Z okazji Światowego Dnia Książki uczniowie klasy VII zorganizowali
CELE NAUCZNIA MATEMATYKI OPISANE W PODSTAWIE PROGRAMOWIEJ
NOWA FORMUŁA SPRAWDZIANU W SZÓSTEJ KLASIE CELE NAUCZNIA MATEMATYKI OPISANE W PODSTAWIE PROGRAMOWIEJ SPRAWNOŚĆ RACHUNKOWA WYKORZYSTANIE I TWORZENIE INFORMACJI MODELOWANIE MATEMATYCZNE ROZUMOWANIE I TWORZENIE
Wymagania Edukacyjne w Szkole Podstawowej nr 4. im. Marii Dąbrowskiej w Kaliszu. Matematyka. Przedmiotem oceniania są:
Wymagania Edukacyjne w Szkole Podstawowej nr 4 im. Marii Dąbrowskiej w Kaliszu Matematyka - sprawność rachunkowa ucznia, Przedmiotem oceniania są: - sprawność manualna i wyobraźnia geometryczna, - znajomość
WPISUJE UCZEŃ GRUDZIEŃ Czas pracy: 90 minut PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA
WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1..).
Egzamin ósmoklasisty Matematyka
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DATA: 16 kwietnia 2019 r. GODZINA
Proporcjonalność prosta i odwrotna
Literka.pl Proporcjonalność prosta i odwrotna Data dodania: 2010-02-14 14:32:10 Autor: Anna Jurgas Temat lekcji dotyczy szczególnego przypadku funkcji liniowej y=ax. Jednak można sie dopatrzeć pewnej różnicy
ANALIZA WYNIKÓW SPRAWDZIANU 2016 PRZEPROWADZONEGO W DNIU r.
ANALIZA WYNIKÓW SPRAWDZIANU 2016 PRZEPROWADZONEGO W DNIU 05.04.2016r. Opracowanie: Małgorzata Połomska Anna Goss Agnieszka Gmaj 1 Sprawdzian w klasie szóstej został przeprowadzony 5 kwietnia 2016r. Przystąpiło
Czy nowy klucz punktowania ma wpływ na komunikowanie wyników sprawdzianu 2010 roku? (na podstawie analizy rozwiązań zadań 21. i 23.
XVI Konferencja Diagnostyki Edukacyjnej, Toruń 2010 Jadwiga Kubat Okręgowa Komisja Egzaminacyjna w Krakowie Jerzy Matwijko Okręgowa Komisja Egzaminacyjna w Krakowie Czy nowy klucz punktowania ma wpływ
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Rejonowy
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj uważnie
PRZYKŁADOWE ZADANIA Z GEOGRAFII NA KOŃCOWY SPRAWDZIAN W KLASIE III GIMNAZJUM
PRZYKŁADOWE ZADANIA Z GEOGRAFII NA KOŃCOWY SPRAWDZIAN W KLASIE III GIMNAZJUM TEMAT WIODĄCY: KLIMAT POLSKI W tabeli przedstawiono średnie miesięczne temperatury powietrza i sumy opadów atmosferycznych dla
MATEMATYKA. Pierwszy próbny sprawdzian w szóstej klasie szkoły podstawowej. Karty pracy
MATEMATYKA Pierwszy próbny sprawdzian w szóstej klasie szkoły podstawowej Karty pracy Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 Test Zadania wyrównujące Numer zadania Karty
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 24 MARCA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Która równość jest fałszywa? Wybierz odpowiedź spośród
Konkurs dla gimnazjalistów Etap szkolny 11 grudnia 2015 roku
Konkurs dla gimnazjalistów Etap szkolny 11 grudnia 2015 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 12. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
SPRAWDZIAN Klucz punktowania zadań. (zestawy zadań dla uczniów z upośledzeniem umysłowym w stopniu lekkim)
SPRAWDZIAN 2013 Klucz punktowania zadań (zestawy zadań dla uczniów z upośledzeniem umysłowym w stopniu lekkim) KWIECIEŃ 2013 Obszar standardów egzaminacyjnych Sprawdzana umiejętność (z numerem standardu)
Egzamin ósmoklasisty w 2019 r. Diagnoza kompetencji ósmoklasistów przeprowadzona w grudniu 2018 r.
Egzamin ósmoklasisty w 2019 r. Diagnoza kompetencji ósmoklasistów przeprowadzona w grudniu 2018 r. Warszawa, 21 lutego 2019 r. Harmonogram egzaminu ósmoklasisty 2018 1 października deklaracja wyboru przez
Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:
Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów
a 2019 a = 2018 Kryteria oceniania = a
Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2018/2019 Etap III - wojewódzki W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe
Temat: Moja wymarzona droga do przedszkola i z przedszkola do domu lub. 1. Czas trwania (45-60 min. w zależności od tempa pracy grupy)
Temat: Moja wymarzona droga do przedszkola i z przedszkola do domu lub Moja wymarzona droga do szkoły i ze szkoły do domu 1 1. Czas trwania (45-60 min. w zależności od tempa pracy grupy) 2. Liczba osób
Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum
WYPEŁNIA UCZEŃ Kod ucznia Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum Informacje dla ucznia. Sprawdź, czy sprawdzian ma 7 stron. Ewentualny brak stron lub inne usterki zgłoś
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 14 KWIETNIA 2018 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Zbiornik z cementem jest opróżniany na znajdujacy
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 22 zadań.
WOJEWÓDZKI KONKURS MATEMATYCZNY ROK SZKOLNY 2018/2019
KOD UCZNIA Imię i nazwisko ucznia (Wpisuje Wojewódzka Komisja Konkursowa po rozkodowaniu prac) Czas rozwiązywania: 90 minut... Informacje: WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów szkół podstawowych
Sposoby sprawdzania i oceniania osiągnięć edukacyjnych uczniów
Sposoby sprawdzania i oceniania osiągnięć edukacyjnych uczniów Umiejętności oceniane na lekcjach języka polskiego: mówienie (opowiadanie ustne- twórcze i odtwórcze); czytanie: o głośne i wyraziste, o ciche
Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe.
Strona 1 z 12 liczba osób Informacje do zadań 1. i 2. W dwóch dziesięcioosobowych grupach uczniów przeprowadzono test sprawności notując czas (w sekundach) wykonywania ćwiczenia. Wyniki przedstawia poniższy
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja dla
SPRAWDZIAN 2014 Rozwiązania zadań i schematy punktowania
SPRAWDZIAN 2014 Rozwiązania zadań i schematy punktowania (Zestaw zadań dla uczniów bez niepełnosprawności i uczniów ze specyficznymi trudnościami w uczeniu się) KWIECIEŃ 2014 Obszar standardów egzaminacyjnych
Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów szkół podstawowych województwa kujawsko-pomorskiego. Etap rejonowy
Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów szkół podstawowych województwa kujawsko-pomorskiego Etap rejonowy 21.11.2015 Kod ucznia: Wynik: /20 pkt. Instrukcja dla ucznia Zanim przystąpisz
PROGRAM NAPRAWCZY MAJĄCY NA CELU POPRAWĘ WYNIKÓW SPRAWDZIANU ZEWNĘTRZNEGO KLAS SZÓSTYCH PRZYJĘTY PRZEZ RADĘ PEDAGOGICZNĄ W DNIU 3 GRUDNIA 2012 R.
PROGRAM NAPRAWCZY MAJĄCY NA CELU POPRAWĘ WYNIKÓW SPRAWDZIANU ZEWNĘTRZNEGO KLAS SZÓSTYCH PRZYJĘTY PRZEZ RADĘ PEDAGOGICZNĄ W DNIU 3 GRUDNIA 2012 R. KONSULTOWANY Z RODZICAMI W DNIU 17 LISTOPADA 2012 R. Jakość
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_2) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (1 pkt) Asia
14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe.
Zadanie 1. (0 1) Turysta A szedł ze schroniska w kierunku szczytu, natomiast turysta B schodził ze szczytu w kierunku schroniska. Obaj szli tym samym szlakiem i tego samego dnia. Wykresy przedstawiają,
Matematyka test dla uczniów klas piątych
Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca
Scenariusz lekcji języka polskiego dla klasy I gimnazjum. z wykorzystaniem elementów oceniania kształtującego
Scenariusz lekcji języka polskiego dla klasy I gimnazjum z wykorzystaniem elementów oceniania kształtującego Temat: Jan z Czarnolasu jako ojciec pogrążony w żałobie poznajemy Tren V. Powiązanie z wcześniejszą
Centralna Komisja Egzaminacyjna w Warszawie SPRAWDZIAN 2009. Klucz punktowania zadań testu O zwierzętach
entralna Komisja Egzaminacyjna w Warszawie SPRAWDZIAN 2009 Klucz punktowania zadań testu O zwierzętach (test dla uczniów słabo słyszących i niesłyszących) KWIEIEŃ 2009 Zadanie 1. Obszar standardów czytanie
Matura z języka polskiego
Matura z języka polskiego MAJ 2015 Egzamin z języka polskiego na poziomie podstawowym jest obowiązkowy dla wszystkich. Składa się z 2 części: Ustnej Pisemnej 2 CZĘŚĆ USTNA Egzamin maturalny z języka polskiego
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Arkusz I Czas pracy 10 minut ARKUSZ I GRUDZIEŃ ROK 004 Instrukcja dla zdającego